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The hydrogen-line profiles previously derived for the
case of single encounters are integrated over all encounters
to yield the observable profiles. The encounters are
assumed to be uniformly distributed over different dis-
tances of closest approach, and the ions are assumed to
have a Maxwellian velocity distribution. Approximation
functions allow the integration to be carried through with
rigor in the two limiting cases of very fast and very slow
encounters, and with a probable error not exceeding ten
percent in the more general case. The resultant profiles

illustrate quantitatively Margenau's effect—the transition
from impact to statistical broadening with increasing line
width. The effect of fast electron encounters is shown to be
negligible, in general, in comparison with the effect pro-
duced by an equal density of slowly moving ions, An
evaluation is made of the error produced by the neglect of
the inhomogeneity of the ionic field. The final formulas
have a probable error of less than 12 percent for most cases
of astrophysical interest.

'HE perturbations which a passing ion pro-
duces on a hydrogen atom have recently

been investigated by the author. ' The profile of
a line emitted by an atom so perturbed has been
derived on the assumptions that the field of the
ion is homogeneous and that the motion of the
ion is uniform and rectilinear. The results of I
may be conveniently summarized as follows. Let
J(x) be the intensity of emitted radiation as a
function of x, where x equals 27r(v —vo), and is
simply the distance in angular frequency units
from the line center vo. Let I' be the radiative
damping constant for the transition in question,
and let ~b be the total phase shift produced by
the encounter. When x is much greater than I',
formula (20-I) is valid, provided that f, (&) is
substituted for fi($) in accordance with Sections
2 and 3 of I; thus we have

where 8 =g/hvR,

0"-=1+2, (=xR/~,

(2)

and Q(5, t') is the number of collisions per second
for a particular 6 and g; v is the velocity of the
ion relative to the hydrogen atom, and R is
the distance of closest approach between the
ion and the atom. The function f,(&) is defined by
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' L. Spitzer, Jr. , Phys. Rev. SS, 699 (1939), hereafter

referred to as I.

(21-I), and is represented graphically by Fig. 1

in I. It is evident from this figure that if 0 is
much greater than unity, f,(&) is given by the
statistical formula (30-I) derived for infinitely
slow encounters. When 8 is less than unity, a is
substantially unity and f.(p) approaches the
known limiting curve fi($) given in (28a-I).

Strictly speaking, we have proved (1) only for
the two limiting cases of 5 large and 8 small.
The discussion of the lowest Lyman line given
in Section 2 of I validates the functional form
of (1), however, and it seems reasonable to expect
that this formula is substantially correct for
intermediate values of 5 in other cases as well.

The above formulation assumes that all en-
counters are characterized by the same values of
b and &. In the more general case we must
integrate (1) over all possible collisions to find
the profile of a line emitted by a hydrogen atom
in an assembly of ions. The actually observed
line contour will be the same as this theoretical
"observable profile" only when the emission
takes pjace from a thin film and self-absorption
is therefore negligible. This integration is carried
out in Section 1 below. In Section 2 the results
are qualitatively discussed and their range of
validity is investigated.

The integration of (1}over all possible values
of 8 and & may be regarded as an integration
over R and v. If we let II„,'(R, v)dRdv be the
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number of times per second that a single hydro-
gen atom encounters an ion of mass M... of
charge Z„,e, with a relative velocity between v

and v+dv, and with a distance of closest approach
between R and R+dR, then (1) becomes

oo s

J(x) = 1+—P„dv
27l X I" 0 0

X & '(R, v) &'f, '(()dR, (4)

mH is the mass of the hydrogen atom, and N is
the number of mth ions per cm'.

The substitution of (6) into (4) and the use of

(2) for 8 yields an explicit integral formula for
J(x). This may be simplified by substituting u
for I„,v' and by reintroducing & for Rx/v. This
gives

F 4~' Nq&
&(x) =——1+ Q„—y&'*II„(x), (8)

2~x 2 rx: P:

summed over all types of ion. The upper limit
of integration over R in (4) is the average dis-
tance of the nearest ion of any type and is
defined by

4' s'/3 = 1/N,

where II (x) = e "du
0

and from (2) and (3),

~2 —1+~ 2/~2/2 (10)

0 '(R, v) = 2mRvN„4/„lx '*v'. exp l v', (6)—
where

1 MmH
l =—

2kT 3f +mH

where N is the total number of ions per cm'.
This is perhaps an arbitrary cut-o6 but repre-
sents roughly the fact that encounters such that
R is greater than s will in general be completely
screened. Fortunately the relevant results depend
only logarithmically on this upper limit of
integration s. In this way a consideration of suc-
cessive, isolated, single encounters can be made
to provide an adequate approximation to the
actual situation.

