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The scattering of x-rays according to the classical theory
from a bound electron of natural frequency vq is first con-
sidered. Then Z electrons with various vq's are assembled
into an atom and the scattering from the atom studied.
The scattered rays are separated into coherent and in-

coherent parts by a study of the interference between the
scattered rays from two similar atoms. From this S,oh and

Sin«h are obtained for the atom. Kramers, Kallmann and
Mark's idea of virtual oscillators is used so that S„h and
S;,oh are averaged for the distribution of oscillators. The
X3 absorption law suggests either 2V+ vq dvq 01 4X+ Xq dAq

as the fraction of oscillators with frequencies between vq .

and vq+dvq or with wave-lengths between ) q and PEq+dXq.

In determining the averages it makes a difference which
distribution is used. The theory gives S„h= (f—Af )'
X(1—e )/Z, where hf is the atomic structure factor
decrement and e '~ the Debye-Wailer temperature factor.
Also the theory gives S;ncoh= 1 —(1/Z)ZE„+ Y, where 7
is negligible for X &Xz but is quite large for X &)z. Its size
when ) &X~ suggests that I' is the classical analog of the
energy which goes into the X fluorescent rays. Since these
rays are removed by absorption in aluminum in experi-
ments on diffuse scattering, Y is omitted in S;n«h. .Finally
S=S«h+ Sjncoh/ I 1+ (h/mc) vers @I 3. Honl's theoretical
value of bf =2.3 is compared with McNatt's experimental
value 2.5 for Cu En x-rays scattered by zinc.

1. INTRODUCTION

'NTIL recently all of the experimental work
on the diffuse scattering of x-rays by crys-

tals has been done in this laboratory with wave-

lengths much shorter than the E critical absorp-
tion wave-length of the crystal being examined.
Recently, however, McNatt' has been investi-

gating the diffuse scattering of Cu Xn (X = 1.54A)
and Zn Za (X = 1.433A) x-rays from single

crystals of zinc P Ic= 1.28A). In these cases X/Xz

is somewhat greater than unity and the theory of
diffuse scattering must be extended to the region
of anomalous dispersion.

The early papers by Debye, ' Faxen, ' and Laue4

on the theory of diffuse scattering by single

crystals took account only of what is now called

the coherent part of the scattered rays. The early
experiments of Jauncey' and Jauncey and May'
immediately showed the inadequacy of the then
existent theory to describe the experimental
results. After the discovery of the Compton
effect, Compton~ suggested that the incoherent

part of the scattered rays should be taken into

account. Both theory and experiments on diffuse
scattering then languished until 1931 when
Jauncey, s Jauncey and Harvey, ' and, inde-
pendently, Woo" extended the theory so as to
include the incoherently scattered rays. There
was some discussion between Woo and Jauncey
as to the correct separation of the coherent and
incoherent rays, but 6nally in 1932 these two
writers" "came to an agreement on the formulas

S=Ss.g+S; @oh/I1+ (h/mc) vers 4 I ',

S„h= (f'/Z) (1—e—
)

S;,.g = 1 —(1/Z) PE,',

where f is the true atomic structure factor, E, is
the electronic structure factor for the rth (Z, L,
etc.) type of electron, and e ~ is the Debye-
Waller' " temperature factor. Further extension
of the theory was made in 1933 by Harvey,
Williams and Jauncey" to take account of the
Pauli exclusion principle; but, since this leads to
a small change in 5;„„hwhich is negligible except
in crystals consisting of light atoms (such as NaF)

' E. M. McNatt', Phys. Rev. 56, 406 (1939).
' P. Debye, Ann. d. Physik 43, 49 (1914).
' H. Faxen, Ann. d. Physik 54, 615 (1917).
4 M. v. Laue, Ann. d. Physik 81, 877 (1926).
~ G. E. M. Jauncey, Phys. Rev. 20, 405 (1922). Note

Figs. 2 and 6 in this article should be interchanged.
' G, E. M. Jauncey and H. L. May, Phys. Rev. 23, 12

(1924).' A. H. Compton, X-Rays and Electrons (Van Nostrand
New York, . 1926), p. 170.

s G. E. M. Jauncey, Phys. Rev. 3V, 1193 (1931).' G. E. M. Jauncey and G. G. Harvey, Phys. Rev. 37,
1203 (1931).' Y. H. Woo, Phys. Rev. 38, 6 (1931).

