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Two series of P-activities are considered. The first series
involves nuclei in which the number n~ of protons exceeds
the number n„ofneutrons by 1.The second series involves
the nuclei for which e„=n is odd. Similarly two coupling
conditions are considered: in. approximation 1, the forces
do not depend on either ordinary or isotopic spin. In
approximation 2 only the independence of isotopic spin
is assumed. Apart from these coupling conditions, no use
is made of any special model. The lifetimes of the disinte-
grations of the first series can be calculated on the basis

of either coupling condition if one adopts Fermi's original
theory. The transitions of the second series are forbidden
in this theory. If one adopts the modification of Fermi's
theory which has been proposed by Gamow and Teller, '

one can calculate the lifetimes for bot'h series assuming the
validity of the first approximation but this cannot be done
if only the validity of the second approximation is as-
sumed. The discussion of the experimental data indicates
that the 1st approximation applies quite well for the
normal states of nuclei up to a mass of about 30.

"ORDHEIM and Yost' were the first to
point out that the absolute magnitude (not

only the order of magnitude) of the lifetime of
certain P-radioactive elements can be predicted
on the basis of Fermi's theory. 2 The transitions
they. considered were between nuclei in which
the number of protons and neutrons diA'ered

by &i.
The work of Nordheim and Yost was founded

on the original formulation of Fermi's theory in
which the spin does not change in allowed
transitions. Gamow and Teller' have pointed
out that Fermi's ideas allow another formulation
in which the spin change is &i or 0 for these
transitions. Breit and Knipp4 found evidence in
the Be'~Li~ transformation confirming the
selection rules of Gamow and Teller. Gronblom'
considered the P-activities of He' and of the
elements which were the subjects of Nordheim
and Yost's investigation from this point of view.
Using Hartree's approximation for the wave
functions, he found in all these 'cases that the
P-spectrum should be composite (excepting the
case of He' where it should be simple). This
was in ag'reement with the hypothesis put
forward by Bethe, Hoyle and Peierls' who

~ L. W. Nordheim and F. L. Yost, Phys. Rev. 51, 943
(1937).

'. E. Fermi, Zeits. f. Physik 60, 320 (1934).
3 G. Gamow and E. Teller, Phys. Rev. 49, 895 (1936).
4 G. Breit and J. K. Knipp, Phys. Rev. 54, 652 (1938).
5 B. O. Gronblom, Phys. Rev. 56, 508 (1939).
'H. A. Bethe, F. Hoyle and R. Peierls, Nature 143,

200 (1939). Kikuchi, Watase, Itoh, Takeda, Yamaguchi,

attempted to explain the deviation of the ob-
served energy distribution of the P-rays from the
distribution following from Fermi's theory by
postulating a composite nature for all transitions
in which the energy distribution has -been ob-
served so far. For the elements considered in
Gronblom's work the intensity formulas derived
here are identical with Gronblom's. It is shown,
however, that the assumption of a spin inde-
pendent Hamiltonian, and only this, is necessary
for the validity of these formulas.

The experimental information already used by
Nordheim and Yost, together with similar data
on disintegrations involving elements in which
the number of protons is odd and equal to the
number of neutrons, will be used in the present
paper to determine the amount of deviation
from Russell-Saunders coupling and from the
inaccuracy of wave functions obtained by using
a symmetric Hamiltonian. ' The former question
has become particularly important lately for
three reasons. First, the discovery of the quadri-
pole moment of the deuteron' made it evident
that, at least in this case, the deviation from
Russell-Saunders coupling cannot be neglected.
The work of tA'ay' on the interpretation of
magnetic and quadripole moments of heavy
elements points strongly in the same direction.

Proc. Phys. Math. Soc. Japan 21, 52 (1939). See also
A. I. Alichanian and V. Berestezky, Phys. Rev. 55, 978
(1939).' G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936).' J. M. B. Kellogg, I ~ I. Rabi, N. F. Ramsey, Jr., and
J. R. Zacharias, Phys. Rev. 55, 318 (1939).

