
PASCHEN —BACK EFFECT IN THEORY

components. These measurements enable the
sketching in of the microphotometer traces with
intensity as ordinates and position of the com-
ponents as abscissae. These traces are placed one
above the other to show the progressive change in
the pattern as magnetic fields of greater and
greater strength were applied. The results for
the perpendicular components are shown in Fig. 5
and the parallel components in Fig. 6. Inboth
of these figures the vertical lines or the lines at a
small angle from the vertical represent the
theoretical splitting for the even-numbered
isotopes as shown in Fig. 1 and for the odd-
numbered isotopes as shown in Figs. 3 and 4.
The splittings for the even-numbered and the
odd-numbered isotopes are shown as full and
dotted lines, respectively. The perpendicular
components show ~ splitting which is to be ex-
pected on the basis of Schuler and Keyston's

explanation and which has previously been re-
ported by MacNair. ' The examination of the
experimental results for the parallel components
show that the —10.3 component shifts toward
the zero component in agreement with the
theoretical prediction of Darwin's theory but
which for the range of fields used is not in agree-
ment with the results of MacNair.
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General spectroscopic theory has been applied to the Paschen-Back effect and simplified
methods developed for determining the positions of the energy levels and intensities of lines for
cases of intermediate coupling. They are expressed in terms of LS-coupling as the zero-order
functions.

A COMPLETE theory of the Paschen-Back
effect for intermediate coupling in two-

electron spectra was first given by Houston'
(in essence) for the case of one electron in an
s state and was later completed and experi-
mentally verified by Green and Loring' and by
Jacquinot. ' Houston's zero-order approximation,
while satisfactory for the particular example
studied, proves unwieldy, however, when applied
to more complicated configurations. Since the

' W. V. Houston, Phys. Rev. 33, 297 (1929).
2 J. B. Green and R. A. Loring, Phys. Rev. 46, 888

(1934).' P. Jacquinot, Thesis, (Paris, 1937).

publication of Houston's paper, a very con-
siderable body of theoretical work has been
carried out, and spectroscopic theory has been
advanced to the point where the problem of the
Paschen-Back effect can be stated in general
terms for any kind of coupling. While it is useful
to be able to state the general solution to any
problem, it is the actual application of the
problem to particular cases that is of prime
interest to the experimental physicist; and it is
the purpose of the present paper to express the
solution in terms that are very easily interpreted
in terms of a coupling system that is familiar to
everybody; namely, LS-coupling.
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I. CALcULATIQN oF ENERGY LEvELs

Let us suppose that using the I.S-coupling
scheme we can write part of the matrix of a
given configuration. involving the two j values

j and j+1, in the following manner.
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where the lower case letters represent magnetic
interaction terms arising from spin-orbit inter-
action, aIld the upper case letters represent, in
general, electrostatic plus magnetic (spin-orbit)
interaction energies. In a large number of cases,
especially for two-electron spectra, these terms
have been calculated4 in terms of certain pa-
rameters representing radial integ rais. It is
possible, then, from the known energy levels of
a given spectrum, to work backwards and
determine the values of the parameters. Let us
suppose that the observed energy levels are A',
8', O', O', E', F'. This is equivalent to saying
that we have determined a transformation.
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where ei=ehH/47riisc, and the g s are the Lande
g-factors

which transforms the matrix (1) into a diagonal
matrix. These transformation coefficients are
normalized and orthogonal, i.e. , if cP+a22+uP
= &, ete. and u1u2+b1b2+c1c2=0, ete.

In the presence of a magnetic fieM, there is,
in addition to the matrix of the energies repre-
sented by (1), a matrix resulting from the
interaction of I and S with the magnetic 6eld,
which may be represented for each value of the
magnetic quantum number rn, in the following
manner

8L. 8—1L, 8(L 1). 8I .
1 8(L+1). 1 S(L 1).

J(J+1) I (I.+1)+ S(S—+1)
2J(J+1)

(J J+S+1)(J+I. —S+1)(J+L,+S+—2)(I.+S J)i—
0 and l = ((J+1)'—m']&

4(J+1)'(2J+1)(2J+3)

and are diagonal, while nondiagonal terms occur
only between terms with J's differing by unity
but with the same S and I..

If we apply the transforms, tion (2) to this
matrix, and add the result to the diagonalized
matrix in the absence of the magnetic 6eld, the
problem. of the determination of the energy levels
is complete.

To make the case simple, suppose that three
of the levels, A', 8', B' are sufficiently close so
h h i r h other in the resence

of a magnetic 6eld. The part of the final matrix
which then becomes important for the calcula-
tions of A", J3", D" (the altered positions of
A', 8', D' in a strong magnetic field) is

A '+mg1'au

(4a)8'g.

D j+1, m

8 mg2 GO
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t at t ey w ll pe turb eac p
(O', B', Il' are so distant that their effects on

4 See e.g. , E. U. Condon, and G. H. Shortley, AIoteic
Spectra (Cambridge University Press, 1934). A", 8", D" are negligible), where g = ri; gi
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+bP g2+cP g3, which represents the weak-field
magnetic splitting factor in the intermediate
coupling,

+]P2gi+ ~1~2g2+ ~lc2g 3

2e =a ld lk +CIfll

a2d 1k+C2f1I

If we now subrract 8 from each of the diagonal
terms of (4) and set the determinant of this
matrix equal to zero, the three roots will repre-
sent the positions of the energy levels when a
magnetic field is present. One noteworthy fact
now becomes evident from (4). In LS-coupling
there. is no nondiagonal element between two
terms with the same value of J. In intermediate
coupling, these terms may be as large as any of
the other terms introduced by the magnetic field.

II. THE INTENsITIEs

The calculation of the intensities of the
components involved in a transition between the
configuration discussed above and another con-
figuration whose transformation matrix is given
below (5), is a much more tedious process

(6). (This procedure is justifiable, since we are
usually dealing with an extremely small fre-
quency interval in the Paschen-Back effect. )
(6) represents the (strengths) l of transitions
between levels j, m and j+1,m of one configura-
tion, and j+1, m+ 1 of another configuration.

Operating on (6) on the left by (2) and on
the right by (5) transposed we obtain the matrix
of Sl in the type of coupling involved, in the
absence of the magnetic field. The individual
matrix elements are of the following form:
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The squares of these quantities would repre-
sent the line-strengths in a weak magnetic field.

If, now, a strong magnetic field is introduced
it is necessary to diagonalize (4) before we can
calculate the matrix of S&.

'
With the same

approximations as in (4) the transformation
matrix is
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(In the following example the above con-
figuration is spread out sufficiently so that no
Paschen-Back effect in this configuration need
be considered. )

If we neglect the quantities depending on the
numbers of atoms in the different states and the
factors depending on the frequency, then the
matrix of the square roots of the line strengths
in a particular transition may be written as in

L~'+1 m+1 (L+1)j+1 m+1 (L—1)j+1,m+1 (L—1)j+1,m+1

[(A"j m~S&~H"j+1 m+1) j2
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+a2gk 1+b2rll+ (a2t+ C224) n 1}
+a3 {(d142+elb+flf )kl
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(9a)

and similarly for the other components.
The authors are indebted to Dr. G. H.

Shortley for many helpful discussions.

(To be exact, we should include terms a4', a3',
a6', etc. due to interactions between A', 8', D',
and C', Z', P, but these are negligible in the case
considered. ) Then the line-strength of the com-
ponent for A";, +H";+1, ~+1 (th—e values of A'

and H' in a strong magnetic field) is given
(approximately) by