The lower limit of integration over R has been
set equal to zero in (4), although the theory in I
breaks down for sufficiently small R, owing to
the inhomogeneity of the ionic field, exchange
forces, and other phenomena. It seems a better
procedure, however, to include an admittedly
inaccurate value for the contribution from these
close encounters rather than to neglect them
entirely. The error introduced from this source is
discussed more fully in Section 2 below.

To obtain an explicit formula for 0 '(R, v) in

(4) one may assume a Maxwellian velocity dis-
tribution for the relative motions of ions and
hydrogen atoms. As before, the effect of the
perturbation on the ionic motion may be neg-
lected, and the simple geometrical cross section
may be used in determining the frequency of
collisions. With these two assumptions, 0,„'(R,v)

becomes

while by definition we have

y) ——g l„,x/5, yg ——
g I l/hs. (11)

The quantity q /h is the Stark-effect shift in

frequency units which a stationary charge Z e,

placed at unit distance from the hydrogen atom,
will produce in the particular component under
consideration.

The dimensionless quantities p& and p2, from
which a subscript m is omitted, have each an

important physical significance. For an ion with
the most probable relative velocity / &, p& equals
the product Px/x, .„where

x .„=g/AR'; (12)

x, is simply the maximum value of x for a
given R in the limiting statistical case. Hence if

y~ is small, 8 for most collisions will be greater
than unity only if x/x, „- is very small. For
sufficiently small values of x, f,($) equals
2 sin (m-0/2)/o. , as is evident from (21-I), while

for larger x 5 will be small, if yI is still small,
and f,(f) becomes substantially f&($). If, on the
other hand, y~ is large, 8 will be so great that

f,'($) is given by the limiting form (30-I) until

x/x„„„is so large that f.(&) vanishes in any case.
Thus for large p& we may expect the usual

statistical formula to apply.
It follows from (2) that y2 in (11) is the value

of 8 for an encounter with an ion of velocity
l„,l and closest distance of approach s. If this is

greater than unity all relevant encounters pro-
duce phase shifts greater than unity, since from

(2) 8 increases as R decreases. We have seen
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that when Fr is much greater than unity, f, (&)

approaches the limiting statistical curve f„($).
The full statistical theory may therefore be used
when y2 is large, and the analysis of Holtsmark'
and Margenau' may be applied.

The ratio pi/y22 equals xsVr/ (land is simply
the ratio x/x, „when R is equal to s. If all ions
have the same charge Ze, this is practically
equal to Holtsmark's' ratio (8, or F/F„,where F is
the electrical intensity whose probability dis-
tribution at a point is under consideration, and

is a certain normal or average intensity
defined by

F„={8ir(2FF) l/15 } iZeÃ~. (13a)

If we substitute for I(/ from (5), this gives

F„={2(2ir) *'/5}'*Ze/s' = 1.0018Ze/s' (13b)

Thus F„is essentially the field produced by a
charge Ze at a distance s; (I/s'h will be the value
of x produced by such a stationary charge —see

(12)—and hence it follows that P equals x/x,
when R is equal to s. In other words, P is simply
the ratio of the line shift x to the shift produced
by a stationary ion at the average interionic
distance s. This quantity P is of importance
below in a comparison of the results of the
statistical 'analysis with those of the more
general treatment.

