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A Simple Picture of the Binding Energies of H' and He'
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It is shown that an approximate application of Wheeler's
method of resonating groups to the nuclei, H3 and He',
makes it possible to evaluate the magnitude of diferent
contributions to the total energy. The energy expressions
are separated into terms representing the internal energy
of a favorable sub-group, the kinetic energy of a particle
outside the sub-group, and its "ordinary" and "velocity
dependent" interaction with the sub-group. For H' the
sub-group is the deuteron and for He' the O.-particle. The
results indicate considerable polarization of the deuteron
and little polarization of the a-particle. The total energies
found were E(H') = -6.58 mMU and E(He~) = —19.51
mMU (for the most reasonable value of one parameter since

no true minimum was found for He'). These results are com-

pared with those of other methods. The current two-body
exchange forces were used (see Table I). The approximate
method is quick and easy to handle. Application of the
complete resonating group method to H', however, proved
to be very laborious and difficult to make accurate. By
this procedure E(H') came out —6.68 mMU. The small-

ness of the improvement over the approximate method is

attributed to the fact that the complete method does not
take polarization into account. The calculated ground
state energy for Hes was —5.88 mMU by the approximate
method and —5.94 mMU by the complete method. No
bound excited state was found.

1. INTRODUCTION

'N the solution of the problem of atomic
~ ~ energies it is possible to evaluate the separate
contributions to the total energy coming from
the interaction of the diferent electrons with the
nucleus and with each other. In contrast to the
atomic results, calculations of nuclear binding
energies do not, in general, yield a similar simple
interpretation. This is to be expected for heavy
nuclei for which the liquid drop model is a good
approximation. In the lightest nuclei, however,
there should be some evidence of simple struc-
ture, or tendency of particles to collect into sub-

groups, which it should be possible to bring to
light in the calculation of their binding energies.
Such evidence should give some insight into the
general situation in these nuclei. This would be
especially desirable since the comparison of the
light nuclei calculations with experiment will

probably be a critical test for nuclear forces

proposed in the future.
It is shown in this paper how the method of

resonating group structure developed by Wheeler'
makes it possible to give a simple interpretation
to nuclear interactions in H' and He'. The
current two-body exchange force is used (see
Table I for V;;). It now seems clear that this
force cannot account for many of the facts

~ Helen Schaeffer Huff Research Fellow. Now at Uni-
versity of Tennessee, Knoxville, Tennessee.

' J. A. Wheeler, Phys. Rev. 52, 1083 and 1107 (1937).

about light nuclei; nevertheless it seems reason-
able to suppose that the evidence of structure
will depend more on the wave function and the
state of motion than on the exact nature of the
interaction between nuclear particles.

The only important sub-group in H' would

seem to be the deuteron, and in He~ the n-par-
ticle. From stability considerations the grouping

2n+P in H' and either H'+He' or He'+H' in
He' should be relatively unimportant. In the
simple case of only one grouping the method of
resonating group structure starts out with a
wave function, +, for the system written as
the product of the internal wave function, p, of
the particles in the sub-group, and a function, I',
which depends on the position of the outside
particle with respect to the centroid of the sub-

group. When @is normalized and made properly
antisymmetrical with respect to neutrons and
protons' and inserted in the expression

F=~I +*II@dr
J

%*%dr,

the result is

F.=Fo+ I VF(X) V'F(X)—dX+)~ V(X)F'(X)dX
2p. ~

+ ~F(X)P(X, ()-&1(X,&)IF(C)dXd( (2)

~See appendix for complete resonating group wave
functions for H3 and He'.
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TABLE I. Ford of interaction, force constants, and approximate forms of F and p used in calculation of binding energies of
H3 arid Hes by the resonating group method.

~"=-& exp (—br ')(1—g-gi —g~)I' "+gI'"~~+g1I+g~p--'
mhere I'~, I'~, and I'~ are the Majorana, IIeisenberg, and Bartlett operators, respectively.

8=39.45 mMU b=1.566(mP je')~ g+gg=0. 22
=36./2 Mev b &=2,25&10 '3 em~

H» {1AND 2 NEUTRONS)

r1—(rm+r»)/2
exp (-PX~)

exp (—cLrg» )

HR {1,2, AND 8 NEUTRONS)

rx- (re+rs+r4+rs) j4
exp (—PX'}

i xi cos s exp (—pw)
exp L-~(ru'+rw'+res'+r»4'+r»s'+«s') 3

p is the reduced mass of the sub-group and the
outside particle. X is the vector between the out-
side particle and the centroid of the sub-group
and g is a similar vector when an exchange of
particles has been made. V(X), J(X, $) and
I(X, $) call be folllld wllell p ls known alld tile
integrations in (1) are carried out over the coordi-
nates other than X and g and the coordinate of
the centroid of the system.