"Y.H. Woo, Phys. Rev. 41, 21 (1932).
8 G. E. M. Jauncey, Phys. Rev. 42, 453 (1932).

~' I. Wailer, Zeits, f. Physik 17, 398 (1923).
'4 G. G. Harvey, P. S. Williams and G. E. M. Jauncey,

Phys. Rev. 40, 365 (1934).
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we shall not consider this further development in

this paper.

2. THEORY

We shall use the symbol CA to refer to Comp-
ton and Allison's" book on x-rays —thus CA
(4.30) refers to Eq. (4.30) in this book.

Also, similar to CA (3.01), we have

Ie~ EeE' e' sin' 0g M

(9)
Io E ' R'm'c (rd' —rd ')2+ 4r '(d "/9c'

Finally, for unpolarized rays scattered across
unit area in a direction p with the primary beam
we arrive at

(a) Scattering from a bound electron

The classical theory of the forced, damped
oscillations of an electron is described according
to CA (4.30) by the differential equation

where

and
B—~2{(~2 ~ 2)2+4r 2~6/9~2} —

2

I,= Io(e'/R'm'c') (1+cos' p) /2,

(10)

(11)

(12)

d X d X—(2e'/3mc') +&a,2x = Eo(e/m) s—in cut, (2)
d]2 dt'

where
x=3. sin ((ot+P), (3)

P2 —E 2(s2/~2)/{ (&2 & 2)2+4r 2~6/9pP} (4)

tan P = 2r, (u'/3c(cv' —a&,'),

and r, = e'/mc' = 2.82 &&10 "cm. The acceleration
of the electron is

d X
= —A(o' sin ((ut+P).

According to CA (2.01) and (2.05), the field

strength of the electric wave arriving at time t
at a distance R from the accelerated electron and
in a direction 0E with the electric vector of the
incident polarized rays is

E=Ee, sin {ao(t R/c)+P}, —
where

Ee~=AeuP sin Hg/Rc'.

"A. H. Compton and S. K. Allison, X-Rays in Theory
and Experiment (Van Nostrand, New York, 1935.)

where x is the displacement of the electron from
its "rest" position —that is, the position it would
have occupied if no radiation were falling on the
electron. The frequency of the incident rays is
a&/2~ and the natural frequency of the g-type
of electron is ~~/2~. The impressed electric field
is zero when I=0. The negative sign on the right
of (2) is caused by the negative charge on the
electron, since e represents the charge on the
electron in magnitude only.

The steady-state solution of (2) is

the Thomson formula for scattering from a single
free electron.

For ordinary x-rays and for co, not exceedingly
close to a& the term 4' co'/9c' under the braces in

(11) is negligible with respect to (cv' —co~')' and
we may write

~2/(~2 ~ 2) (13)

Unless cv is exceedingly close to &u„ tan P is either
a small negative or a small positive number.
From (5) and (13), we may say that B retains
the positive value

B=
I
~'/(~' —~ ')

I
=

I
p'/(" ~') —

I
(14)

and that the phase changes suddenly by 180' as
~ decreases through ~,. For a "free" electron
co,/&a~0, so that B= 1 and there is no change of
phase on scattering.