The evaluation of the double integral in (9) to
obtain H (x) is the central problem of the
present analysis and gives directly the observable
profile J(x).The indicated integration can appar-
ently not be carried out exactly in terms of
known functions, particularly since f,($) is de-
termined in I only for integral values of o-, and
for other values must be found by interpolation.
An approximate treatment may be adopted.
It is evident. from the graph of fifP(&) against
x/x, „

in I that while this funrtion changes
continuously from 5 equal to one to 6 equal to
infinity, the difference between the curve for 8

equal to four and that for 8 equal to infinity is

not very great. On the other hand, for x/x, „

small, f,($) is given more accurately by f,(0)
We may approximate to f,($), then, in the follow-

ing manner: when x,/'x, „-is less than —,', we assume

(14)
2 J. Holtsmark, Ann. d. Physik 58, 576 (1919).' H. Margenau, Phys. Rev. 43, 129 (1933);H. Margenau

and W. W. Watson, Rev. Mod. Phys. 8, 22 (1936).

when x/x, „
is greater than —,', , however, we set

f (k)
f2(k)f (P) = ~ f (()
f.(&.)

1 &0 &1.5,
1.5 &0.&3,
3 &o&5,
5 &0..

(15)

The choice of —,'6 as the critical value of
x/x„„is somewhat arbitrary. As was shown

above, the value of b at this point will be 4y~' for
an ion with the relative velocity / . If this
value of 8 is greater than three, the contribution
of (14) to (9) will be not greater than four per-
cent of the total, and thus quite negligible. For
small y~, on the other hand, the transition at
x/x, „equal to i'6 will take place directly be-
tween f,'(0) and fi2(&), and both will be very
nearly equal to four, as may be seen from the
form of these functions as given in (20) below.
The transition in this case is therefore con-
tinuous and independent of the particular transi-
tional value of x/x, chosen.

When P is less than i'6, x/x, „
is always less

than —,', and f,(0) replaces f,($) for all u and &.

In this case the integrals in (9) are independent
of x. We shall assume throughout that P is

greater than ~'~ and deduce the results for this
other case by taking the limit as P decreases
to —,', . It is apparently necessary to assume also

that p& is considerably less than unity, say less

than 0.2. When y2 is very small, simultaneous
encounters are not very important, and devia-
tions from the statistical assumptions may be
considered. When y2 is only slightly less than

unity, and p& is also less than unity, both effects
are important and the present theory breaks
down.

With these simplifications the integration in

(9) becomes straightforward. We may define

L(x, u) = f'(k)dhlf;
0

(16)

H'(x) = e L(x, u)du, - (18)

FF'(x)= e dwf f'($)"dd/( (19), .
0 v, h, ~~

then we find from (9), omitting the subscript m

when there is no ambiguity

II(x) =II((x) IP(x)—
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-2.0 0.0 &.0

FIG. 1. The lower solid-line curve shows log L(x, I) as a
function of log yI/u. The two asymptotic forms are shown
by the dashed-line curves. The upper curve gives log HI(x)
+1.00 as a function of log yI. Both ordinates and abscissae
are common logarithms.

The functions in (14), (15) and (16) may be
obtained from (27-1), (28a-I) and (30-I); we find

4 sin' pro./2f.'(0)d(/$ = do,
o (o' —1)

(20a)

fz'($)dk/k =4& (Kz'(&)+Ko'(k) td&,

fzz($)dk/(=2''Io "dh

f4'(f)dhl&=2x'$(1 5)'o "d—k

(20b)

(20c)

(20d)

' zrzzl d(x/x, „)
x/x,. „&1,

f„'($)d$/$=- 2yz'* (1 —x/x, „)l (20e)

.0 x/x, &1.

These functions have been averaged over positive
and negative values of (. The resultant profiles
must accordingly be summed over all states,
independently of the sign of g,„.

The limits implied in (14) and (15) may be
expressed in terms of o and $ if we use (10) and
the formula

x/x, „=zzP/y, (21)

which may be derived from (3), (11) and (12).
If the denominator of (20a) is resolved into
partial fractions, the integral can then be evalu-
ated in terms of logarithms and the cosine
integral Ci(x), which is tabulated in Jahnke and .

Emde. 4 The second function integrates directly
to 4&Kz(t)Ko(&), as may be seen by differentiation
and application of the recurrence formulas for
Bessel functions. The other integrations are
elementary.

