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A generalization of the method of the self-consistent 6eld
for two-electron con6gurations previously given by the
author has now been simpli6ed and improved in two ways.
Firstly, it is now assumed that the radial functions are
identical with the Hartree functions (or with simpler
approximations to these), so that a considerable saving in
labor results. Secondly, the core electrons are taken account
of more accurately than in the original method. The 6nal
results are in general only valid if the valence electrons are

equivalent or if the difference in their azimuthal, quantum
numbers exceeds two; they do not -involve a great deal of
computation once the Hartree functions are known.
Numerical calculations have been made for the normal
state of helium (as a test of the method) and for the 2p'
terms of 0 III.The improvement obtained with the present
method, while not great, is significant; in particular, the
separation ratio for the 0 III terms is markedly improved.

INTRQDUcTIGN

' "N a recent paper, ' -a generalization of the
- - method of the self-consistent field (s.c.f.) was
given, applicable to the case of two-electron
configurations in Russell-Saunders coupling, the
core electrons being taken into account through a
possible screening of the Coulomb field acting on
the valence electrons. '

The generalization consists essentially in as-
suming for the wave function the form

&=(go X(x),

where $0 isa function of the form usually assumed
in the s.c.f. method when the correct symmetry
properties of the wave function are taken into
account, and contains the two radial func-
tions, while X(x) is an adjustable function of

'A. F. Stevenson, Proc. Roy. Soc. A160, 588 (j.937),
referred to hereafter as I. The following eorreetion may
be noted: in Eq. (2), the sign in front of each of the
square brackets should be — instead of +. %hat is
really a special ease of the method had been previously
used by Breit, Phys. Rev. 35, 383 (1930).

~ The extension to the case where the core electrons are
taken more accurately into account was also briefly
indicated, but was not worked through in any detail.

x=cos (r~, rg). The variational method is then
applied, and yields differential equations for the
two radial functions analogous to those of the
s.c.f.„ together with a third equation for the
function X. The assumption. (f) is perhaps the
most general one that can be made without
introducing complications which would make the
calculations intractable in many cases.

As developed in I, however, the method has
two disadvantages. In the first place, the labor
involved in carrying through numerical calcu-
lations would be considerable, particularly when
exchange teI ms are taken 1nto accouIlt. Secondly—and this is the more serious objection —the
wave function (1) does not automatically satisfy
the condition of being orthogonal to the wave
functions of lower levels which have the same
symmetry characteristics. ' Since the effect of the

' The orthogonality condition is automatically satisfied
for levels with different symmetry characteristics on
account of the transformation properties of the wave
functions. The same nonorthogonality situation may arise
in the s.c.f. method (with any number of electrons) if
there are lower levels for which the electrons have the
same azimuthal quantum numbers as in the con6guration
considered, since the corresponding radial functions will
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core electrons is replaced by a given central field
acting on the valence electrons, there will often
be a number of lower "virtual" levels of the same
symmetry characte'ristics in which the valence
electrons are in lower orbits, even. though such
configurations would violate the Pauli principle
if the core electrons were more properly taken
into account. Consequently, the method would
lead to very misleading results in some cases.

As regards the first disadvantage, a con-
siderable simplification results if the radial
functions are not regarded as being arbitrary as
in I, but are assumed to be identical with the
s.c.f. functions, ' and it is probable that the
resulting loss in accuracy is slight. Such a
simplification is made in the present paper.
Further, an extension of the method is given
which takes proper account of the core electrons,
so that the orthogonality difficulty mentioned
above does not arise —at least so long as there
are no lower states, with the same symmetry
characteristics, of the atom as a whole.

It will be found that if the valence electrons
are equivalent (the most important case), or if
the difference in their azimuthal quantum
numbers exceeds two, the final form of the
results is comparatively simple, and requires (in
addition to some straightforward algebraical
work) only the calculation of certain integrals
involving the s.c.f. radial functions, so that, when
once these functions are known, the labor
required is not very great. The method may thus
be regarded as one for making more accurate
calculations of energies from the s.c.f. functions
than are provided by the usual method.