(b) Scattering from a single atom

We shall proceed along the lines of Jauncey's
paper of 1931. Ke i.ntroduce the reference line
OZ which bisects the angle between the forward
direction OB of the scattered rays and the back-
ward direction OA of the primary rays. Perpen-
dicular to this reference line, we draw the refer-
ence plane through the center, or nucleus, of the
atom. Then at a given instant of time the rth
electron of the electron cloud surrounding the
nucleus is at P' at a distance s, from the plane.
Draw a plane BD perpendicular to OB at a large
distance R from 0 in Fig. 1. The phase of the
scattered wave arriving at BD from a "free"
electron on the reference plane is independent of
the position of the electron in the reference plane
and we shall assume for convenience that the
phase of such a wave is zero. The phase of a
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we obtain

(I,/I„);„„=Z —2 (1 B»—')

Fir.. 1. Interference of x-rays scattered by a cloud of
electrons.

scattered wave at BD from the rth electron at
z„ is kz, +P,., where

k= (4m. sin —',p)/X

and P,. is the change of phase on scattering. The
amplitudes of the waves scattered by all the Z
electrons of the atom are added vectorially to
obtain the resultant amplitude of the scattered
waves arriving at the plane BD. Hence the
scattered intensity per unit area on BD is

(I,/I, );„,t= {QB, cos (kz, +P„)}'

+Q' Q' cos k(zp, —z.) +2B»' cos k(z) —zs)
2'M s= 3

7J 2

+2B»p Q cos {k(z,. —z,) —g»}, (18)
r=3 s=l

where the subscripts 1 and 2 refer to the K
electrons and the subscripts 3, 4 Z refer to the
non-E electrons.

The intensity given by (18) is an instantaneous
intensity resulting from an instantaneous con-
figuration of the electrons in the atom. The prob-
ability of this intensity occurring is that of the
configuration occurring. We shall represent this
latter by P(zi, zs, z„zz)dzidzs dzz. No
further progress can be made unless further as-
sumptions are made concerning this probability.
These further assumptions are: (1) the probability
distribution function for the rth electron is inde-

pendent of that of the sth electron, so that we may
write

+{+B, sin (kz„+.tt, .) }'
p(z1& z2y ' ' ' zz) pl(zl) 'p2(z2) ' ' ' pz(zz) t (19)

and (2) the rth electron isjust as likely to be above

the reference plane as below it, so that

P (z) =P.( z). —
Z z g

=2 B.'+2'Z' B.B. (20)
r=l r=1 s=l

In other words p, .(z,) is an even function of z,

The average scattered intensity is then given by

where B„is the value of B as given by (11)or (14)
for the rth electron and the symbol Z'Z' indicates
that in the double summation res. If for all
electrons co,/co~0, B=1 and tt„—$.=0, so that
(16) reduces to

Iq I,{Z+g' P' c——os k(z„z,) }, (17)—

(Ip/I. )g, = (Iq/I, );„,i 1I Pgs„
r=1

where p„ is written for p,.(z,.). Remembering that
the integral of an odd function from —~ to
+ ~ is zero and that the sine is an odd function
and also that

+4B»E» cos P»Q E,+Q' Q' E„E„(23)

the formula given in Jauncey's paper' of 1931. (22)
We shall now simplify the problem by assuming
that we are interested in the region X =X~ and

since the rth electron must be somewhere, we
that therefore B„=j3~ for the two E. electrons
aiid B„=1 for the other electrons. Consequently, obtain

also p, f,= &f» when r—or s represents a X (I /I )„Z
electron and it, $,=0 when r and—s represent
either the two E' electrons or two of the non-E
electrons. Applying these assumptions to (16),
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where

E„= P, cos ks„ds„, (24)

so that

Q g —f
r=3

(25)

z z

the "electronic structure factor" for the rth
electron. Now put

are reduced to zero, then, except in the Laue-
Bragg directions, the factor of f' in (28a) is
(e+X)=0. This means that the destructive
interference except in the Laue-Bragg directions
is complete. Following the ideas of Raman" the
part of (28) which is reduced to zero by multipli-
cation by (n+X) in (28a) is the coherent part
of (28). Hence f' represents the coherent part
of (28), while the remainder, Z ZE,2—

, represents
the incoherent part. This second part exists
whether or not the atoms are assembled into a
lattice.