The resultant curve for L(x, zz) is shown by
the lower solid curve in Fig. 1. The two dashed
lines are the asymptotic curves,

L(x, zz) = zrzz&/uzi (22a)

for large zz, which follows directly from (20e),
and the yeries expansion for small u,

L(x, zz) =4 ln zz/yz —0.69, (22b)

where ln zz/yz denotes the logarithm of zz/yz to
the base e.

Consideration of the defining integral (16)
indicates that the oscillations of L, (x, zz) shown
in Fig. 1 are probably not real, since f,z($)/$ is a
function which oscillates from zero through
positive values with an amplitude that increases
slowly with ( until finally 0- approaches unity and
the function decreases monotonically. An in-
crease in yq/zz will shift any particular zero or
maximum of the function to greater ( but
should not produce any rapid oscillations in the
integral. The oscillations shown in Fig, 1 can in
any case be traced to defects in the approxima-
tions (14) and (15) and are produced by the
joining of two of the functions used in such a
way that both functions have maxima, or both
have minima, in their respective ranges.

If, then, we draw a smooth curve through the
oscillations of L, (x, zz) in Fig. 1, we see that the
resultant curve follows closely either one or the
other of the two asymptotic curves. The two
dashed lines, connected by the dotted hori-
zontal line, form an approximation curve whose
vertical distance from the curve for I.(x, zz)

never exceeds 0.05 on the logarithmic scale, and
which therefore represents L(x, zz) with an accu-
racy of about 12 percent for the short transition
region and is of course correct at the two
limits.

The connecting horizontal line is defined by

L(x, zz) = 13.80, 0.0520 & yz/zz &0.0266. (23)

If this and the two asymptotic curves are

4E. Jahnke and F. Emde, Tables of Functions (B. G.
Teubner, 1933), p. 78.
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integrated over their respective ranges in (18),
H'(x) becomes

P'(x) =~' erf (4.39y~l)/2y~l+4Zi(37. 4y~), (24)

equal for large & and for small P, and differ no-
where by more than six percent. With this
approximation, then, we have for (19), inte-
grating the first term by parts,

where
2

erf (x) =— exp (—t')dt,
7l" ' 0

(25a) H'(x) = 2 {F(1.447y3) 7ry3—F'(y3) I, (28)

where by definition

Ei(x) =)t exp ( t)dt/—t. (25b) V3 4y& /'y& 1 (29)

These functions are also tabulated in Jahnke-
Emde. When y~ is greater than 0.10 or less than
0.03, (24) becomes, respectively,

H'(x) = s &/2y, l, (26a)

1.00
0.75
.50
.25
~ 10
.090
.080
.070

H'(~)

2.78
3.22
3.94
5.57
8.39
8.7
9.1
9.5

0.060
.050
.040
.030
.020
.010
.008
.006

H1(x)

10.0
10.6
11,3
12.3
13.6
15.9
16.7
17.8

0.004
.002
.001
.00075
.00050
.00025
.00010
.00001

H1(x)

19.3
22.1
24, 7
25.8
27.4
30,2
33.8
43.0

H'(x) =4 In 1/y~ —3.02+61yq, (26b)

with an accuracy better than five percent.
This function is shown by the upper curve of
Fig. 1 and its values are given in Table I.

To determine H(x) and hence J(x) we must
also calculate the correction term II'(x) given by
(19). At the lower limit of integration over f in

(19), x/x, „and o. are equal to p and to
(1+&22/u) ', respectively, as is evident from (21)
and (10). From (14) and (15) it follows that if
we take P greater than —,'6 and p. less than 0.2—
the restrictions assumed above —f,(() will be re-
placed by f&($) if u is greater than 0.032. The
contribution to (19) from values of u less than
0.032 will be quite negligible, and we may
therefore replace f,'($) by fP($) for all values of
u and $ in (19).

The indefinite integral over $ in (19) thus
equals 4/K&(&)Xo(&), as we have already seen.
This is not a convenient function to integrate
over N. If we make the approximation

tXq($)Ito($) =Fi( ', el &)+--', 7re-'t, (27)

where Zi(x) is given in (25b), the functions are

TABLE I. H'(x) as a function of y1—formula (Z4).