Numerical calculations have been carried
through for the normal state of helium (as a try-
out of the method), and for the 2p' terms of
0 III, for which the s.c.f. (without exchange) has
been worked out by Hartree and Black. ' While

riot be accurately orthogonal on account of the difference
in central fields. For instance, some of the calculations of
Wilson and Lindsay on doubly excited states of helium
{Phys. Rev. 4/, 681; 48, 536 (1935)) would seem to be
subject to doubt for. this reason.

4 It is immaterial for our purpose whether these functions
are obtained by a strict application of the s.c.f. method
{with or without exchange), or in some simpler manner.
Naturally, the more accurate the functions are, the better.' D. R. Hartree and M. M. Black, Proc. Roy. Soc. A139,
311 (1933). The coupling for this case appears to be
sufficiently near to Russell-Saunders, though the interva
rule is not very well satisfied for the 'P multiplet.

the improvement obtained over the s.c.f. result
is not great, it is nevertheless significant, and
appears to be roughly of the same order of
magnitude as the improvement obtained by
including exchange terms in the s.c.f. equations.

2. THE Two-ELEcTRQN M ETHoD

We shall first work out the case where the
same assumption is made as in I regarding the
core electrons —i.e., we take them into account
only by a modification of the central field —but
where the radial functions are regarded as being
already known. We may refer to this as the "two-
electron" method. Although, as discussed above,
this may lead to erroneous results, it may
nevertheless be valid in certain cases, and the
results form, as we shall see, a check on the more
complicated calculations of Section 4.

We denote the configuration quantum numbers
of the two electrons by (n&l&) and (e&4) and their
radial functions by P&(r), P~(r). ' We make the
assumption (1),where $0 takes proper account of
exchange, etc. The energy, to be minimized, is

Z =. ~Q*IIigdr

The method of handling such integrals (coordi-
nate system to be adopted, etc.) has been fully
discussed in I, and we shall here give only the
final result. Although the general case can be
handled without difficulty, the results simplify
considerably if we assume either (1) l& ——12, or

(2) ~'l~ —
lm

~
)2 and X=linear function of x.These

include the cases considered in the more complete
theory of Section 4.

We then find, measuring the energy iri atomic
units (instead of rydbergs as in I),

where

(2)

dX
L(X) = —A—(1—x2)f(x) +p(x)X. (3)

dx dx

'Ke follow Hartree in writing P{r)/r for the radial
part of the wave function. We suppose these functions
normalized.

The integrals with respect to x are taken, in (2)
and throughout this section, from —1 to +i. C is
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Further,

A = (1/ )2f (I' 'pI' ')/r'dr

4(x) =f(x) Z F.&.(x)+g(x) 2 G.2'.(x) (5)
n=o n=o

where F„, G„ are Slater's integrals, ~

Pl rj P2 r2 'r&" r&"+'drldr2,
0

6 = Pl fl P2 r2 P2 rl
0

)&Pi(r2) r&"/r&"+'dridrm,

a constant depending only on the radial functions,
and need not be given explicitly, while

Comparing (10) with the expression for E' in
terms of the F's and G's as found by the usual
methods, ' we then immediately have the values
of the constants f„, g„, and hence, from (9), the
polynomials f(x), g(x).