The first term in (2), Zo, represents the internal
energy of the sub-gmup; the second term the
kinetic energy of the outside particle; and the
third and fourth terms the interaction of the out-
side particle with the sub-group.

)t V(X)F'(X)dX

may be thought of as an "ordinary" potential
eneI gy and

F(X)LI(X, &)
—&I(X, 4) JF(5)dxd&

as an eR'ective velocity-dependent potential
arising from the exchange of the outside particle
with similar particles in the sub-group.

The resonating gmup method then makes use
of the variation principle and pmceeds to 6nd
the function, Ii, which makes E a minimum.
Without going through this complicated pro-
cedure, however, interesting results can be ob-
tained by using an approximate form for I'
in (2). The forms chosen for F and y for both
H' and He' are listed in Table I. The force
constants used are also given there.

2. RESULTS FOR O' AND Hes %'ITH APPROXIMATE

REsoNATING GROUP WAvE FUNcTIows

The energies of H' and He~ obtained with
these resonating group wave functions depend on
the parameters a and P in s and F and, in the
case of He, on the combina tion 63= 1+g
—5gi —3gg. G3 is a factor of the V term which
turns out to be positive, indicating a repulsive
"ordinary" force. The requirement that heavy
nuclear shall not have large spins leads however
to the condition' Gs&~0. The value G3=0 will

therefore lead to the greatest binding.
For H', the minimum with respect to III and p

is easily found. For He~ there is a minimum with
respect to the O.-particle parameter, of,, at
a=0.505. ((1/n)' is proportional to the radius
of the a-particle. ) But for this value of a and for
G1=0, the only minimum with respect to p
((1/P)& is proportional to the mean separation
of the neutron) is at P =0, a value which repre-
sents the outside neutron as being at an inhnite
distance from the O.-particle group. Curves
RG(I.=O) and RG(I.=1) of Fig. 1 show the
resonating group results for states of Hes of
angular momenta L=0 and L= i. The state for
L=1 is clearly lower than that for L=o. The
point of inHection on the L=1 curve at about
P = 1 may be an indication of the existence of a
virtual level.

For I.= 1, P = 1, the contributions to the energy
of He1 from the different terms in (2) are hsted
in Table II and compared with similar terms for
the values of the parameters which make
E(H ) I, 0 a nlln111111111.

3 In the notation oII' G. Breit and E. VAgner, Phys. Rev,
53, 998 (1938), 63= -c1=—(4 V—M—2&+28).

4 N. Kemmer, Nature 140, 192 (1937).
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Fj:G. 1. Energy of He~ as a function of the "outside"
neutron parameter, P, for approximate resonating group
wave functions, RG(L=O) and RG(L=1), and for the
determinantal wave function of Watanabe, W(L= 1).

' S. Watanabe, Zeits. f. Physik 112, 159 (1939).

The values of Eo in the tabulation show that
neither the deuteron nor a-particle sub-group
wave function has been very well chosen. For
He' the value —26.94 mMV is the lowest which
can be obtained for any value of u. For H',
n=0.54 gives a minimum for Zo of —1.17 mMU,
but this value of n gives a higher total energy
for H'. This can be interpreted as meani:ng that
there is considerable polarization of the deuteron
by the neutron in H' and very little polarization
of the O.-particle by the neutron in Hes.

The values of the kinetic energy of the neutron
outside the sub-group are nearly the same in
both cases and approximately equal to the
average kinetic energy of a particle in the He4

nucleus, 11 mMU. ' This is approximately the
same value found by Watanabe' for the p
neutron after second-order perturbation correc-
tions were applied to the regular Hartree
function.

The "ordinary" potential is attractive in the

H' case and zero for He' since G3 was taken
equal to zero. The "velocity dependent" poten-
tial is greater than the kinetic energy for H' but
smaller for He'. Coulomb terms which would
still further increase the potential energy have
not been included for He'.

The breakdown of the total energy by this
approximate method shows then that the inter-
action of Table I binds a neutron tightly to a
deuteron group and not at all to an n-particle
group.