F(s) = exp ( —su u—')du/u, (30)

—F'(s) = exp (—su —u—l)du.
0

(31)

Values of F(yg), ysF'(ys), and IP(x(y8)) are
given in Table II. They are calculated from
series expansions for small p3 and from asymp-
totic formulas for large y3. Intermediate values,
for which y3 is greater than 0.10, are somewhat
uncertain; those for F(yz) were found by nu-

merical integration in a few cases; those for
ymF'(ya) were found from the first two differ-
ences of F(yq).

When y3 is less than 0.04, we have to within
five percent,

H'(x) =4 In y~/y~ —0.688 —6.7y~/y2. (32)

Combining (17), (26b), and (32) we have, if yq is
less than y~/10 and y2 is less than 0.2,

H(x) =4 ln 1/y~ —2.33+61y~+6.7y~/p~, (33)

which is accurate to within 10 percent; thus
H(x) approaches asymptotically a value inde-
pendent of p&. This asymptotic result holds also
for P less than —,'6, as we have seen above. When

y~ is large, on the other hand, ys will be even
larger, since y~ is assumed to be small. For such
values, IP(x) vanishes exponentially and H(x)'
equals H'(x), which in this case is given by (26a).

These formulas give the profiles of a single
component of a hydrogen line. For comparison
with the corresponding result in the statistical
case, we change from J(x) to W(p), defined by

W(p)dp= J(x)dx. (34)

As we have seen —formula (13b)—P is the ratio
of x to the static line shift produced by a sta-
tionary ion at a distance s; hence we have

p =xs'It/g = y g/y..', (35)
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where we assume for convenience that q is not a
function of m; i.e. , that all ions have the same
charge. From (5), (8), (11), (34) and (35) we find

Weisskopf' formula (22-I),

J(x) = Qii /n. x', (37)

10 '
10 4

0.001
.010
.020
.040
.060
.080
.10
.20
.40
.60
.80

1.00
1.20
1.40
1,60
1.80
2.00
2.50
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.0
15.0
20.0
40.0
80.0

9.88
7.51
5.28
3.18
2.62
2,08
1.80
1,61
1.45
1.20
0.71
.54
.44
.37
.31
.27
.24
.22
.198
.160
.136
.102
.076
.059
.048
.039
.033
.027
.014
.0084

2.1 ~ 10 4

3,1 ~ 10 5

—'y F'(y )

0.995
.982
.945
.852
.802
.734
.687
.649
.618
.53
.44
.38
.33
.29
.26
.23
.21
.20
.188
.153
.137
.110
.090
.076
.064
.055
.048
.042
.025
.0158
.0047
.0010

FF2(x)

25.1
20.5
15.8
11.1
9.70
8.24
7.42
6.80
6.38
5.0
3.9
3.2
2.7
2.4
2.1
1.8
17
1.6
1.46
1.19
1.05
0.82
.66
.55
.46
.39
.33
.29
.172
.108
.030
.006

8S. Verweij, Publ. of the Astron. Inst. of the Univ. of
Amst. , No. 5 (1936).

P'W(P) =2J(x) Xx's'fi/q (36a,)

= 3~ «Q~, ygII~(x) N„/N, (36b)

where the first term in (8) has been assumed
negligible. The right-hand side of (36) has been
multiplied by two to make the result comparable
with that of the usual statistical treatment, in
which J(x) is summed over only half the possible
components of a spectral line, since each com-
ponent will on the statistical theory be displaced
wholly to the violet or wholly to the red, in
general, depending on the sign of g.

In Fig. 2 is shown the function P'W(P),
computed from (36b) for various values of p~ on
the assumption that only one type of perturbing
ion is present. The solid line given for com-
parison is the statistical curve calculated from
Holtsmark's' analysis by Verweij. ' The dashed
horizontal lines are the values derived from the

TABLE II. IP(x) as a function of p&—formuLas {28) Lo {31}

where QI~ is the total number of collisions. per
second for which i« is less than i«0(R'), or in this
case 1/~. If we integrate 0'(R, v) in (6) from zero
to R', and determine R' from (2), then we find
for (37), after we have integrated over v,

2 x'q'1 'N
' J(x) =—Q

A'x'
(38)

and therefore, from (36a),

p'W(p) =37r'*Q y2N, /N.