On varying the function X and minimizing E,
we see from (2) that X (provided it is not
restricted to be a linear function) satisfies the
differential equation

i
L—)f(x)$X=0,

where ) =DE+A'. However, it is not necessary
to actually solve this equation, for X will be a
slowly-varying function which will be well

approximated by a polynomial, say

X=ga x'

and we may then use the Ritz method. This
leads to the determinantal equation

iI;;—xf„, i

=0 (12)
for X, where

I-;;= ~~x'L(x') dx, f;;= x*+'f(x)dx

Eo = C+E, E = )tp(x)dx ~If(x)dx (7).
Quite a small number of terms will suffice in (11),
and it then becomes necessary to calculate only
a few of the F, G integrals of (6). In fact, we shall
confine ourselves later on to the case where X
is a Hnear function of x. It can then be shown
that (12) becomes (in a notation used for
subsequent convenience)

=0, (13)
~01 II11 +11~@

E' gives the part of E0 containing the Coulomb
and exchange integrals F, G of (6).Thus from (2)
and (7) we have E=EO+DE, where AE, the
correction to the s.c.f. energy, is given by

If(x)X'dx E'. (8)—DE= ) XI.(X)dx

and f(x), g(x) are certain polynomials (of which

f(x) is always even, while g (x) can be put equal to
zero for equivalent electrons), whose explicit
form need not be given for the moment.

Now if X be put equal to a constant, the
energy must reduce to the s.c.f. energy E0.
Hence, from (2),

where
The polynomials f(x), g(x) may be found most
simply as follows: let

f(x) = Zf-&.(x) g(x) = Zg.&-(x), (9)
iVoi )I xy(x)——dx/f(x)dx,

E'= Z(f-F-+g-G-)/(26+1). (10)

'E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge, 1935), 177. These integrals are there
denoted by F", G". We shall refer to this book as "C.S."

where the f's and g's are constants, of which we

may arbitrarily put fo 1since f(x)——is unde-
termined to a constant factor. Then from (7),
(5) (9)

Nii=)~x'f(x)dx t f(x)dx,

H„'=A)l (1 x')f(x)dr —)~f(x)dx

In II1&' certain comparatively small terms
depending on the F's and G's have been neglected;

'.C.S., Chapter 7.
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this is justifiable since AB is small, so that it is
only necessary to have an approximate value of
II»'. If i!Zo is neglected, (13) gives simply

Taking the 3-term value for AB, we then have
the following values for the ionization potential
of helium in rydbergs:

AF = —IIpi'/IIii .

3. APPLIcATIoN To NQRMAL STATE oF HELIUM

s.c.f.= 1.723, corrected = 1.748,
experimental = 1.807.

The correction thus accounts for rather less than
one-third of the discrepancy between the s.c.f.
and experimental values. It is seen that very
little improvement is obtained by taking a
3-term rather than a 2-term function for X.

As a test of the eAicacy of the method of the
preceding section, we consider the simplest
possible case, namely the normal state of helium,
for which (8) or (12) are valid without restricting
X to be a linear function. It will not, of course, be
expected that results comparable in accuracy
with those of Hylleraas in his well-known work
on helium will be reached. We have in this case

4. THE GENERALIZED METHOD

We now generalize the method of Section 2 so
as to take account more properly of the core

00 electrons, but confine ourselves to the case whereI is a linear function of oo. Ke denote the valence
n=O

electrons by 1, 2 and the core electrons by

Using (12), and confining ourselves to three 3i ', Ii!, and usetheusual notation for quantum

terms of (11), we find numbers, etc. In the "two-electron" method, our
assumption (1) is now equivalent to

2 2 4
Loo = 2Fo, Loi = Fi, Loo =——Fo+—Fo,

3 3 15
P = fp+cPi, (16)

2 4
I.ii A+Lop, ——L—io = Fi+ Fo, — —

3 5 35

1616 2 8
I-~2 =—~+—Fo+—F2+ F4,

15 3 35 315

2 2
fop = 2 i foi =fi oofiii =fop= i fop =

3 5

where Pp(1, 2) is the s.c.f. function (more
strictly, one of a set of such functions belonging
to the given level), c is an adjustable constant,
and

Pi(1, 2) =cos (ri, ro) Pp(1, 2).

