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An interaction between heavy particles and electrons is considered which includes a de-
pendence upon relative spin orientation. The anomalous magnetic moments of neutron and
proton can be accounted for by an adjustment of constants. Correct spin-dependence in the
interaction of two heavy particles can be obtained only through an angular dependence of
forces. An estimate of the angular dependence in this theory indicates that it is of sufficient
magnitude for this purpose and of the right sign to give a ‘“cigar-shaped’ deuteron.

INTRODUCTION

ROGRESSIVE stages of an electron-positron
field theory of nuclear forces have been
presented from time to time.'3 It is the purpose
of this paper to extend the most recent of these
considerations (this issue of Physical Review) to
account for spin-dependent phenomena. Definite
experimental results correlating properties of
nuclear particles with their spins are: (1) the
magnetic moments of proton and neutron;
(2) the greater binding experienced by a neutron
and a proton with parallel spins (triplet deuteron)
than between heavy particles with opposite
spins; and (3) the electrical quadrupole moment
of the deuteron. Simple explanations of these
properties of one- and two-body systems are
sought under the assumption that the neutron
and proton interact strongly (compared with
Coulomb interactions at nuclear distances) with
the electron-positron field.

In the preceding formulation® of the spin-

independent theory it was found convenient to
adopt an interaction between heavy particles
and electron which is proportional to the scalar
spin-operator, p;. Let V' represent the depend-
ence of the interaction on coordinates and
momentum of the electron. Then, neglecting the
small components of the heavy particle wave
function, the Dirac equation for an electron in
the presence of a heavy particle may be written:
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LE+pi(a, cp)+ps(me*— V') y=0. (1)

Since in this approximation (nonrelativistic for
heavy particles) the heavy particle state is not
changed the calculations are simplified ; also, no
spin-dependent phenomena are to be expected to
result from them. Relativistic invariance was
abandoned in another respect, namely : functions
of finite radius, #(x), were used to replace delta-
functions, 8(x), in the invariant form of inter-
action (see Egs. (2) and (3) of reference 3). The
average value of p3V’ used in the spin-inde-
pendent theory may be written

f Joa V' =

o f de f d’ i ()W (e u () u(x)*. (2)

n is the proportionality constant for the energy
when normalized ¢ and u-functions are used.
The function u(x) is centered about the heavy
particle. It is clear that the radius of u(x) is
substantially the range of force between heavy
particle and electron. This range of force. may
be expected to be comparable to that found
between nuclear particles, ~e?/mc?, so that the
average kinetic energy in the state u(x) would be
of the order of c#/(e?/mc?)=13Tmc?. Electron
states for which the integral (2) is relatively
important have, therefore, kinetic energies large
compared with mc?. It was assumed that inter-
actions between electrons could be neglected and
that the kinetic energy of every free electron
state could be written as Eyin=cp. The influence
of p3V’ on each electron state was calculated
under these assumptions.” Summing up the
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changes in energy caused by p3V’ (associated
with one heavy particle) over all negative energy
levels led to Eq. (21) of reference 3. We shall

write this result as
0

AE=2f F(q, E)dE (3)
with -

1 (4w /) E%(E/c)¥(E)
F(n, E)=—arctg )
™ U/n*—f(E)*+ (4m*/c®) E*v(E/c)*
0 H2 2 (E2/co(E/c)?
f(E)=47rf p(p)*— (E*/c*)v(E/c) 7
0 E2_62p2

2(p) = (2rh) j " () exp i(p, %) /hdx.

0

The argument of the arctangent is constrained by
the boundary conditions to lie in the first or
second quadrants.

A study of limiting cases for AE(1) has shown
that for small 7, AE~ —5%/Ey;, and for large 7,
AE~ —|q|. Since, with a simple form for u(x),
AE(n) should be a simple function of 4, 10AE/d7
is negative for all values of 5. The quantity
9?°AE/dn* is negative for small n and zero for
large so that in most simple examples it would
be negative everywhere. These estimates of sign
will be useful when spin-dependence is taken
into account, for we shall direct particular atten-
tion to those cases in which the spin interaction
may be considered as a perturbation and the
perturbed expression for AE expanded in a
series.