This result is simply (36b) with II (x) set
equal to m', a result which may be derived
directly from (9), replacing f,'($) by 2/8' and
integrating from 6=1/~ to «i= ao. Hence the
true asymptotic value of t«'W(P) for small P
differs from the Weisskopf value as m~ differs
from 4 ln 1/y2 —2.33, as is evid'ent from (33).
This difference vanishes for y2 =0.047. The
excess of the Weisskopf formula for larger y2 is
attributable to its neglect of the necessary sub-
stitution off (&) for f«($) in (1),while the opposite
error for smaller p2 arises from the neglect, in
the Weisskopf analysis, of the more distant
collisions. These errors are in opposite directions;
and for values of y2 between 0.3 and 0.017, the
Weissiropf formula gives results for small P
that are accurate to within 40 percent.

The profiles of Fig. 2 must now be summed
over all components of a given hydrogen line.
Let the subscript j denote a particular com-
ponent. To evaluate the observable profile J(x),
or the atomic line absorption coefficient n„one
must form the weighted average of J;(x) over
all the components. Combining (8) and (17), we
find for J(x), again normalized to unity,

X Q;q;Q N iI;«pi«(II (x) —II„(x)), (40)

' V. Weisskopf, Physik. Zeits. 34, 1 (1933).

where the q; are normalized oscillator strengths
given by
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and where H (x.) as a function of y„and
II;2(x) as a function of ys (defined in (29)), are
given in (24) and (28), and in Tables I and II,
respectively. When p& is less than one, it is
convenient to make the substitution in (40)

(42)

which follows from (11).
,
-2.

0.0 2.0

Apart from the physical assumptions made at
the beginning of I, formula (40) should have an
accuracy considerably greater than that provided
by any previous impact theory. Three sets of
approximation functions have been used: (14)
and (15) for f,(f) in the calculation of I (x, u);
(22a), (22b) and (23) for L(x, u) in the calcula-
tion of H'(x); and finally (27) in the computation
of H'(x). The first. of these should produce a,n

error in the smoothed L(x, I) of less than 15
percent. The second and third are accurate, as
we have already seen, to within 12 percent and 6
percent, respectively. Hence the total mathe-
matical error cannot exceed 33 percent. If we
take half the maximum error in each case as the
probable error introduced from each source, the
total probable error introduced by the mathe-
matical approximations will be equal to or less
than 9.7 percent. When y~ and p3 are both very
different from unity, (40) should be accurate to
within one or two percent.

The calculated profiles in Fig. 2 show two
characteristics. Since a horizontal line represents
a dispersion curve profile c/x', where c is some
constant, the curves of Fig. 2 show in the first
place that, as x increases, J(x) cha, nges from
c/'x' to the statistical profile, which in this case
is c /x~". This transition from impact to sta-
tistical broadening was first pointed out on
theoretical grounds by Margenau, ~ and has been
observed in the laboratory as a transition in the
rate of line growth which takes place with
increasing pressure, Experimental difficulties
have of course prevented a laboratory observa-
tion of this effect for the hydrogenic case analyzed
here.

In the second place it is immediately evident
2 H. Margenau, reference 3.

FIG. 2. Profile of a single component of a hydrogen line,
Abscissae represent log p, where p is the ratio of v-v0 to
the displacement produced by a stationary ion at the aver-
age interionic distance s. Ordinates represent log P 8'(P)„
where W'(p)dp is the probability of finding P in the range
dp. The solid line is the Holtsmark statistical curve, while
the dotted lines are calculated from (36b) for various values
of p2, a quantity which varies inversely with the average
ionic velocity. The horizontal dashed lines give the corre-
sponding values of log p'8'(P) derived from the Keisskopf
impact formula.

from Fig. 2 that J(x) decreases with y2 and hence
decreases as the velocity increases. In an as-
sembly containing equal numbers of electrons
and positive ions, the latter are usually moving
sufficiently slowly so that their value of p& is
greater than unity and their perturbations pro-
duce the statistical effect. The electrons may be
moving sufficiently rapidly, however, so that
their corresponding p& is a very small quantity.
Unless x is so large that the statistical formula
holds for electrons as well as for positive ions, it
follows that the contribution of the electrons to
J(x) will be negligible.