Let now Up denote the s.c.f. function for the
whole atom. Then we know that Up is a linear
combination of determinantal wave functions Qp

of the form

Since we are here only interested in the order of
magnitude of the results, we simplify the
calculation of the radial integrals by using the
approximate (un-normalized) function

1 u(ni, 1) ~ ~ u(nii, 1)
Q p

~

N! u(ni, Ii!') u(ny, E)
(17)

p(y) —ys
—(27ilo)r

in which n& stands for the four quantum numbers
(niliouisi) etc. , and where, in the usual notation

rather than the accurate s.c.f. function; the
results will not differ much. We then find

1.
u(n, r) = F i(y) Fi (8, y) ii(s, o—).

r
(18)

x=8/27, F,=S/8, F,=3/8,
F2 ——0.2605, F3=0.1973, F4 =0.1580.

Application of (12) then gives (atomic units):

with 2-term function for X:dE= —0.0115,
with 3-term function for X:DE= —0.0125. I&

——I&'.+I&"+I,'", (19)

(s, a denote, respectively, spin quantum number
and spin variable, Fi a surface harmonic; we
suppose all functions normalized. )

Consider now the function
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N(III, 1) COS Hl Q(0!g, 1) Cos Hl
0 0 1 . ~ 0

II(nl, X) cos HIr N(nq, E) cos HN

u(nI, 1)
0 0

N(IX3, N)

u(n~, 1)
0 4

N(eII, E)
Q((xl, 1) sill Hl cos QI 'l4(Elm, 1) slI1 Hl cos QI II(A3, 1)

0 0 0 0 0 0 4 4 0

Q(III, E) sill HIr cos QIr Q(Kg, E) sill 8~ cos QIr Q(III, N)

u(III, 1) sin 8l sin &I u(nI, 1) sin Hl sin &I u(na, 1)
0 0 0 4 '0 0

N(III, Ã) sill HINDI sill /II N(III, N) sill HIr sill /II Q(aI, N)

u(n~, 1)
0

u(nA, N)

u(n~, 1)

u(eN, E)

II;q= ' S, HQIIlr, 'X;I=
J

N~ Qqck,
«J

and understand that it is really linear combi-
nations of such quantities which are implied. We
now use the formulae"

P= U,+cUI.
For, since

and let U~ denote the same linear combination of calcnlate
the functions Nl of (19)that Uo is of the functions
uo of (17). Then a suitable assulnption for the
wave function is, analogously to (16),

cos (rl, rm) =cos 8l cos 82+ sin Hl cos &I
)& sin 82 cos @2+sin 8~ sin @~ sin 8~ sin @2,

we see that Ul reduces to our previous III lf
%=2. Further, if the determinants (20) be
expanded by Laplace's rule from the first two
columns, it can be seen that, vrhen the proper
linear combinations for the function U~ are
taken, the set U~ transforms in the correct way
under rotations and reflections. Also evidently
U~ is antisymrnetrical in all electrons. Thus
(16'), with (17), (19), (20), satishes ail require-

. ments as to symmetry properties and is the
required generalization.

Minimizing the energy with respect to c with
(16'), we see that 8 is given by

IIOO —E¹0 Hog =0,
IIO~ Hgg —egg

sphere

H;;= U IIV,dr, X;;= U; U2d~.

To calculate II;,', ¹;;we need only 6nd these
matrix elements with respect to the functions
uo, III of (17), (19),and then use the diagonal sum
rule in the familiar way. 9 Ke shall therefore

9 See, e.g., C.S., 191 ef seg. Ke use the term "diagonal
sum rule" in a somewhat more general. sense than usual,
namely; if @1, @2, ~ ~ - and x1, x~, - ~ are any turbo sets of
the same number of functions, and if @1', p2', ~ ~ ~ and
X1', X2', ~ ~ ~ are the sets obtained from these by the some
unitary transformation„ then

Z; J'@;*IIx;d~=Z;J'y *IIx;d&.

where
—& YI-I. ~+I+fYI I, -I),-

(l m+—1)(i+m+1) &

II, =a(l, m) =
(2l+1)(2l+3)