For He' the grouping is H'+P. The He'
binding energy can be obtained from the H'
value by merely adding the proper Coulomb
terms. The result is —5.88 mMU. (Exp. value
= —8.1 mMU. )

3. COMPARISON OF APPROXIMATE RESULTS WITH

RESULTS USING OTHER FUNCTIONS

The results for the total energy by the reso-
nating group method using the above approxi-
mate wave functions are compared with results
for other simple wave functions in Table III.

For He', Watanabe' has tried a determinantal
wave function involving two parameters similar
to the n and P of the resonating group method.
His calculations assume g+g2 ——0.25. When the
other values of the constants used here are
substituted in his equation (15) and after this
expression has been minimized with respect to n
the curve in Fig. 1 marked W(I =1) is found.
It gives less binding than the resonating group
I = 1 curve for all values of P and thus, according
to the variation principle, indicates that the
determinantal function is less accurate than the
resonating group function.

More complicated methods yield, of course,

TABLE II. Contributions of dhgerent terms in (2) to the total binding energies of H' and He' for approximate resonating
group nave functions.

TERM*
H3 I.=0

S =-,'
cx =0.8
P =0.8

He~ L =1 a =0.54 G3 =0
S =-', P =1.00

—0.67 mMU (Exp. val. = —2.33)
+10.12

2.02—14.01

Eo
h'/2p fV'F(X) V'F(X)dX

fV(X)F2(X)dX
ffF(X)CZ(X, ()

ZI(X, ()jF(()dxd(—

—26,94 mMU (Exp. val. = —30.23)
+11.25

0.00—3.82

B (Total) —6.58 mMU (Exp. val. = —8.94) —19.51 mMU (Exp. val. = —29.3~*)

+ For algebraic expressions for all terms see appendix. Coulomb terms not included for Hes,
+*Value of Williams et al. See discussion below.
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TABLE III. Comparison of approximate resonating group results with those for other simple fun?tions.

WAVE FUNCTION+
(HS) L 0

s
E (Hes) L =1

S =-',

Resonating group
Variation
Hartree

—6.58 mMU
34@+

6 31++

—19.51 mMU (P=1)

10 6QQQ

*See appendix for forms of these functions.
*+Above constants used. The difference of the resonating group and variation values from the ones given by Wheeler is due to use of slightly

different constants.
***Above constants used except g+gs =0.25. Coulomb terms not included for either Hes result.

better results. Margenau and Warren' using a
variation funct:ion with twelve terms find B(H')
= —7.74 mMU. By perturbation method Tyrrell,
Carroll, and Marge nau 7*find Z(He~) = —22 m M U.

Also using perturbation method Watanabes finds

Z(He')= —16.6 mMU. The constants used by

these authors differ slightly from each other and

from the ones used here.
The present experimental data on He' may be

summed up as follows. Investigation of the

n-particles' and neutrons' from the reaction

D'+ Li'~He4+ He',
He'~He4+ n

seems to point clearly to a virtual level of He~

0.84 Mev above the energy of a free neutron and

a-particle, and a binding energy therefore of

29.3 mMU. Experiments" on the scattering of

neutrons by n-particles agree with this result and

indicate the level is a p state. From the bombard-

ment of deuterons by low energy O.-particles

Joliot" finds evidence for a stable Hei with

H. Margenau and B. E. Warren, Phys. Rev. 52, 790
(1937).

~Tyrrell, Carroll, and Margenau, Phys. Rev. 55, 790
(1939).Value given estimated from graph.

* Note added in proof.—W. A. Tyrrell, in a more recent
detailed paper on He' (Phys. Rev. 56, 250 (1939)), finds
—20 Mev as the probable lower bound of the sI' state. In
addition the 'S state is found to have practically the
same energy. The two-parameter determinantal wave
function for the state L = 1 gives a curve very similar
to that calculated from the equation of Watanabe since the
values of the constants used differ only slightly. This curve
is therefore quite similar to RG (L =1) curve, A two-param-
eter determinantal function for the state I =0, however,
gives a curve not at all like the RG (L=0).curve but one
which shows a distinct minimum at about —17 Mev for a
finite value of the n-particle-neutron separation. This
indicates superiority of the determinantal over the resonat-
ing group wave function in this case.

'Williams, Shepherd, and Haxby, Phys. Rev. 51, 889
(1937).

'H. Staub and W. E. Stephens, Phys. Rev. 55, 845
(1939).

H. Staub and W. E. Stephens, Phys. Rev. 55, 131
(1939)."F.Joliot, J. de phys. et rad. 9, 403 (1939).

binding energy 32.4 mMU. His experiments have

not yet been repeated by other workers.