It may be noted that, subject again to the
restrictions imposed in I, (40) includes all the
relevant effects. "Collision broadening, "regarded
as producing transitions from one quantum level
to another, is equivalent, not supplementary, to
the above analysis.

The physical simplifications introduced in I
may now be re-examined with the above analysis
in mind. The assumption of single encounters is.

an adequate approximation when y2 is less than
about a fifth. J(x) in this case depends only
logarithmically on p2, and because of this fact
an arbitrary decrease in the effective s does not
change the line profile appreciably, but increases
y~ and eliminates the effect of distant multiple
encounters. Multiple encounters at close dis-
tances have a negligible probability.
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V= ——z, 1+—
R' R

(48)

Since z, is at most r„the relative error in V
produced in the most strongly shifted com-
ponents by the inhomogeneity of the ionic 6eld
will be r, /R, to this approximation. This cor-
rection term will lead to an asymmetrical line,
since it is independent of the sign of z, This is
reasonable physically, since a very close point
charge will depress levels with positive z, more
than it will raise those of negative z, . When R is
less than 3 or 4 times r„this approximation may
be expected to break down; higher terms in

(44) and the higher order approximations of the
perturbation theory will both become important.

To examine more closely the range of validity
of the theory, and to clarify the meaning of the

A second limitation of the theory is that R
must be greater than 10r„or7.91 10 'n~' where
n& is the total quantum number of the upper
state of the transition in question, and r, denotes
the average value of r, for the state 1=0, n=ng.
This restriction is necessary primarily because of
the inhomogeneity of the ionic field. One may
find a 6rst approximation to the error introduced
by the neglect of this inhomogeneity. Let sub-
scripts e denote electronic coordinates; R, the
distance from the ion to the atomic nucleus; and

p the distance from the electron to the ion; then

p'=R'+r ' —2s,R,

where as usual the s. axis is taken along R. If we
let the nuclear charge be Ze, then the perturbing
potential energy V is given by

Zg sg
1+—+ (3s.' —r.')

R R 2R'
(44)

The term in s, gives the usual Stark-effect
displacement. To evaluate the next term we make
use of the fact that it is the levels of large z, that
produce the observed line broadening; it is these
levels, therefore, in which we are primarily in-

terested. When s,. is large, the average value of
r 2 is not much greater than the average value
of sP, which, in turn, is approximately given by
(s,)'. In such a case the perturbing potential
(with neglect of the constant term) becomes
roughly

1.73pn~' 2.19 10'p r

vR v R
(48)

pr. q
' pn, '

)&as ——1.22 10'(— —A, (49)
E R ) . ng'[1 —(ns/ng) 'j'
w DX )n~q '

2.18 10'p——
i

—
(

—1
T 70 &nsl

(Soa)

y2' ——4.74 10 'p'—ng'Ã~
T

where A denotes angstrom units, T the absolute
temperature, and u~ isde6ned as 3f„/(M„+ma);
for an electron, m is 5.4 10 ', for a proton it is

and for other ions it is practically unity;
2~&p~& is simply x,„,Ahois equals Chv~s/i 02, and
AX equal cx/2r;vP. It is clear from (48) that
when R is as small as 10r„bwill be very large
unless v is at least 10' cm/sec. This is an ob-
servable thermal velocity only in the case of
electrons, and for heavy atoms such close
encounters will accordingly be adiabatic.

For these adiabatic encounters the statistical
theory is valid and the. wings of a line will be
produced only by very close encounters. In this
case J(x) is proportional to R2(x)dR/dx; 47r

R'(x)dR is the volume of the shell from which a
stationary ion produces a Stark-eA'ect shift
between x and x+dx in angular frequency units.
To a first approximation dR/dx is unchanged by
the inhomogeneity, provided that x is held fixed,
and hence the relative error in J(x) is simply the
relative error in R'(x) for a known x, or approxi-

quantities used in Section 1, we derive several
useful relationships. From (11-I) and (12-I) we
see that the Stark-effect frequency shift hv~~ of a
given component produced by a stationary
charge Z„eat a distance R is given by

g 35Z g 0275gZ
~I'Za =—

A'R' 4+m, R' R'

g =ng(kgb —kig) —ns(kgs —kis), (47)

where kI and k2 are the quantum numbers for the

( and q coordinates, respectively. If Z is taken
to be unity, R is taken as the distance of closest
approach, and g is replaced by pn&', where