As a simplification of this method of separating
out the coherent scattered rays, the n atoms need
only be assembled into a line of equally spaced
atoms. In this case

Eq. (23) now becomes
n—j

X=2 P (n r) cos rko, — (28b)

(Iy/I, )A, Z pZ„' ———2(—1 BJr')—

+2Zlr'{ 1 —Bir'(2 cos' Px —1}

+ {f 2Es(1 —Bs cos fir—) )
'. (27)

When a&Jr/~ —+0, this reduces to

(Ie/I, )A. =Z QZ, '+ f', — (28)

which Raman" and Compton" have obtained
for this case.

(Iq/I. ) =n(Z QZ„')—+f'(n+Xe I), (2—8a)
1

(c) Separation of the coherent rays

If a large number n of atoms which individually
scatter according to (28) are assembled into a
three-dimensional lattice or crystal, Jauncey,
Harvey and Woo' ' " " have shown that the
intensity of the rays scattered by the lattice is
given by

where a is the projection of the separation of two
adjacent atoms on the s axis or reference line of
Fig. 1. A graph of X/e against ka is shown in

Fig. 2 for e=8. It is seen that, even for a small
number like 8, X/m is close to —1 or X to —n
except in directions near to those where ka =2m',
m being zero or an integer. These exceptional
directions are those included in the cones shown
in CA Fig. V-14 and they correspond to the
Laue-Bragg directions in the case of a three-
dimensional lattice.

For the purpose of separating the coherent
rays we may reduce the linear lattice to two
atoms. In this case we have two atoms at 2
and B, Fig. 3. In this case (m+X) reduces to
2(1+cos ko) . Let the reference plane pass
through the center of the atom at A, we then

I.0

where X is a triple trigonometrical summation
and e '~ is introduced to take account of the
thermal vibrations of the atoms in the lattice.
The value of X is —n excepting for the directions
of the Laue-Bragg re'flections when X takes on
the value of +n' —n. If the thermal vibrations

I C. V. Raman, Ind. J. Phys. 3, 35'? (1928).
"A. H. Compton, Phys. Rev. 35, 92S (1930).

l I
11' 3&/L

+a,

FK'. 2. Graph of X/n against ku for a line lattice.
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the production of the scattered intensity I~, n
being small enough, however, so that no correc-
tion for. absorption. need be made. After intro-
ducing the effect of the Compton change of wave-
length on the incoherent portion of (27), we
write (27) in the form

S,g„„——S„g+S;„„z/{1+(k/mc)vers p},' (32)

where

FK'. 3. Interference of x-rays scattered by the electrons in
two atoms.

1
S-~=—L{f—2Eir(1 BIr co—s 4~) }'

Z

+4E i'~-' sin' P~j, (33)
represent the s of an electron in atom A as s, and
the s of an electron in atom 8 as sr +a. The
subscripts r and s refer to electrons in atom A
and r' and s' to electrons in atom B. Eq. (16)
now becomes

Z Z

Z

S;„,.„g——1 ——Q E„'+F'
Z r=l

and
7= —2 (1 Bir') (1—EI—P) /Z

(34)

(34a)

(Iq/I, );„„=PB„'+Q B,'
Z Z

+g' Q' B„B,, cos {k(s„—s,) +P„—P, }

Z Z

Q' P'B„B, cos {k(s„—s, )+P,. —P, }
r'=1 8'=1

Z Z

+2+ Q B„B,cos {k(s,—s, +a)+P„f;}.(29)—
r=l 8'=1

Introducing the probability distribution func-
tions, p„as before and assuming that the P„ for
the rth electron in atom A (or B) is not affected
by the presence of atom B (or A), we find after
tedious computation that

(I~/I, )A„——2 (1+cos ka)

X[{f—2Eir(1 Bsc cos &Jr) }'—
+4EIr2BIr2 sin2 PIr]

+2LZ —Q E„'—2(1 B~')(1 Eir')] —(30)—
The factor of 2(1+cos ka) in (30) is the coherent
part of (27). The remainder of the right side of
(27) is the incoherent part.