P—m' &

1 (i+m+1)(i+m+2)- i

2 (2l+1){2l+3)

1 -(l —m+1) (l —m+ 2)-1

2 (2l+ 1)(2l+3)

1-(l—m)(l —m —1)- I
8=-

2 . 4l' —1

1-(l+m) (l+m —1)- '
f=

4P —1

It is then possible to express N~ as a sum of T2

determinants containing one-electron functions
of the type {1/).To save space, we write (17),

"These follow at once from C.S., 53, formula (2i), on
using cos @=(e'~+e '&)/2 etc. A particular de6nition of

for negative m is implied.

YI~ cos 8 =a YI+I, ~+9 YI I, ~

F/~ sin Ocos@=cFl+q ~+dFt+q s

+e YI I, ~+I+fYI I, m-I -(22)

YI sin 8 sin @=I( cYI+I,—~+I+a Yl+I,
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where

12

»= P V22tl'"',
k=1

(24)

y4
——a2bl,

Yl ——2Clf2,

P5 = 2Cld2)

&3=+1&2,

P6 =2C2dl,

vs =2e2f1, y2 2dle2——, (25)

Y10 2lf2el 'Yll —2elf2 'Y12 =2e2f1

and
(al ——u(ll, m, ) etc.)

2tl&'&=(I, +1, ml, f2+1, m2),

ul(')

ul(3)

ul(4)

(ll —1, ml, l2 —1, m2),

(ll+1, ml,. l2 1, m2), —

(ll —1, ml, l2+1, m2),

(ll+1, ml+1; /2+1, m2 —1),

u (6)

u (7)

(Ii+1, ml —1

(ll+I, ml+1

; l2+1, m, +1),
(26)

; l2 —1, m, —1),

u()
ul(lo)

u (ll)

u (»)

(tl —1, m, —1; l2+1, m2+1),

(f1+1, ml —1; t2 1, m2+1), —

(I,—1, m, +1; l2+1, m2 —1),

(tl —1, ml+1; l2 —1, m2 —1),

(ll —1, ml —1; l2 —1, m2+1).

For clarity, we give the extended form of ul(') for
instance: ul(') is the same as the function uo of
(17), except that now

1
20(121, r) = Pnlll(r) Yll+1, tel(8, 4)8(sl, o),

r
(27)

Q(122, r) Pts212(r) Y12+1, ~2(8, @)8(s2, 0').
r

with the help of (18), as follows:

220 (11, ml /2 m2)

that is, all four quantum numbers of the core
electrons and the n, s quantum numbers of the
valence electrons are regarded as being always
equal to those in (17), and we only allow for the
possibility of the l, m quantum numbers of the
valence electrons varying. With this convention,
and using (20), (22), (23) we can now write (19)
in the form

Each of the ul(') is of the usual form of
d'eterminantal wave function; but for facility in
calculating matrix elements, it is necessary that
the one-electron functions of which the de-
terminant is composed be mutually orthogonal.
This is not so in general, the function P~lll(r) in

(27), for instance, not being orthogonal to the
other radial functions which have azimuthal
quantum number (Ii+1). However, we can,
without altering the value of the determinant,
add to P~lll(r) and P~212(r) multiples of the
radial functions of quantum numbers l l ~1,
l2+1 so that all the one-electron functions are
mutually orthogonal (cf., for instance, Hartree
and Black). ' We shall suppose this done, and
shall write I'„~+, I'„~ for the radial functions
which have thus been made orthogonal to all
other radial functions having azimuthal quantum
numbers I+1, / —1 respectively, so that in (27),
e.g. , we would have P~ltl+(r) instead of P~zltl(r).
We must remember, however, that the functions
I' ~+, P„~ are not normalized.