4. RIGQRQUs APPLIcATIoN oF REsoNATING

GROUP METHOD TO H AND He'

In the three-body problem, instead of the

approximate functions for F and y used above in

the resonating group wave function, one can use

a numerical function for y, which is an exact

solution of the deuteron wave equation, and then

proceed to find the form of F which makes the

energy a minimum. The complete method puts

at one's disposal the adjustable function, F,
rather than a number of adjustable parameters.
Wheeler' shows that the radial equation for F can

be written

fi(r)+ "Si(r, p)f. (p)di =o

where Sl, depends on V, J~, Iz„and the energy E.
The requirement that the Fredholm determinant

of this equation vanish gives the eigenvalue of Z.
When this is known, fz, (r) is easily found. The

corresponding F is then the "best" function in

the sense of the variation principle.
The results of carrying out this .complicated

procedure are E(H') = —6.68 mMU and Z(He')
= —5.94 mMU, very little improvement over the

minima ( —6.58 mMU and —5.88 mMU) ob-

tained with the approximate functions. The
complete method gives Eo, the deuteron binding

energy, its full value of 2.33 mMU and does not

therefore allow for any polarization. Its results

are thus more strictly comparable with the

approximate results when the Bo there is required

to have its minimum value of —1.17 mMU

instead of the value —0.67 mMU which makes

the total energy a minimum, that is when again

no polarization is allowed, If this requirement is
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imposed, the approximate functions give Z(H')
= —5.84 and Z(He') = —5.20 mMU. The com-
p1ete procedure thus gives an improvement over
the approximate one of about 0.8 mMU. If
polarization effects, or the dependence of q on Ii,
were taken into account, the results of the com-
plete method might be considerably improved.
The fact that in the case of He' the approximate
resonating group method gives results which are
comparable to those of much more complicated
methods seems attributable to the small polariza-
tion of the O.-particle. Katanabe~ finds some
evidences of polarization from a corrected Har-
tree wave function.

The complete procedure is very laborious on
account of the large number of numerical
integrations involved, many of which would be
necessary even if an analytic expression for q

were used. It is also difficult to know when the
size of the steps used in the numerical integra-
tions has been made sufficiently small. Indeed,
in the work leading to the above results energy
values were obtained with large steps which
were better than those presented. Increasing the
number of steps must ultimately lead to an
increase in accuracy but doubling the number of
steps, for instance, increases the work fourfold.
Also in an investigation of the I =0, S=-,' state
of H' a very queer result was obtained which was

finally shown to be spurious and due to having
taken the size of the steps too large. "

The resonating group method also presents in

some cases another type of difficulty which can,
however, be removed. The solution of the in-

tegral equation (3) proves in certain problems
to be unstable with respect to small errors in the
calculations. This is due to the singular nature of
the numerator and denominator of the fraction
(1). On choosing F=e ~*' both numerator and
denominator may vanish identically for a certain
value of P, say Po. This arises from the fact that
the entire resonating group wave function itself,
in the cases in question, vanishes identically for
this choice of the intergroup v ave function. The.
difficulty may be avoided in either of two ways.
One can multiply the wave function by a suit-
ably chosen power of 1/(P —Po) and go to the

"Results for this state obtained with a Hartree function
and very kindly sent by Dr. Tyrrell of Yale University
vrere helpful in 6ndin8, the source of the difficulty.

limit P=P0, where the wave function is finite
(equivalent to calculating the limit of the frac-
tion (1)). This procedure was actually followed
in the He' calculations above for the case L =0,
P=5cx. Or one may remove the difficulty by
introducing a new function k" connected with F
by an operator equation Ji=SI', choseo in such
a way that neither numerator nor denominator
of the fraction (1) vanishes for any nonzero
choice of F.This method is developed and applied
in an unpublished paper by J. A. Wheeler on the
interaction between two n-particles.

5. EXCITED STATE OF He'

Inspection of the p state functions Ji, Ii, and
V as calculated by the complete method indi-
cated that they would not lead to a bound state
for He'. An exact calculation for the state L=0,
S=-', of this nucleus also showed that it could
not be bound for any value of the combination,
1 —3g& —3g&, allowed by stability requirements
of heavy nuclei.

6. CQNcLUsIQNs

If it turns out to be true that the quantum
mechanics is strictly applicable to nuclear
problems, a knowledge of the reliability and
ease of handling diferent quantum-mechanical
approximation methods will be important for
trying out new ideas about forces. Kith regard
to the resonating group method the above
results lead to the following conclusions.