We now introduce the symbol

S—= (1/nZ) (I@/I.)A„ (31)

where n is the number of atoms participating in

orbital frequency
((1.

x-ray frequency
(35)

For the nth Bohr orbit of a hydrogenic atom this
ratio is (Z'/2 n7'r) (X/137 an) where an is the
radius of the first Bohr orbit in hydrogen. For
Cu Xn rays scattered from the L electrons of zinc
the effective Z is about 25 and the ratio is 0.266.
Although this is not very small compared to
unity we shall as an approximation assume that
(35) is fulfilled for the L electrons. For the X
electrons the effective Z is about 29.5 and the
ratio is 2.94. For this case the condition of (35) is

not fulfilled and E~ for the E; electrons is not
given by (24).

In McNatt's experiments' the largest value of
(sin 2P)/X is 0.6, for which, according to James
and Brindley's tables, "B~ for zinc is 0.990. This
departure from unity is due to the probability

"R.W. James and G. W. Brindley, Phil. Ma@, 12, 81
(193&),

(d) Frequency of the orbital motion of the
electrons

In the previous subsections (b) and (c), it has
been tacitly assumed that an electron did not
on account of its orbital motion appreciably
change its position in the atom during a com-
plete cycle of the incident x-rays. In other words,
it was assumed that
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distribution function p»(s») in (24) being small
but appreciable for values of s~ greater than zero.
However, if during a cycle of the incident wave ~

the electron makes something like three revolu-
tions about the nucleus, then no matter what the
value of sz at the beginning of the cycle s~ passes
through the value zero and cos ks~ passes through
the value unity. It is plausible to expect that the
average of cos ks~ is closer to unity than the
value given by (24). Hence we may expect E» to
be closer to unity than 0.990. To be on the safe
side we shall use James and Brindley's values
of E». Then in (34) we have, from (14) and
for Zn Eu rays (X/X»=1.12) scattered from
zinc, 7=0.02. The value of Y for Cu Eo. rays
(X/k» = 1.20) is 0.005 and its value for X/k» ——1.06
is 0.1. Since S values have not been measured
under the best conditions with an error less than
about 0.1, we are justified in neglecting the
quantity V in the region X greater than but not
too close to 'A~. In this region

g

Sincoh = 1 g Er
Z &=I.

(36)

(e) Atomic structure factor decrement

In the theory of refraction and absorption of
x-rays, Kramers, Kallmann and Mark" intro-
duced the idea of virtual oscillators. Instead of
the E electrons of all atoms at all times having
a natural frequency cu»/2ir, they introduced
virtual oscillators having natural frequencies
vs= id, /2ir all the way from c0»/2ir to infinity. In
an assembly of atoms let the probability of a X
electron having a frequency v, in the range dv,
be P(p~)dv~ Applying the . method of Kramers,
Kallmann and M ark, we then calculate an
average S,t,, for all the virtual oscillators. But
now comes the question of the distribution or
averaging fraction P(i,)d p, . Kramers, Kallmann
and Mark obtain this from the experimental

'9 H. Kallmann and H. Mark, Ann. d. Physik 82, 585
(1927). See also CA, p. 292.

Also for Zn En rays on zinc, the term

(4E»'B»' sin' P»') /Z

in (33) is from (5) and (14) of the order 10 ' and
is completely negligible and we replace (33) by

S„h= {f—2E»(1 B» cos P») }—'/Z. (37)

4X,'d X,/X»' (39)

for the averaging fraction. The averaging fraction
(38) was used by Kramers, Kallmann and Mark.
Either of these is suggested by the absorption
law. It should be noted that (38) does not trans-
form into (39) when we put v=c/k but into
2XQX,/7»' which implies a X instead of X' law
of absorption! The averaging fraction is thus
arbitrary even for a given absorption law.

Because of the distribution of oscillators from
v» to ~ (7,» to 0), we can no longer neglect the
quantities I' and (4E»'B»' sin' P,)/Z when
X&)~. Ke must therefore recognize two cases:
X&X~ and &&X .