9 K. Way, Phys. Rev. 55, 963 (1939).
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where w=1+e~/mc' with m the electronic mass
and e& the upper limit of the energy of the
emitted P-ray. One can represent (1a) for large
and small m', respectively, by the formulas

Ig(w) =w'/30, (2)
Im(w) = (16v2/105)(w —1)'"=0.215(w —1)"
and the correction factors I/I& and I/I2 are
plotted in Fig. 1. The 6 is given, in Fermi's
original theory by Go g, 'fo —w—here

fo= l(y~ 2(r.~+r 2+ .+r -)P') l
(3a)

I

6

FIG. 1. Correction factors for the approximate formulas
(2) for Fermi's function I(m) of (1a).

Finally, the meson theory of nuclear forces"
yields a Hamiltonian on the basis of which the
Russell-Saunders coupling cannot be expected to
be valid in nuclei. On the other hand, Barkas'
work" shows that one can successfully systema-
tize the mass defects of the lighter elements by
using a picture on the basis of which one would

expect the above-mentioned simple coupling
conditions to be prevalent in these nuclei.

We shall use for our calculations the formalism"
which has been employed before by Breit and
Knipp. The transition probability X;.f is given"
in Fermi's theory by

X„r——GI(w),

I(w) = (w' —1) '*(w'/30 —3w'/20 —2/15)
+-,'w In (w+ (w' —1)i), (1a)

"H. Frohlich, W. Heitler and N. Kemmer, Proc. Roy.
Soc. A166, 154 (1939). H. J. Bhabha, Proc. Roy. Soc.
A166, 501 (1938). N. Kemmer, Proc. Camb. Phil. Soc. 34,
354 (1938).H. A. Bethe, Phys. Rev. 55, 1261 (1939)."W. H. Barkas, Phys. Rev. 55, 691 (1939)."E.Wigner, Phys. Rev. 51, 106, 947 (1937).

'3 Cf. reference 2 and E. J. Konopinski and G. E.
Uhlenbeck, Phys. Rev. 48, 7 (1935).

Here, go is the interaction constant in Fermi's
theory, P; and Py the wave functions of the dis-
integrating and product nuclei in the formalism
using isotopic spin. "The 7„;are the same oper-
ators as the s„;,acting, however, on the isotopic
spin coordinate 7; instead of the ordinary spin
coordinate 0;. In the formulation of Gamow and
Teller, ' there are, in addition to Go three other
terms of the character

graf,

where

f,=
l (fg, ,'(~„gs„—+r„,s,g+

+r, '*-)0') l

' (3b)

The G of (1) is then given by

G= go'fo+gi'fi= go'fo+gi'(f. +f,+f,) (4).
The decay constant ); of the state P; is, of
course, Z fX 'f.

The form (1a) is characteristic for Fermi's
theory. " In most of the following applications
I~(w) could be substituted for I(w) without
greatly affecting the conclusions.

Clearly, (4) is only an approximate expression
for 6, valid, according to Fermi, if the dimension
of the nucleus is very much smaller than the
wave-length of the emitted P-particle and
neutrino. If this is not the case, additional terms
will enter, in analogy to the terms corresponding
to the quadripole etc. radiation in ordinary
light e'mission. " The three terms (3b) can be
thought of as corresponding to polarizations of

14 W. Heisenberg, Zeits. f. Physik 77, 1 (1932). J. H.
Bartlett, Phys. Rev. 49, 102 (1936). W. Elsasser, J. de
phys. et rad. 7, 312 (1936). B. Cassen and E. U. Condon,
Phys. Rev. 50, 846 (1936) and reference 12.

'5 G. E. Uhlenbeck and S. Goudsmit have shoran that
(1a) is the sum of statistical factors and has as simple a
form as can be expected. For modifications of (1a), due to
the Coulomb field, cf. reference 13."Cf. F. Hoyle, Proc. Roy. Soc. A166, 249 (1939).



S &N HT NU{"LNDj T[ONCOUpL) NG C

een

of ato

1+r~-) =ver, a, Sa2( g&+rn2+' ' ' rqn
II I I

g Tg-2

'P" (nunibers at 'gri ht)
ses wi

' . The P is the highest

ith ncrea g
T =I'

decreases wi
the lowest or

r all three

1
'g S

= 2+r, ~s*~,'If g 2

owest fo

o a '
is the I' of the (I'P'P")

sym o
12 here it is denoteference w e ted bln

'
h t qualificatione pe (let wit ou

present paper for a E'I'

rs of
d'

1rotation acting in'n the two- im
t is, first of all, thatthe r alone. It follows from t is, rs

betw t e n
Pt

1 transitions etrino field in the X, a
ld co r p

r (longitudinal) wave.