SPIN-DEPENDENT INTERACTION

Consider one heavy particle in the presence of
all electrons in negative states. The electron
states may be divided into two classes: those
forming singlets with the heavy particle and
those forming triplets. This classification is in-
variant to rotations in space and also time
independent if there are no spin-orbit inter-
actions (as here assumed). We shall, therefore,
introduce spin-dependence by assuming that the
interaction constant, 7, is different when heavy
and light particles form a singlet than when they
form a triplet. In terms of the five invariants
discussed in the previous work such a modifica-
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tion of the interaction is equivalent to adding
the tensor-tensor product to the already assumed
scalar-scalar product. The approximate form of
the new interaction, corresponding to Eq. (2),
then becomes

V = — nfdxfdxlpis3[6mnask+)‘(o'mn! O'sk)]

x‘I/mT\I’nlpt(x)hl/k(x,)u(x>u(x,>*v (4)

where \ is a new constant and ¥,,, ¥,' are the
(quantized) amplitudes of the heavy particle
wave. Heavy particle functions must now be
considered since the spin of the heavy particle
may change as a consequence of the interaction.

Of the five invariant forms mentioned above
it is also true that the product of pseudovectors
would lead to spin-dependence without involving
the negative states of heavy particles; but this
operator will not be considered since it commutes
with the operator on electron states, ps, and may
therefore modify the electric charge density in
the lowest state of a heavy particle. The inter-
action (4) which we have chosen for further
discussion anticommutes with p, and thus,
according to the argument given in the former
work, will present no difficulty with charge
density. By the same argument it can be proved
that, assuming (4), no contribution to the
angular momentum of the lowest state of a
heavy particle system will arise in the electron-
positron field. It is thus assured that the multi-
plicity of the complete system of heavy particle
and electrons in the lowest state is the same as
for the heavy particle alone. The proof is as
follows. The Hamiltonian,

H= —py(o, cp) — psLmc*~ V(p, g, o) ],

anticommutes with ps; hence, paHpe= —H, and
the transformation ps changes all negative levels
into positive levels and vice versa. On the other
hand, the spin operator of the light particles, o,
commutes with ps; the total spin when all
positive energy levels are filled and all negative
levels empty is then the same as when all nega-
tive levels are filled and all positive ones empty.
But if all positive and negative energy levels
were filled at the same time the total spin would
be zero; hence, the electron spin in the lowest
state of H vanishes also.
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The indicated operator on spin-indices in (4)
may be written in the notation of Dirac as

O.,=14+\(o, o), (5)
where o" is the heavy particle spin and ¢ the
light particle spin. Proper states of O, are, of
course, proper states of (o, "), i.e., the triplet
belonging to +1 and the singlet belonging to
—3. Proper values of O, are therefore 14N\ in
the triplet and 1—3\ in the singlet. Interaction
(4) may then be described as two interactions
analogous to (2) with 7 replaced by n(14X\)
when the heavy particle and the electron form
a triplet and by 7(1—3\) for singlet systems.
A sum of energy changes in the electron levels
taken over all possible spin configurations then
leads to*

3 f Fln+n, E)dE+ f Fln—3n, EAE.  (6)

In obtaining (6) heavy particle states of both
spins are taken into account. Since the light
particle field does not contribute to the angular
momentum, (6) is the sum over two members of
a doublet system. No difference in energy is to
be expected between these states so that the
change in energy caused by a single heavy
particle is half of (6):

AE =3 f Fn+xn, E)IE
—I—-%fF(n—-Q\n, E)dE. (7)

Expression (7) therefore replaces (3) when a spin-
dependent interaction (4) is considered for one
heavy particle.

MAGNETIC MOMENTS OF PROTON AND NEUTRON

It is well known that the observed magnetic
moments of neutron and proton are not what
would result from a relativistic theory of heavy
particles analogous to the Dirac theory of the
electron. One should suppose the magnetic
moment of the neutron to be zero and that of
the proton to be 1/1840 as much as the positron
magnetic moment. Experiment shows, however,

* Integrals over E will be understood to extend from
— o« to zero.
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that the proton has about 1.8 nuclear magnetons
more moment than would be expected on this
basis and the neutron approximately as much
less, i.e., the neutron apparently has a magnetic
moment of the same sign as the electron and
between one and two magnetons in magnitude.
In order to explain these discrepancies it was
proposed by Wick* that an interaction between
heavy particles and a light particle field which
would explain nuclear forces might also give rise
to an anomalous magnetic moment. We shall,
therefore, choose the spin-dependent interaction
of neutron and of proton with the electron field
in such a way as to account for their magnetic
moments and then investigate the consequences
of the choice on the forces between two heavy
particles.