Case I. X)Xz.—In this case it is only S„h
which according to (32), (36) and (37) is a func-
tion of v, /i or X,/X and hence we need only aver-
age this portion of S,~, . Since the coherent part
of the radiation comes from the addition of
amplitudes we find ((S„I,')A,)'. For this, from (37),
we need (B~ cos f,)A, . Using the averaging frac-
tion (38), we obtain' from (5) and (14)

(Bq cos Pg)AV= {1+w» Iog (1 w» ) }, (40)

since cos P, = —1. We shall in this paper define

Af by

&f=f Z'(S.oh*)A. ,—

whence, in virtue of (37) and (40),

Af= —2w»' log (1—w» '),

(41)

(42)

since E»=1. Af is called the atomic structure
factor decrement. On the other hand, if we use
the averaging fraction (39), we obtain

(Bq cos Pq)A.

—{1+2w»'+2w»' log (1—w» ') } (43)
and

4f= —4w»'{1+w»' log (1 —w» ') }. (44)
20 B. O. Peirce, A 5&ort Table of Integrals, pp. 10, 11

and 26.

absorption law which states that the mass ab-
sorption coefficient ~aries as 1/v' or as X' so long
as p=c/X) v». If we think of the frequency
aspect of the law, we are inclined to adopt

2v» dvg/vg

for the averaging fraction, while, if we think of
the wave-length aspect, we are inclined to adopt
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In this tan ' {D/(wry' —1) } approaches s. or
D/(torr2 —1) according as ) ( or )lix. In the

We see therefore that the calculation of hf is
somewhat arbitrary. Others have encountered
the same difficulty in working out the theo-
retical formula for the intensity of the Bragg
reHection of x-rays from crystals. We shall not
attempt any further in this paper to calculate
Af but shall use the theoretical value of Af as
found by others. So far the most satisfactory
theoretical formula for Af has been found inde-
pendently by Honl" and Williams. "Bruce" using
Honl's theory has obtained a simple formula for
calculating Af

Case II. ) ()~.—It is now no longer possible to
neglect the quantities we have previously men-
tioned, nor can we substitute (14) for (11)since
in the range of integration co, (or v,) passes
through the value ~d (or i) and B~ according to
(14) goes to infinity. However, if we include the
radiation damping term 4r,.'c0'/9c' which occurs
in formula (11) for 8„ the integrand in the
integral for determining (8, cos P,)«no longer
goes to infinity when co, passes through ~. It
turns out that (8, cos 1t,)«, if the averaging
fraction (38) is used, is given by the right side of
(40) plus a term with 2r,c0/3c as a factor. The
order of magnitude of this factor is 10 4and so the
added term may be neglected. However, in virtue
of (33) and (34), 8, cos f, does not determine Af
as it does when X))~. We leave the calculation
of hf to others.

The quantity I is of interest because it occurs
in the incoherent part of .the scattered rays. We
shall attempt to find the magnitude of Y. We
6rst determine (8,')«rather than ((B,)«)' since
the incoherent part comes from the addition of
intensities. Applying the averaging fraction (38)
to the square of (11), we obtain2'

latter case (B~')«—+0 when wry&)1, while in the
former case the term containing D becomes by
far the most important term on the right of (46)
and we write

(8,')A, wx'm——/D, . (47)

when X&)~.
Since the Schroedinger probability distribution

function for a X electron of an element like zinc
is very nearly that of an electron in a hydrogenic
atom with a nuclear charge +Ze, we may write
as an approximation

1 Ex'= (—Z'n9rr'/X') sin' -'P

where n=2m. e'/bc=1/137. We now have

(48)

(Y)«——(3Zn2/2r, )) sin' i2p,

since we may replace 1 —(8,')A„by —(8,')A, .
Instead of applying the averaging fraction (38),

we might have applied (39). In this case, after
making approximations, (47) is replaced by

(50)(8 ')A, 2tiiir'm /D——
and (49) by

(Y)«——(3Zn'/r, ) (X'/Air') sin'-', y. (51)

The numerical values of (I')«are 30 from (49)
and 18.5 from (51) when zinc is irradiated by
Mo Xn rays (X=0.71A) and the secondary rays
are measured at &=90'. At this place we shall

drop the average sign from Y and from now on
use P to represent its average. The greatest
value of 5=S„h,+5; „h for zinc measured in this
laboratory is about 6 while the value of 5;„„his

always less than unity when V is neglected or
omitted. So if V is considered as a'correction
term it is much greater than the quantities which
are being corrected.