nsi-
f (3a) and ( er

~m

p
o erators o

ticle ince,
'

te of that e e

nection that the p

th lo t t
d th s correspo

4, reference
'

le

d h '5
1

has te a

g

1 ing the space—t oug
for this is

tob itt d
co

b 1 t d o I

1 to the T~o
nsition, T~ wi

r dimension can
nd con- equa

makes a P-transi i

dd
the element ma

on emission) the

from even to o
in the

e
' ' '

eases (positron e

transitions r

h if it n

e resent t eo

above-men- transition. 0 rators of the a ove-arity. Opera

m onento e
e

decreasing wit i-
nandt e - e

e energy ecr
t on account of

relativistic e ec s

1' 1

'h d tnction whic co
creasi

. These con i io

the wave func i

gy

kinetic energir ies.

sen e
f h hof Fig. 4, reference'~er all, the matrix o ig.

'
er first of a, e
3b) from t e poi

2.

z]o)

e emen
f referenceroxim ation o r

di

0

t e

ents (3a an
'"g

kiese conditions wi

p ptou, t as, o
in

~ ( ~)

3

~ /Od

n be calculated in
Th tmic spectra. etheory



522 E. P. WI GNER

I- MKP4' 8;-~:~ ==,-'-~='==='=":;==--: —.-'-. =-I. '-'-=t:
I

Atlll+- „„,„,~~T-~""--" '

„it'--!%%%444IIQIL%%';=;: '=;==-~-=-===.==-.-.,—.="":=-=:-.;
'='-:.=';-=. t-=@;+ -- — -glIIIIgg&&gP=.=

IllPPP@ ~-'~:I'+=-+~- -:-"-"-='-'-r=-''====: =-:===="

H -'-~l-t++"„~~+' '~ -~ '. e22iC-

-0"i-~ I

, ~., f-~g—1;l "w w q~a~0 ~M&4 ~~ rrilg ~~2.—'' .-. '-'w~QQ-'- - ~~ --;-';-I-

1/pe-. WW~&'~@~;r 221-.- .'..:='Wz~~[; 'S="T=:=.gJ.-..~;-~St:K&&=~~

II-'gm -I-Ig-Lt p-gT14L ~+ -+~ '.~—'~~%—1-~~—, ~r~6"-'wt--lpga«I--qt g g"-.-'p

0 1 2 3 4 5 6 7 8 9~
LOG 4

FIG. 3. Energy vs. log10 of lifetime for light nuclei.
Small circles represent disintegrations considered in the
present paper, + positron emitters, g electron emitters.

practically all P-transitions are "forbidden"
transitions.

There are two exceptions to this: the lowest
states of elements with negative T~ belong to
multiplets the highest T~ of which is

I T~I.
The elements T~= ——,

'- give the well-known series
of positron emitters discussed already in reference
1. Second, the multiplet (100), occurring for'

nuclear masses of the form 4k+2, is the lowest
one both for the elements with T~ =0 and

T~ ——~j.. One will expect, therefore, "allowed"
transitions for these elements. It is in agreement
with this that for light elements only transitions
involving elements of this character are on the
first Sargent cur~e (Fig. 3). Several of the
transitions occurring in heavier elements are,
however, at any rate very near to this curve and

we shall return to this point later.
In order to calculate the absolute value of

expressions (3a) and (3b) it is simplest to calcu-
late first

Since the T„'etc. are infinitesimal operators
of the unitary group of the o, v space, the ex-
pressions (6a) and (6b) will assume the same
values for all P which belong to the same row
of the same representation of this group. The
representation of the unitary group depends only
on the multiplet so that we can calculate (6a)
and (6b) with a particularly simple example of
that multiplet. " For the (1„-'„-'2)multiplet we

can choose a problem of one single particle. In
is case T„'=~~,'=~ and similarly 7»'= y»'

= V„'=4.This holds for all wave functions of
such a multiplet. Hqnce, in this case

(4', 7'2V') = l

(0', (F,.'+ F,.'+ F,*')4') = 4.

(7a)

(7b)

b—1(T1T2)a(&1&2)r b0(T1T2)a(0102)& bl(T1T2)a(01&2)&

a(TlT2)bl(0 102),
a (TIT2) b0 (0 10 2) q (8)
a(T1T2)b 1(0,0,).