Let the electron which is governed by Eq. (1)
be subject also to a small magnetic field repre-
sented by the vector potential, 4. The change in
proper energy may then be determined by a
perturbation calculation. From the average
value of the addition, epi(s, 4), to the Hamil-
tonian we can obtain an expression for the
operator of the magnetic moment of the electron

E=— f Jepi(o, A)pdx

—e

='—2'E Y[ Hpi(o, A)+pi(o, A)H Jydx. (8)

p1(e, A) does not anticommute with ps 7V’ but the
result is proportional to ps and its average value
in the state ¥ which is a proper state of a com-
bination of p; and p3 must vanish.

(o, cp) (o, A)+ (o, A)(0, cp)
=hc(o, curl A)—ih div A+2(4, p). (9)

The part of the perturbing energy which is due
to the action of the magnetic field, curl 4, on
the spin is then

E,= —elic(o, curl A)/2E (10)

from which we conclude that the magnetic
moment of the electron is —efico/2E, where E is
the unperturbed energy.

We shall consider a heavy particle with up-
ward spin. Let ax, and ax,’ be the average dis-

4 G. C. Wick, Accad. Lincei Atti 21, 170 (1935).



SPIN-DEPENDENCE OF NUCLEAR FORCES

placements of energy levels, E, of electrons with
upward spin and let axs and ax,” be the average
displacement when the spin is down. If the
light and heavy particle spins are both up they
certainly form a triplet so that expressions for
x1 and xy as functions of E are the same as
formerly found for x (Egs. (18) and (19),
reference 3) except that 7 is replaced by n-+N1.
If the electron spin is down the state is equally
mixed from singlet and triplet states (i.e., a
superposition of two states, one even, one odd
under a reversal of spins) and thus an average
over x and x’ expressions in which » has been
replaced by 7+A7n and by #—3Ap must be
taken. The magnetic moment arising from a
given level, of energy E, is then

Mg= —3%ehc{(E+axy) '+ (E+ax,)™!

— (E+axy)t— (E+axy’) 1}
2(ehc/2EY)a(x1+%," —xa—x').

(11

Summing over all negative energy levels the-

total magnetic moment due to the electron-
positron field is

dE
M:%o,"eﬁc{ fF(n+)\77, E)-'I::;

dE
~ [ Fa—3m, E>-—]. (12)
E2

In the special case that |A|9<n, (12) may be
expanded in a series of powers of X:

dF(n, E) dE
an

M étrzheﬁc)\nf (13)

from which it is apparent that the sign of the
magnetic moment depends upon the sign of A.
From the former considerations® concerning the
integration of AE one would conclude that

faF(n,E) dE [—n”/Eo‘"‘ 1<Ey
n ————— ~

am  E* |—1/|q]

where E, is the absolute value of the kinetic
energy characteristic of the spatial extent of the
wave functions #(x). Now with E,~137mc?,
efic/Ey~30 nuclear magnetons. Hence to ac-
count for the anomalous magnetic moment of
the proton —A\n?/E?=1.8/30 =% if % is small

"7>>E0,
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and —\Eo/|n|=+% for large 7. It is quite
probable that with i <|\| <1 the anomalous
magnetic moment of the proton can be accounted
for by assuming an interaction of the form (4)
and with a negative ‘N\,” 0,,=1—X\(o, ¢*). The
magnetic moment of the neutron would then be
obtained by introducing a \ of the same absolute
value but of positive sign, O,"=1-+\(a, o*).

Two HEeAvVY PARTICLES

When two heavy particles are considered two
special configurations are readily treated. In one
case the heavy particles are so widely separated
that the u(x) associated with one particle may
be considered to vanish in the region in which
the u(x) centered on the other particle is appreci-
able. Then the V’ operators commute and the
influence of the heavy particles on the eneérgy of
the light particle field is simply additive. AE for
two neutrons, two protons or proton and neutron
at infinite separation is thus obtained by taking
the corresponding sum of AE" and AEr. The
superscripts refer to neutron and proton, re-
spectively. Assuming % <A<1 the results ob-
tained for magnetic moments lead to the follow-
ing expressions:

AEP=%fF(n—)\n, E)dE

+1 f F(n+3\n, E)dE,
(15)
AEn=} f F(y+n, E)IE

+1 f F(y— 3N, E)E.