~ p ~

ranges from zero to approximately unity, one
finds from (2), (46), (7) and (11) that
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mately the relative error in x for a given R, since
x is approximately inversely proportional to R'.
If we assume that the broadening of the spectral
line is produced largely in the upper state of the
transition, then it follows from (45) that the
correction factor for J(x) in this case is approxi-
mately 1+r./R, where the minus sign goes with
positive x and vice versa; this assumes that the
wings of the line are produced by the most
strongly shifted Stark-effect components.

When R is less than 3r,. the theory is no longer
valid; hence from (49) it is evident that the
formulas for J(x) do not apply if d)~» for the
Balmer series (ns ——2) exceeds 2160/rcg2 ang-
stroms. If n~ is greater than 7, this upper limit is
greater than half the separation between suc-
cessive lines, and is hence not a serious restric-
tion. For the lower members of the series this
limiting shift is greater than is usually observed
in stellar spectra.

When electrons are involved, the case is
somewhat different. At a temperature of 5000'
the electronic velocity is 4 10' cm/sec. , and 6 is
only -,'when R equals 10r,. A substantial portion
of I.(x, u) s.nd of Il(x) arises from encounters for
which 6 is greater than this value; unlike the
statistical case discussed above, the inhomoge-
neity of the ionic field at close distances will
therefore affect J'(x) even when x is relatively
small. A rigorous treatment would be diAicult
here, but it is not difficult to set an upper limit
on the error involved provided that y~ is small.

In such a case I,(x, u) may be regarded as
the sum of two parts —the first comprising all
encounters for which 8 is greater than some
critical value 8O, which we may take equal to 1,
the second including the more distant en-
counters. The first part follows approximately
the Weisskopf formula (37), where now unity
replaces 1/x as the critical value of the phase
shift. The second part, which is six times as great
as the first provided p& is less than -'„and twenty
times as great if yi is less than 1/30, arises from
the more distant encounters, and will be largely
unaffected by the inhomogeneity of the perturbing
field. The relative error in 8 will be 2r, /xR, as we
see from (45); the extra factor 2/m arises from the
integration of $'(t) over t, repla. cing R by
(v't'+R')'* as in I. When R equals 3r„this gives a
relative error of 21 percent in R, for a fixed 8,

and, since the total number of relevant collisions
is proportional to R', a relative error of 42 percent
in the first part of L,(x, I). This gives a corre-
sponding error of less than six percent in the sum
of both parts, if y~ is less than -', . If 8 is less than
unity when R equals 3t„and hence if the
temperature exceeds 14,000', this error must be
increased slightly. The relative increase in the
error wi11 presumably be less than the relative
increase in T, however, and hence if T is as
much as 30,000', the relative error should not
exceed 13 percent. As y& increases the error rises
until it approaches the corresponding error in
the statistical case, which according to (45) may
be as much as 30 percent.

One may conclude, then, that (40), supple-
mented by the Holtsmark-Verweij statistical
formula, gives values of J(x) which, if one
neglects the inhomogeneity of the ionic field,
have a probable error of not more than ten
percent and are asymptotically correct, except
for the intractable case when y& is approximately
between 0.2 and 2 and y~ is at the same time less
than unity. The inhomogeneity introduces a
correction factor for the statistical case; for the
impact case—when p] is small —the additional
error introduced is less than 13 percent, provided
T does not exceed 30,000'. If, as before, we take
half the upper limit on the error as the value of
the probable error, this gives a total probable
error for the impact case of less than 12 percent.
When AXgs is greater than 135ns'/ng2 angstroms,
the theory breaks down.

One more restriction may be noted. The
neglect of the cross-product terms in (16-I) and

(1) is legitimate only if x is sufficiently far
removed from the line center. It is of course
physically obvious that if the line is very much
widened by perturbations, the normalized in-
tensity must decrease over a central region
whose width may be many times greater than the
value of the radiative damping constant I'.
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