For the multiplet (-', -', ——',) which occurs for
masses of the form 4k+3 we can choose a three-
particle problem in which all three particles are
in equivalent s states. It follows then from the
theory of holes" that Eq. (7a), (7b) remain
valid for this multiplet also as the matrix ele-
ments for the states of the closed shell all
vanish.

There are six states in the multiplet (100) and
the corresponding representation of the four-
dimensional unitary group is six-dimensional.
The simplest example in this case contains two
particles. Dropping the factor of the wave
function which depends on the space coordinates,
we can write for the six wave functions

and

(O', T',V') =2 l(kf, T'.4') I'
f

Here a(uv) is the wave function of the singlet
state a(u, v) = 2 'I (u —1)(v1) —(u1) (v —1)j and

b», bo, b—j. the three triplet wave functions

=Z
I Ql, F.A') I'+ l(A, F.A~) I'

f
+1(4,, 1'„A,) I, (6b)

where f runs over all possible states. The ex-

pressions (6a), (6b) represent the sum of the G

of one initial state with respect to a11 possible
final states,

b1(uv) = (u1) (vl),
b0(uv) =2-'L(u —1)(»)+(») (v —1)j,

b 1(uv) = (u —1)(v—1),

where (u —1) and (u1) stand for 8„1 and 8~1,

respectively. The arrangement of the wave func-

"Cf. E. Wigner, Gruppentheorie etc. (Braunschweig,
1931},p. 302.

"Cf. E. U. Condon and G. Shortley, The Theory of
&folic Spectra (Cambridge University Press, 1935), p. 284,
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tions in (8) corresponds to Fig. 2. Calculating

(P, '1„'f)for the six functions of (8), we obtain,
respectively,

The values of (P, (Y„'+Y„„'+I'„,2)P) are, in the
same arrangement,

0
1
1

(9b)

It is easy now to calculate the expressions
(3a), (3b) themselves by means of the ordinary
theory of spectra, i.e., considering the v as
parameters. The operator T„is a scalar-scalar
operator (i.e. , scalar in the space coordinates and
also scalar in the ordinary spin coordinates).
Hence, the selection rules are 6J=0, A I.=0,
AS=0, Am=0. Thus only one matrix element is
diferent from zero for any initial state in which
the isotopic spin is as large as it can be for this
multiplet. The square of this matrix element is
—,
' in the case of the (-', -', ~-', ) multiplet and 2 in
the case of the (100) multiplet. In both cases
the matrix element is independent of the
azimuthal quantum number. The P-spectra of
the elements in which the number of protons
differs by one from the number of neutrons
becomes simple. Since the lowest state of the
nuclei with 2k+1 protons and 2k+1 neutrons is
assumed to be a triplet state, the P-transition
between this state and the lowest state of the
nucleus with 2k protons and 2k+2 neutrons is
forbidden because the latter is a singlet state.
The allowed transitions with intensities are
represented in Fig. 4(a) and 5(a) for the (-', —',&-', )
and the (100) multiplets, respectively.

On the other hand, the operators T„„T„„,T„,
form the components of a scalar-vector operator
(scalar in space, vector in ordinary spin coordi-
nates) and the intensities of the transitions from
the diferent components of a spin multiplet to
the different components of another spin multi-
plet can be computed by the well-known Honl-
Kronig intensity formulas. "Of course, the role

"Qf. reference &9, p. 241 or reference 18, p. 297,

of S and I has to be interchanged in these as
the operator responsible for light emission is a
vector in its dependence on space coordinates,
while our operators are vectors in their de-
pendence on (ordinary) spin coordinates. In case
of the multiplet (100) the transitions from the
b~(r|rm)a(0~0~) state all lead to the a(r~r~) b(0~~~)
states, none to the bo(7 ~r2)a(o~o~) states, as can
be seen from the fact that according to (9b) the
sum of the intensities of all transitions starting
from or leading to bo(r, r~)a(~~ag) is zero. This
allows the calculation of all intensities and these
are represented in Figs. 4(b) and 5(b) and (c).

The results contained in Fig. 4(a) were given
before by Breit and Knipp.