The other special configuration occurs when
two heavy particles occupy the same point in
space. Two neutrons or two protons in a singlet
state at a certain point form a spherically sym-
metrical system so that the spin coupling with
the electron field vanishes. We shall use the sub-
script S on AE to denote a singlet state and
double superscripts pp, nn, np in case of two
particles at coincidence. Then

AE g™ = AE 507 =2 f F(2y, E)AE.  (16)
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A proton and a neutron at the same point in
space present a problem similar to that of a
single particle. Consider one electron in a
spherical state centered on the same point. The
eight possible spin-states may be represented as
one quartet and two doublets, i.e., proper states
of Q=X\(o, 0»—0o?). Taking the square and fourth
power of Q
' Qf =127, 17)

from which we gather that the quartet belongs
to zero and the doublets to 2Av3 and —2\+3.
The changes in energy of all electrons in negative
states summed over all possible spin configura-
tions of the heavy particles are then

S AR =4 f F(2n, E)E
+2 f F(2n-+2\/37, E)AE

+2 f F(2n—20/3n, EMIE. (18)

There are four spin configurations for two heavy
particles: three members of a triplet and one
singlet. The triplets are symmetric to an inter-
change of heavy particles so that they alone are
affected by the quartet states in (18). Since the
operator Q is antisymmetric to an interchange of
neutron and proton the doublets are equally
mixed of antisymmetric and symmetric func-
tions. The terms in (18) which depend explicitly
on \ are therefore half-singlets and half-triplets.
From these considerations we obtain

AEw=4 f F(2n, E)E
+1 [ Fn+20/3, By
41 f F(2n—2M/3n, E)AE, (19)
AEgw= f F(2n+2M/3n, E)E

+ f F(2y—2\/3, E)dE.
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The expressions (19) may be expanded in
series and the following approximate energies
for two coincident particles obtained :

AESnn=AESPP=2fF(21], E)dE,

AE g =2 f F(2y, B)dE

92F(2n, E)
+6A2p? f s, (20
49n?

A =2 f F(2y, B)dE

92F(2q, E)
—|—-4)\2772f ——dE.
49n?

In consequence of the general conclusion that
the second derivative of AE is negative we see
from (20) that the lowest state in this approxi-
mation is the singlet deuteron, the next lowest
the triplet deuteron and highest the singlet
like-particle states. Experimental results® of
scattering protons by protons and neutrons by
protons indicate that the depths of the singlet
wells should be the same for like and unlike
particles. Relations (20) therefore force the con-
clusion that

02F (2, E)
.)\2172f —
an?

be negligible compared with the maximum
binding potential, =D. Under this condition all
the AE’s in (20) become practically the same and
the value of D is independent of \:

D=2fF(2n,E)dE—4fF(n, E)dE

(21)
82F (2, E)
N2 f Rt}
9

; [<<]D..
n

Relations (21) lead to an apparently un-
satisfactory result in that the depth of potential
wells for singlet and triplet deuteron should be

s M. Tuve, N. Heydenburg, L. Hafstad, Phys. Rev. 50,
806 (1936); 53, 239 (1938); G. Breit, E. Condon and R.
Present, ¢bid. 50, 825 (1936).
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the same. Calculations with arbitrary, spherical,
short range potentials have led to the result
that the depth of the triplet well should be from
30 to 100 percent deeper than the singlet well.
This apparent disagreement of our theory with
experience might be rectified by dropping the
assumption that M\ is small and finding two
values of the order unity which, when substi-
tuted in (12), would give the correct magnetic
moments for neutron and proton. Whether such
an assumption would lead also to satisfactory
results with regard to forces in the two-particle
systems cannot be determined, in general, with-
out adopting a particular form for u(x). There is
one positive indication that An>>7 would not be
satisfactory because repulsions of the order of \gy
should arise as two heavy particles are brought
together. These repulsions are due to the fact
that, in general, the lowest proper states of in-
dividual heavy particles cannot be filled simul-
taneously when the heavy particles are close
together. It is not within the scope of the present
paper to investigate particular forms for #(x), so

that the possibility of using larger values of N

will be considered only for cases satisfying (21)
with 5 <A <1. '