For convenient calculation it is further neces-
sary that the one-electron functions composing a
given ul(~) be either orthogonal or identical with
those composing uo and the remaining ul(". An
examination of (26) shows that this is always the
case either if the electrons are equivalent or if

~

tl —l2~ & Z. Since the calculations would be very
complicated unless the orthogonality conditions
are satisfied, we shall restrict ourselves to these
two cases."If

~

ll —l2~ &2, the functions uo, ua&"',

~ . , ul(") are mutually orthogonal; but in the
equivalent electron case, we must note that:"

(a) if s, =s2,

l(1) u (6)

(b) if sl ——s2,

ml ——ns2+ 1, then

u l(2) — u (12)

u() — u()
ml ——m2+ 2, then

"The formulae to be given are still valid in certain
other cases; we shall not detail these.

"The cases s1=s2, m2=m1 —1 and s1——s2, m~=m1 —2
are also exceptional, but these need not be dealt with
separately, since we can always suppose mI &~ mz.

u (')=u (») 0

Ke can now calculate our matrix. elements
with the formulae given in C.S., 196 e$ seq. , the
only difference being that the functions P &+, I' &

are not necessarily normalized. In calculating II»
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¹+——E(nisi+) =
JI [Pm)i(+(r) j'dr, etc.

we shall simplify by regarding each electron as Finally, the N's are normalizing factors:
moving in the same (screened) central field and
disregarding interaction: this is justifiable (cf.
the discussion following (14)). The results are
then as follows:

II00 +0~

12

II9,——ppy2[c (lirni, l,"mi")(: (12"m2', l2m2)
k=1 j

X F;(nili') n2l2") f')(si—, s2)

X(:i()imi E2 m2 )(;i(li mi ~ $2m2)

II11 +11@0+IIl1 t

XG;(nili", n2/2') $,

where

Hli (~1+1)(B1¹+B2¹)+ (nial )
—li(B8¹++B4¹—

)A (n, li )

+(f2+1)(B1¹+B8¹)A(n24 )
—E2(B2¹++B4%1)A(n2l2 ),

%00 ——1, %01——0,

+11 ~1+1 +2 +~2+1 +2

where
+83%1 %2++84%1 N2,

Bl 'Y1 +76 +'Y6 i B2 78 +YP+79 t

&3=y42+&8'+ F10' +4 P2 +Pll + f12 ~

We use $1' for l1~1, etc. , depending on the l, m
values in the particular ul&k& which goes with yk
according to (24) and (26). The (."are integrals of
the product of three tesseral harmonics and are
identical with the constants denoted thus in
C.S., 175, formula (6). They are tabulated in
C.S., 178, 179. The A, I', G are radial integrals
analogous to those of (4) and (6), namely, with k

denoting + or — according as l lk ——l 1~ 1„
12k ——l2a1,

A (nP) = P.1(r)P.1"(r)/r'«,
0

All these formulae hold for the case of equiva-
lent electrons (when F,=G;), except that they
must be modified in the exceptional cases (a),
(b) mentioned above as follows:

Case ((8):—To Bi, B4, B2+B8 we must add
2Y1Y6 2'Y2Y12 2(Y878+Y4Y9), «spectively

(only the sum B2+B8 occurs in the case of
equivalent electrons).

Case (b):—Put y6 ——y)2 ——0.
Putting F.=F9+hF, (21) now takes precisely

the form (13),with the meanings of Hoi, Hii', ¹1
given in (28). Moreover, since the final results
involve only the radial functions of the valence
electrons, except for the "orthogonality" modih-
cation, we see that if this modification be
disregarded —i,e. if we put P„E+=P„~———P ~

—the
Hoi, Hii', ¹1of (28) must reduce precisely to
those of (14) obtained by the "two-electron"
method. This forms a useful check on the work,
since the integrals in (14) are easily calculated.