Before going over to the discussion of the
"second" etc. approximation, it should be re-
marked that all terms of the mul'tiplet (100),
e.g. , have the same energy in the "hrst approxi-
mation. " Their splitting is due to forces which
involve the ordinary and isotopic spin coordi-
nates. The wave functions of the states with
J=I+1 and J=I.—1 are, for very small split-
ting, independent of the form of the forces
involving the isotopic and ordinary spin coordi-
nates, and this is the situation for all wave
functions in case of S terms. The situation is,
however, in general diAerent for the two states
with J=I.. Fig. 5(b) and (c) is drawn in the

(b) T~ -fi

4/
/i ~ /~

Fig. 4. (a) Value of f0 of (3a) for multiplets (~ & ~~)
i.e. , for the stable states of elements in which the difference
of the number of protons and neutrons is 1. The number
at each level denotes the J value of that level. (b) Value
of f1 of (4), (3b) for the same elements. The arrangement of
the levels is such that the lower J has the lower energy.
This is purely arbitrary and the reverse arrangement
occurs just as frequently as that used in the figure. Cf,
fable II,
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(a)

Tg 0 I amount of triplet wave functions contained in
them if the matrix elements of 5(b) are re-
sponsible for the transition.

(b)

~/i
o

(c)

FiG. 5. (a) Allowed transitions and values of fo of (3a)
for the multiplet (100). The transitions to and from the
lowest state of elements with odd number of protons and
neutrons is forbidden in the original theory of Fermi.
(b) For S terms. Allowed transitions and values of f~ of
(3b) for the same elements. In the diagram at the left
the odd-odd elements are the stable ones (Li', 8", N").
The diagram at the right represents the conditions at
higher A where the odd-odd element (Tg=0) is unstable.
(c) For higher L. Values of fl of (3b) for the same elements
as in (b), drawn, however, on the assumption that the
lowest term is not an S term. The number at each level
denotes the J value of that level. The arrangement of
the levels is again arbitrary (cf. Fig. 4(b)). The Tg= —1
part is omitted in the last diagram.

customary way which involves in this case the
assumption that forces involving both ordinary
and isotopic spin coordinates can be neglected
when determining the splitting. This is, however,
questionable and it is possible, therefore, that
the two states with J=L are actually linear
combinations of triplet and singlet states. "The
transition probabilities to these two states will

be proportional to the amount of singlet wave
function contained in them if Fermi's original
formulation is adopted. It is proportional to the

From the point of view of the "second approxi-
mation" (forces identical for protons and neu-
trons, depending, however, on ordinary spin) the
matrix elements of T„still can be calculated on
the basis of general considerations4 because T„
plays in this theory the same role which S„plays
in ordinary atomic theory. The result is, of
course, the same as given in the previous section.
On the other hand, the matrix elements of Y„
etc. cannot be calculated by assuming only
approximation 2, and no regular relation be-
tween energy and lifetime could be expected if
this operator determined the transition proba-
bilities. In fact, the matrix elements connecting
states of different multiplets would become as
great as the matrix elements between states of a
single multiplet. Since the sum of squares of
the matrix elements between one state and all
others is limited and there are very many of
them, each single matrix element would become
very much smaller than one would expect from
the previous section. The same would hold for
both operators T„and Y„,etc. , in the third and
fourth approximation, i.e. , if the forces affecting
protons and those affecting neutrons were so
different that no particular relations existed
between the wave functions of isobars with
different isotopic numbers. These relations are
summarized in Table I. The column App. 1 is
based upon the assumption that one obtains
good wave functions even if one neglects all
forces involving ordinary or isotopic spin coordi-
nates, App. 2 that one can neglect only forces
depending on isotopic spin coordinates. App. 3

TABLE I. Dependence of transition probabilities under
various conditions.

2~ The L—S coupling is not a consequence of the first
approximation, except in special cases. All terms have a
definite L in this approximation but not necessarily a
definite S, unless there is only one S for the corresponding
element in the whole (I'I"I'") multiplet. This is, according
to the theory, always true for the lowest states (giving S=O
for even, S=-', for odd elements), with the exception
mentioned in, the text, vis. elements with odd number of
protons and odd number of neutrons.

ny —n =&1

n„—n =0, a2

APP. 1 APP. 2 APP. 3 OR 4
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refers to neglecting only ordinary spin forces and

App. 4 that no such approximations are per-
missible. The letters a and b refer to the operators
5(a) and 5(b), the letter r means that the tra, nsi-

tion probabilities depend regularly on the
energy, s means that the transition probabilities
are small and their dependence on the disintegra-
tion energy shows no marked regularity.