It is not necessary that the potential well be
deeper for the triplet than for the singlet deuteron
if there is an angular dependence in the forces
between neutron and proton. Forces of this
type have been discussed by several authors in
connection with nuclear forces and the electrical
quadrupole moment of the deuteron.® It is pro-
posed in these discussions that the forces between
neutron and proton contain a part analogous to
the interaction of electric or magnetic dipoles.
Under such forces the lowest state of the two-
particle system would not be spherical but would
be elongated or flattened according to the sign
of the interaction energy. The lowest state is
then a superposition of spherical harmonics of
higher order on the spherically symmetrical
state than has been customarily assumed. A neu-
tron and a proton in a spherical state with
parallel spins can make a transition into a
D state without violating the conservation of
angular momentum but an analogous transition
for particles with opposite spin (singlet) is

8 See H. A. Bethe, Phys. Rev. 55, 1261 (1939).
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impossible. The lowest triplet state of the
deuteron may then be expected to.lie lower than
the singlet although the maximum depth of the
potential wells is the same. In fact, Bethe has
shown® for the neutral meson theory that the
entire difference in binding for triplet and singlet
deuteron can be ascribed to such an angular
dependence. We propose, therefore, that the
greater binding in the triplet is due alone to the
angular dependence of the forces and thus is not
in contradiction with the assumption 5 <A <1.
It will not be possible to demonstrate quantita-
tively that the correct relation of triplet to
singlet binding can be obtained without assuming
a particular form for #(x) and extending the
calculation considerably. It will be shown, how-
ever, that an angular dependence in the potential
which is of importance compared with the
potential itself may be expected in the electron-
positron field theory presented here.

ANGULAR DEPENDENCE AND QUADRUPOLE
MOMENT

An angular dependence in forces between
neutron and proton would also account for the
observed electrical quadrupole moment of the
deuteron.” Present indications are that the
lowest state of the triplet deuteron is prolate.®
A potential which favors the prolate configura-
tion may be written as a function of the unit
vector, X, joining the two particles and of the
distance, 7, between particles:

V'=—(o" X) (o7, X) V" (1), (22)

where V" (r) is assumed to be positive. We now
assume, as before, a spin interaction constant, \,
for the neutron and —NX for the proton. It is not
proposed to find an exact solution of the two-
body problem similar to (3); we shall rather
consider a neutron and a proton not quite at
the same point but sufficiently close that a
description of electron states in spherical coordi-
nates referred to the center of mass is adequate.
If, at such small distances, a potential of the
form (22) obtains it might be expected that the
consequences discussed above will hold qualita-
tively for the type of interaction assumed and

7J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R.
Zacharias, Phys. Rev. 55, 318 (1939).
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quadrupole moment as well as binding energy
could be correctly accounted for.

When two heavy particles are considered the
state v(p) with its interaction constant 27 applies
only at coincidence. At finite separation it is
convenient to set up orthogonal superpositions
of v1(p) centered at one heavy particle and v,(p)
at the other. Such an orthogonal set is, of course,
the sum and difference. If two particles are close
together and joined by a vector having the
direction of the unit vector, X, the difference
v1(p) —v2(p) is approximated by the directional
derivative of v(p) and the sum v,(p)-+v:(p) by
o(p) itself. In the normalized form, therefore, we
shall consider the function v(p) centered on the
center of mass and having the interaction con-
stant (n— €) and the function (X, w)vY3v(p) having
the interaction constant e. Here, w=p/|p|. The
wave equation of an electron in this field then
becomes

(E—p3Ep) ¢’ (p)+ (n—e)v(p)
XS T(p)os[14+N(o, 6" —0?) JT1(p)
Xo(p')*o(p')dp’ +3e(w, X)v(p)
XS T(p)ps[14N(s, 6" —0?)]
XTp") (@', X)v(p")*e' (p')dp"' =0

with T =1/V2[1+psp1(c, w)]. We shall consider
only very small values of ¢ eX7. Then the
functions ¢'(p) for which the influence of the
interaction with the heavy particle is different
from zero must contain a spherically symmetrical
part. Following the steps of the previous treat-
ment we accordingly choose ¢’(p) of the form
S(p)+ (e, w)P(p) where S(p) and P(p) are func-
tions of the absolute value of $ and also of
heavy and light particle spins. Thus each S(p)
and P(p) has sixteen components. Define