It is known that when x-rays fall upon a sub-.

stance both scattered rays and much more in-

tense X fluorescent rays are produced provided
that X ()z. These Huorescent rays are incoherent
with the primary rays. The magnitude of Y
suggests that Y represents the classical analog
of the energy which appears as fluorescent rays
when .a substance is irradiated by x-rays whose
) &X~. In experiments on diffuse scattering it is
usual when ) &)g to place absorbing material

8 '=(1+D') '+war'(1+D') '

X log {(1 wx ') '+D'wx —'}--
+ {(1 —D')/D(1+D') }

X tan-i {D/(~x2 —1)}, (45)

where D =2r,&v/3c=1. 17 X10 '/l~ when X is in

angstroms. Since D is small (45) reduces to

(8,')A, ——1+2wx' log (1—tsar
—')

+ (Birr'/D) tall ' {D/(nil' 1)}. (46)—
"H; Honl, Zeits. f. Physik 84, 1 (1933)."E.J. %illiams, Proc. Roy. Soc. 143, 358 (1933)."W. A. Bruce, Phys. Rev. 53, 802 (1938).
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such as aluminum in the scattered beam so as to
cut out the more absorbable fluorescent com-
ponent of the beam. Consequently the quantity
F does not enter into what is ordinarily called
"diffuse scattering. " This is a paper on diffuse
scattering and the writer feels that further con-
sideration of I should be deferred to a later

) /Alt

1.12
1.20

MCN&Tr
(EXP.}

3.65
2.5

Eg. (42)
(THEORY)

4.0
3.4
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HbN'r.
(THEORY)

2.8
2.3

paper.

(f) Diffuse scattering from a crystal

Jauncey"- and Woo" have shown that if atoms
whose S values are known are assembled into a
crystal lattice, the S values for the diffuse
scattering from the crystal are obtained by sub-
tracting e ™times the coherent part of 5 for the
atom from the S,q, values. Thus, using (32),
(36) and (41), we obtain the very good ap-
proximation

—(f gf)2(] s—2M)/Z

+ {1—(1/Z)ZZ„'}/{1+(h/mc) vers P}' (52)

for the region ) ))~ and also for the region
X ()~ if in the latter case care is taken to remove
or to correct for the fluorescent rays.

3. CONCLUSION

The formula for the diffuse scattering of x-rays
from a crystal in the region X/Xx close but not
exceedingly close to unity differs only from the
formula previously worked out for the region
X/Xx«1 in that f in the formula for 8 is replaced
byf ~f

McNatt's experimental values of hf for zinc
are shown in Table I. These are the only experi-
mental values of Af so far obtained by diffuse
scattering. Theoretical values are shown in the
table. The agreement of experiment with Howl's

theory is little better than with (42) of this paper.
However, on account of the relatively low in-
tensity of the Zn Xo. rays in McNatt's experi-
ments, the writer believes that McNatt's value
for Af is more reliable for the stronger Cu Kn
rays (X/Xx=1.20). Here the agreement of 1VIc-

Natt's and Honl's values is as good as can at
present be expected. On account of the arbi-
trariness in averaging 8, cos P, the writer holds
no particular brief for the values shown in the
third column of Table I.

Finally the writer wishes to point out that hf
as given by (42) or (44) for X)Xlr leads to the
value 2 when lb/)Ix»1. This implies that the X
electrons are inoperative in the scattering process
in this region. Similarly the I electrons become
inoperative when X/X z» 1.In the case of ordinary
light irradiating a substance like zinc, the X, I.
and some or all of the M electrons are inoperative
as far as scattering is concerned.