Table II contains a summary of the experi-
mental information on nuclei with a di8'erence

of one in the number of protons and neutrons

((—,'2&~2) multiplet). The first column contains
the atomic mass, the second the symbol of the
lowest term, as assumed at present. The third
contains in the first row the observed upper
limit of the position spectrum in Mev, in the
second row the calculated values for this
quantity, assuming a Coulomb energy of"
2 X2 35n~.(n„1)A—i mc'. From this, two electron
masses and the neutron-proton energy difference,
i.e. , 1.78 Mev, were subtracted in order to obtain
the upper limit of the positron spectrum. One
sees that the agreement is quite good, it is within
7 percent for the whole Coulomb energy. This
shows that for the nuclei in question at any rate
there is no appreciable blowing up by the
electrostatic repulsion of the protons. The column
I gives the values of I, given in (la), calculated
for both values of e~. The next column gives the
observed half-life t in seconds, the following one
10 ' It/ln 2 which should be a constant on
assumption (3a) for the matrix element The.
last column gives the product of the previous
one and f& taken from Fig. 4(b), for the lowest
state of both initial and final nucleus. This
number should be a constant on assumption
(3b) if there were only transitions to the lowest
state of the final nucleus. Actually, a certain
average of the last two columns should be taken,

"The constant of this equation was assumed to be 2.4
in the second paper of reference 12 and 2.32 in reference 11.
More accurate calculations on the Coulomb energy were
made by E. Feenberg and J. Knipp, Phys. Rev. 48, 906
(1935). S. Share, Phys. Rev. 50, 488 (1936). E. Feenberg
and E. Wigner, Phys. Rev. 51, 95 (1937). H. A. Bethe,
Phys. Rev. 54, 436 (1938). H. Brown and D. Inglis,
Phys. Rev, . 55, 1182 (1939).The fact that c~ is given by the
Coulomb energy alone was already pointed out by W. A.
Fowler, L. A. Delsasso and C. C. Lauritsen, Phys. Rev. 49,
561 (1936).

TABLE II. Summary of experimentaL information on
nuclei mitA' a Chgerence of one in tke number of protons and
neutrons.

A TERM ef

7 Pg &0.09
0.05?

9 P&
7.10 '?

3.72 10'
If/L Itf&jt

11 P;?
13 P$

15 P$

17 S$?

19 S$

21

0.46?
1.05
.87

1.21
1.24
1.72
1.58
1.93
1.91
2.20
2.23

0.21?
5.23
2.49
9.30

10.3
38.6
28.6
65.6
63.7

123
123

1230

630

125

64?

20.3

9.3 3.90
4.45 1.85
8.45 3.50
9.35 3.90
6.95 0.60
5.15 0.43
6.05 4.55
5.90 4.40
3.50 2.60
3.60 2.70

23
2.49 198
2.82 348
2.82 348
2.99?
3.10 523

11.6 5.85
5.85

A =7. Cf. reference 4. Ekill and Valley, Phys. Rev. 55, 678 (1939).
A =11.Bonner and Brubaker, Phys. Rev. 50, 308 (1936).
A =13. Kikuchi, Watase, Itoh, Takeda, Yamaguchi reference 6. E.

M. Lyrnan, Phys. Rev. 55, 234 (1939).
A. =15. Fowler, Delsasso and Lauritsen, Phys. Rev. 49, 561 (1936).
A =17. Kurie, Richardson and Paxton, Phys. Rev. 49, 368 (1936).
A =19, 23 and 25. White, Delsasso, Fox and Creutz, Phys. Rev. ,

preceding paper.

as has been shown by Gronblom. The calculation
has not been carried out for A = 7 since K-capture
plays an important role in this case.4 The Huctua-
tions of the last two columns are probably within
the limits of experimental error as they are very
sensitive to small errors in e&. The very small
value of Itf, /l for A =15 could be explained by
assuming that the 'I'3/2 level is very near to the
ground state 'I'1~/2 in this case. Certainly, the
figures of the last column do not increase strongly
with increasing A as would be expected by
assuming a breakdown of the underlying for-
mulas for the 1arger A. Thy corresponding
numbers, calculated for all transitions not con-
sidered in this paper (such as F'0-~Ne2O) are a
hundred times greater. We must infer that
either approximation 1 is valid for these elements,
or Fermi's original matrix element (3a) is re-
sponsible for the major part of the decay con-
stant and approximation 2 holds sufficiently
well. In the latter case, most of the transitions
would go from the lowest state of the parent
element to the lowest state of the product
nucleus.