(23)

fo=dr f S(p)o(p)* pdp
0
and

tp=dr f P(p)o(p)*pdp.
0

Then if e=0, (23) becomes
(E—p3E,)[S(p)+ (o, w)P(p)]
+Lnv(p)ps[ 1+ p1ps(o, w)]

X[1+N(o, o"—0?) J[£s+p10skp]=0. (24)
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Let E=Eg+pipstp.
@' (p) =S(p)+ (o, w)P(p)
Ep;+E,
= —3n——v(p)[1+p1ps(o, w)]
E*—E,?

X[ 14N, 6" —0o?) J¢.  (25)

The proper values, E, in (23) can be approxi-
mated by adding the average value in the state
¢'(p) of the term proportional to ¢ to the energy
in that state. The perturbing energy is thus:

P f o BB T(P)ps

Xf[1+>\(<f, o"—a”)]
X T-1(p'yo(p) "/ () dpdp!

3 f (D), X)o(p) T(p)dpps

X [[13 o =on)]

XT-1(p") (W', X)w(p)* ' (p)dp’.  (26)
Integrating over |p| and the angles:
P=jebps[1+N(o, o"—0?) J'E

+%€B2£P3{ 1 +3)\(0’, X) (0‘", X)
—3\ (o, X) (o7, X)+ 622 27)

—6M2(a™, X)(o®, X)4+3N2(o, X) (o™, X)
- 3)‘3(0" X) (‘Tp, X) _‘)‘3(0‘; a.p) +7\3(0‘, ‘Tn) } y

where

» Ev(p)*pdp
B= 27r11f _—
o E!—E,

The angularly dependent part of P is therefore

Po(E) = —4eB(E)*Epsh\*(o™, X) (o7, X)E.  (28)

The effect of P, on the electron levels may be
summed over all filled levels in an approximate
way, sufficient for an order of magnitude esti-
mate. If the perturbation had been simply a
change in the interaction constant n—n—e€ only
the first term in (27) would have been obtained.
A sum over the first term is, therefore, prac-
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tically equal to

aF('ﬂv E)
—-Zef — dE.
o

The same sum modified by multiplication with
282 occurs as a factor in (28). 82 can be estimated
from its relation to the solutions of the secular
equations derived from (24) (see Egs. (14) and
(15) of reference 3).

+

Do

* Ev(p)*p*dp
2w [ — =
o E*—E;?
whence 282~1E2/E? Thus
> P, =4\ (0", X)(o?, X)E?
dF(n, E) dE
[ ) 08
dn

29)

According to the considerations of magnetic
moments, Eq. (13) and the subsequent dis-
cussion

-1
16E,

A>0,

dF(q, E) dE
)\nf
o E?

whence

E,
S Po=—ien—(o*, X)(0o?, X).
7

(30)

eEy/n in most cases should be of the order of
magnitude of the change in total potential
experienced by two particles as they are slightly
separated. The angular part of the change in
interaction between neutron and proton is, there-
fore, related to the total change in interaction by
the fraction i\. This estimate is very rough and
applies only for small separations but it appears
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within the range of possibility that the angular
dependence over the whole range of force is
quite sufficient to give the desired nonspherical
character to the potential well in the deuteron.

It is further satisfactory that when the heavy
particles are separated in a direction parallel to
their spins the energy perturbation (30) is nega-
tive. This means that the lowest state of the
deuteron should be prolate, in agreement with
indications from the quadrupole moment.

CONCLUSION

One would conclude that a satisfactory theory
of nuclear forces may be built upon an inter-
action of neutrons and protons with the electron-
positron field. This is apparent from the above
work for such functions AE(n, N) for which an
expansion in a series of powers of A is valid.
The value of N has been found from magnetic
moment requirements to be larger than . To
obtain a significant angular dependence, how-
ever, N may not be very much less than unity.
The expansions in series are valid, therefore,
only for those AE(n, \) which are very nearly
linear functions of 5. The functions AE(7n) be-
come nearly straight lines for values of 7 larger

‘than E,. According to the above considerations a

satisfactory theory would require: (1) > E,,
(2) MEy/n=1s, (3) N comparable to, but less
than, unity. These conditions are self-consistent.
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