1. The use of the resonating group wave
function with approximate analytic expressions
for F and y leads quickly and easily to energy
values- lower than those obtained with other
simple functions. This is especially true when
there is small polarization of the sub-groups.

2. The method permits a separation of the
contributions to the total energy in such a way
that one can see approximately what is going on
in the nucleus.

3. 'The complete method, which uses the
"best" form for Ii rather than an analytical
approximation, is laborious and somewhat diffi-
cult to make accurate on account of the necessity
for numerical integrations.

The writer. is very much indebted to Pro-
fessor John A, Wheeler of Princeton University
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Fo=3I«2a/M B—/(1+b/2n) «,

a /2& "vF(X) VF(x)dX=9b, P/4M,

APPENDIX 1

for many helpful discussions and to Miss H'.
Martha Cox and Miss Selma Blazer of Bryn
Mawr College for assistance in checking some of
the calculations.

Resonating group wave functions:

H'. Particles 1 and 2 neutrons.

V(x) F'(X)dX=64B(ap)«

X (—2+ 2a —2a3+2a2)/(16np+2bp+8nb)'

= 256(n P)'/L(4n+P) (4 +a9P)]«

t t F(X)J(X, $)F(g)dxdg
He'. Particles 1, 2, and 3 neutrons.

O' =S3F/1 —(2+3)/2]«3(2 3)
—S2F}2 —(1+3)/2]«2(1 3), I t F(x)1(x ()F(()dxd(

s3=12 «l a(1)a(2)p(3)+a(1)P(2)n(3) J J
—2P (1)n(2) n(3) ],

S=12 «Ln(2)n(1)P(3)+a(2)P(1)a(3)
—2P(2)n(1)n(3) ].

3«f =S F/1 —(2+3+4+5)/4]32(2345)
+S2F(2 (1+3+4—+5)/4] P(3145)
+S2F33—(1+2+4+5)/4] q&(1245),

Xl a(4)p(5) -a(5)p(4)],
So=2 'n(2) In(3)P(1) —P(3)n(1)]

Xl (4)p(5) — (5)p(4)],
S2——2 'n(3)t a(1)P(2) —P(1)n(2))

X l (4)P(5) — (5)P(4)].

Variation wave function. H'.

4'=2 ~u(3)tn(2)P(1) —P(2)a(1)]
Xexp t. 2 pl r23 +r13 ] 2«4r12 ]

Hartree wave function.

H'. += (3'.) «I s3«3 s3«2 s3«2I.
He'. 4=(5!)~ls3«3 s3to s3«2 s3«4 p3«3l.

~ =S(s*, -')b(r« —-'). ~ =S(s. -')S(rt —.)
2«2= &(s* 2) &(rt 2) — 214= &(S 2) ~(rt 2)

where 7~ is the isotopic spin quantum number

s=(u/3r)'~ exp (—nr /2),
p = (n/2)2'4$2uS e.xp (—ur'/2).

For the He' two parameter determinantal wave
function of Watauabe, the n in p is set equal to p.

APPENDIX 2

Resonating group energy expressions for
H'(L=O, S=2) aud Heo(L=1, S=23) with the
approximate wave functions of Table I.

=f/3 x642(4n+3P)(nP)2/2/Ml (4a+P) (4n+9P) ]2I2

512B—(nP)'I (2 3a —2a3 —3ao)/—

L(4u+P)(4n+9P+8b)]'+ /1[(4 a+)P(4n+9P)

+16ab+20bP]«} .

He'. G= 1—g —j,2,

Bo——1852u/M 6GB/(1—+b/4n) «,

b2/2P
J

"VF(X) VF(X)dX= 25 P/2M

"V(x)F'(X)dX= G2B2 "(np)"'

X (32+3b/a) /L64aP+ 2b(25n+ 3P) ]2~'

Jt J F(X)I(X, g)F($)dxdg

= 2»(aP)212/P(3a+P)(25n+3P)]21

)t t F(x)J(X, F)F(g)dxd(= 2"(aP)"'

X l L18852a/5M —3GB/(1+5/4n) «]/

E(3a+P) (25n+3P)]"' 45'a(2775u—o+458nP

49P2]/5M)—(3a+P) (25n+ 3P) )» 2

—B(6b —16u) (3G+G2) /16n t (3u+P) (25a+3P)

+50aP+ 9bP]"' B6G(4n) «(4u—+b) /

L25n2(12n+ 5b) + 34aP (4a+ b) + P2(12a+ b) ]of
' }