We now go over to the nuclei with a mass
number A =4k+2. The first three of these are
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TABLE III. Summary of experimental, information about
nuclei with mass number 4k+Z.

0.86 3.6 1000
10
14 ?
18 0.55
22 0.55
26
30 26
34 2,6
38 22

0.43 6700
0.43 9.5 X 10'

7
170

1970
460

241
240
116

1.15

4.15
5.9X 10'

59.2
680
77

1.75

2.10
2.9X104

29.5
340
39

A =6. Bjerge and Brostrom, quoted from reference S.
A =18. Snell, Phys. Rev. 51, 142 (1937), DuBridge, Barnes and

Buck, Phys. Rev. 51. 9&5 (1937), Jasaki and Watanabe, Nature 141,
787 (1938).

A =22. F. Oppenheimer and Tomlinson, Am, Phys. Soc. Stanford
Meeting (1939).

A =26. The experiments. on the limit of the p-ray spectrum widely
disagree. If the values of R. O. Frisch (Nature 133, 721 (1934)) or
Brandt (Zeits. f. Physik 10S, 726 (1938)) of 1.8 or 1.5 Mev should
prove correct the present considerations became untenable. Almost
equal diKculties would be encountered if Magnan's value of 4.6 Mev
(Comptes rendus 205, 1147 (1937)) were correct.

A =30. The experiments greatly disagree in this case also. The
value of Meye (Zeits. f. Physik 105, 232 (1937)) appears most reliable
at present.

A =34. Sagane, Phys. Rev. 50, 1141 (1936).
A =38. Hurst and Walke, Phys. Rev. 51, 1033 (1936), Ridenour

and W. J. Henderson, Phys. Rev. 52, 889 (1936).

electron emitters, the others positron emitters.
Unforturiately, the experimental information,
summarized in Table III, is much less conclusive
than that for the odd elements.

Unlike the constancy of the It/f, column of
Table II, the constancy of the It/f column of
Table III cannot be brought into connection
with the validity of Fermi's original assumption
(3a) since (3a) would give 0 for the probability
of the P-disintegration of these elements.

Disregarding A =22 for the time being, Table
III allows a decision to be made between the
two alternatives left open at the consideration
of Table II. Assuming only the validity of the
second approximation it seems to be very diffi-
cult to account for the small values of Itf&/f,

particularly for that of F".The short lifetime of
Al" points in the same direction. The energy of
this disintegration must be much greater than
the values given by Frisch and by Brandt. On
the other hand, the calculated value for the
difFerence of the Coulomb energies of Al" and
Mg'6 is 4.85 Mev. This gives 3.05 for the dis-
integration energy of the state of Al" which
corresponds in the second approximation to the
normal state of Mg". This state of Al" is a
singlet state and should lie above the normal
state of. Al". Hence. &~~3.05 Mev in this case;
a~=2.80 Mev would give Itfx/l=1. 75. All this

speaks strongly in favor of the assumption that
the first approximation is valid for the normal
states up to about A 26 and g1 is at least of
the same order of magnitude as go and even
allows Gronblom's assumption of go=0.

On the other hand, the increase of &tfq/&

beginning at 'about A =30 indicates that approxi-
mation 1 becomes inaccurate from this point on.
The values of e& for the elements in question are
not very well known but it is unlikely that they
are in error by an amount sufficiently large to
bring the last column down to about 2.3.

The case of A =22 remains puzzling on every
interpretation. It does not appear reasonable to
assume that approximation 1 gives a wave
function which is contained in the correct one
only with a coeKcient of about (1.7/2. 9X1 0') l

=0.007. It is much more likely that the states
of Na22 and Ne2' between which the P-transition
is observed do not correspond to the same
multiplet.