5. Appr. rcxnox vo 2p2 TERMs &N 0 III

The configuration is 1s22s22p2 and the terms
'5, 'I', 'D. Application of the formulae of the
preceding section, together with the diagonal sum
rule, leads to the following results:

H91('~) =—Fi(2P 2P)
15

1 6
+ F,(2p, 2p—)+—F8—(2p, 2p),

3 35

3
I~61('P) =-Fi(2P 2P) ——F8(2P 2P)

5 35

7
Hoi('D) =—Fi(2P 2P)

75

)';(~(,', (') Jf )' ~ 9=)& ~ (» )

XP.,ii2(r, )P»42" (r,)r()/r) i+'«idr2,

G;(n(n, ) ')= f, ,',P* (& )P (& )
0

XP»(2"(ri) P~iii'(r2) r~ /r~i'+'dr d i. r2

3
+ F(2P, 2P-)+ —F.:(»»)

175

H»' ——[4Bi+2(B2+B8)&(2P )l~(2P)
—[(B2+B8)+2B4&(2P )]~(2P )

¹(=Bi+(B2+B8)&(2P )+B4[&(2P )1'
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TABLE I,. accurate),

3p 0

'D:

1S~

1S-1D
1D 3P '

S.C.F.

—1.988
0.099—1.889
0.148

—1.741

1.5

CORRECTED

—1.992
0.099

—1.893
0.134

—1.759

1.35

OBSERVED

—2.025
0.091

—1.934
0.105

—1.829

1.15

where, for
4 1

So B]— ) B2+B3—0) B4—
)

15 3

1
'P: B« ———, B2+B3——0, B4——0,

5

Fg(2p, 2p) =0.575, Fr(2p, 2p ) =0.002,
Fg(2p, 2p ) =0.0006, Fg(2p, 2p) =0.317,

A(2P) =2.27', A(2P ) = —0.068,
N(2p ) =0.005,

whence, for 'S, 'P, 'D, respectively:

IIp« ——0.208, 0.088, 0.059,
II««' ——2.43, 1.82, 0.8735,
N««=0. 267, 0.200, 0.0947.

Hence from (13) (or (15), which is sufficiently

"The 1s and 2s functions must also be made orthogonal
to each other as explained by Hartree and Black, refer-
ence 5.

7
'D. Bj

———, B2+B3=—, B4=0.
75 15

P» (r) denotes the 2p-function made orthogonal

to both the 1s and 2s functions in the manner
explained;" P2„+(r) is identical with Pm„(r) since
there are no d electrons.

Numerical integration with the functions of
Hartree and Black' yields the approximate
values:

AE('S) = —0.018, dE('P) = —0.004,
AE('D) = —0.004.

This leads to the results in Table I, with energies

in atomic units and measured from the normal

state of 0 IV as zero.
The improvement in energy values relative to

the 0 IV ground state is small, but it must be
remembered that the energy of the 0 IV ground

state used by Hartree and Black is itself the
result of an s.c.f. calculation. The results become
more signihcant if we consider the separations
between the 'P, 'D, 'S terms, also shown above.
It is then seen that the good agreement between

the calculated (s.c.f.) and observed 'D 'P—
separation is left unaltered, while the calculated
'S—'D separation is noticeably improved, about
«~ of the discrepancy between theory and obser-

vation being accounted for."The improvement

in the separation ratio ('S—'D)/('D —'P) is of

particular interest (somewhat less than one-half

the discrepancy being accounted for), since the
s.c.f. theory leads to a value 1.5 for this ratio for
p' terms independently of the radial functions,
this value not being in good agreement with

experiment in most cases."
Thus the method of this paper, where appli-

cable, seems —judging by the results worked out

here —to afford a worthwhile improvement over

the ordinary s.c.f. method, and to indicate that
theory would be in complete agreement with

experiment if the mathematical difficulties could

be surmounted.

'4Hartree and Black estimate that the probable error
of their calculated results is "rather smaller" than 0.007,
so that it is really only the correction for the 'S which is
significant. This does not invalidate the above comparison.

1' C.S., 198. It may be remarked, however, that the
value 1.5 would not be obtained if the s.c.f. with exchange
were used.