If the interpretation of the experimental data
as given in the previous section is correct, one
would expect that the distinction between
allowed and forbidden P-transition becomes in-
creasingly vague at about 2=30. For a given
~g, the lifetime of the allowed transitions should
increase, that of the forbidden ones decrease and
the matrix element for both should tend to
some average value. When this condition is
reached, only the selection rules for J and
parity would remain valid (67=&1 or 0, no
change in parity allowed). The breakdown of
one set of selection rules while others remain
intact is a familiar phenomenon in atomic
spectra.

The test to which the approximation 1 is put
by the investigation of the lifetimes of P-transi-
tions is a very severe one. One must expect a
breakdown of the formulas derived in Section 4
whene~er two (PP'P") multiplets overlap. Such
an overlapping of two multiplets will not greatly
influence the validity of the expressions for the
energy which were used in references 11. and 12,
because the multiplets will differ only in their
azimuthal quantum numbers, not in their
(PP'P"). If the spin dependent forces are not
too strong, they will leave (PP'P") and in most
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cases even S (cf. reference 21) good quantum
numbers while I. and the grouping of states into
multiplets will be more easily destroyed. If
approximation 1 makes S a good quantum num-
ber it will remain a good quantum number in

spite of small perturbations which already affect
L,. This picture suggests e.g. that the 'I'3/2 and
D3/Q parts are contained in the normal state of

an element with J= ~ to a much greater extent
than, say, the '53/2 part.

It may be worth while to note that according
to the considerations presented here the following

P-spectra should be simple: He', F" and prob-
ably Al", and all elements of Table II in which
the ground state is a 'S state. This is very prob-
able for 2=19 since the magnetic moment of
F" is very nearly equal to the magnetic moment
of the proton. These elements should offer a
possibility for a simple test of the ideas of
reference 6.

I wish to express my gratitude to Drs. M. G.
White, L. A. Delsasso and %'. H. Barkas for
many helpful discussions, especially concerning
the experimental material.
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The molecular beam, magnetic resonance method has been applied to the measurement of
the nuclear gyromagnetic ratios of Rb'~, Rb", CP~ and Cl". The g values are 1.820~0.006,
0.536+0.002, 0.454+0.002 and 0.546+0.002, respectively. The magnetic moments of Rb"
and Rb", obtained from the observed g values and the known nuclear spins, are 2.741&0.009
and 1.345+0.005, respectively. The substantial agreement of the moment ratio p8& /@8&, 2.038,
found by this method, with that obtained from atomic beam measurements indicates that any
contribution to h.f.s. by a form of interaction betweeri electron and nucleus not electromagnetic
in character is small. A nuclear moment of 1.365+0.005 is obtained for CP' if one takes the
band spectra spin value of 5/2 for this nucleus. No information concerning the spin of CP' is
available.

INTRODUCr10N

A BRIEF preliminary report' of the measure-
ments, by the molecular beam, magnetic

resonance method, ' of the nuclear magnetic
moments of the isotopes of rubidium and
chlorine has already been published. It is the
purpose of this paper to present the results in
further detail.

The hyper 6ne structure of atomic energy
states of the rubidium isotopes has been investi-
gated both by spectroscopic methods' and by
the method of atomic beams. 4 Both methods
yield nuclear spina of 3/2 and 5/2 for Rb" and

~ Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.' P. Kusch and S. Millman, Phys. Rev. 55, 680 (1939).

~ I. I. Rabi, S. Millman, P. Kusch and J. R. Zacharias,
Phys. Rev. 55, 526 (1939).' H. Kopfermann, Zeits. f. Physik 83, 417 (1933);
D. A. Jackson, Proc. Roy. Soc. A139, 673 (1933).

4 S. Millman and M. Fox, Phys. Rev. 50, 220 (1936).

Rb~, respectively. Approximate values of the
magnetic moments have been obtained from the
h.f.s. of the ground state by use of the Goudsmit,
Fermi-Segre formula. In accordance with our
experience with the other alkali nuclei, ' ' the
magnetic moments so calculated may be ex-
pected to differ by not more than 10 percent
from the values of nuclear moments directly
measured by the present method. The differences
arise from the fact that exact wave functions
for the alkali atoms are not known. On the basis
of the assumption that hyperhne structure of
atomic energy states is due solely to the mag-
netic interaction of the nuclear moment with the
external electrons, the ratio of the nuclear
moments of two isotopes of the same element
can be obtained from the ratio of the observed

5 P. Kusch, S. Millman and I. I. Rabi, Phys. Rev. 55,
1176 (1939).


