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The Normal Modes of Vibration of a Body-Centered Cubic Lattice
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An atomic model is set up for the purpose of finding the normal modes of vibration of a
body-centered cubic lattice. A method is presented for selecting suitable atomic force constants
from the macroscopic elastic properties of tungsten, which satisfy the isotropy condition but
not the Cauchy relation. Actual solutions of the secular equation are then carried out under
the assumption that each atom is a6'ected by only its fourteen nearest neighbors. Numerical
computations yield a frequency distribution characterized by two steep maxima. This is used
in evaluating the specific heat and the intensity of reHection of x-rays as functions of tempera-
ture, and the results are compared with the Debye theory.
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description of solid bodies and the conse-
quences worked out in more or less detail. One of
the most productive theories was formulated by
Debye, ' who considered a solid as an isotropic
continuum, found that the number of vibrations
in a given frequency range was proportional to
the square of the frequency, and investigated the
therma1 variation of specific heats and the in-
tensity of reHection of x-rays. At first the results
were thought to be in very good agreement with
experiment but discrepancies soon appeared.
Several attempts have been made to explain
these deviations by regarding a crystal as an
atomic lattice rather than a continuum. Born
and v. Karman' derived 'an approximate ex-
pression for the specific heat by considering a
simple cubic lattice. The general theory of atomic
vibrations has been discussed by Born' and
applied to tv o-dimensional lattices and polar
crystals by Blackman. 4 In the present work an
actual numerical calculation of the frequency
distribution has been carried out for a model
related to tungsten, a body-centered cubic crystal
with elastic constants which happen to satisfy
the isotropy condition.

The potential energy of the lattice is to a first
approximation a quadratic function of the dis-
placements of the atoms from their equilibrium
positions. Let Nr' denote the component in the jth

coordinate direction of the displacement of the
atom whose lattice position is specified by the
vector r. Suppose that the potential energy V is
expanded in a power series in terms of the dis-
placements. Then,

U= Vp+Q p(B V/Burr)purr'

+(-',)P P Q P(B'V/Bur'Bur') pur'ur'+ . (1)
j k r r'

The summations with respect to r and r' are
taken over all the atoms in the crystal and the
superscripts j and k are summed over the three
coordinate directions. The derivatives are to be
evaluated when the displacements are all zero.
The force in the j direction on the atom with a
lattice position specified by r is (BV/Bur') p when
all other atoms are also in their lattice positions,
and this force must vanish since the solid is then
in equilibrium. If Vo is taken as the zero reference
value for the potential energy, then

V= (-', )P P g P C;p"'ur'ur ",
k, r r'

where

C p"' ——(B'U/BurrBur. ")p.

Higher order terms are neglected for displace-
ments small compared with the distances be-
tween atoms. By definition,

C.&rr' —C& .r'r

because both
displacement
cubic lattice,
exactly the
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constants are factors of the same
product, Nr&'ur. . For a monatomic
where every atom is situated in
same way with respect to its
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neighbors, there is an additional relation,

C .rr' —C.. rr' —C., r' —r
ft:j jk jar,

When this change of variables is made in the
potential energy, the result is

3

so that the atomic force constants are sym-
metrical in their subscripts and depend only on
the difference in the lattice positions of the atoms
involved.

The kinetic energy of the atoms in the crystal
can be written as

U= (-', )N1N2N2 Q Q Q[C12"(w&p, „w'p,
j k n

+w'„„w 1, ) +2C,2"'wc„w, 2„j,, (6)

where

C;2" ——P C;1' exp [ 22r—tg(n, g;/N, )j

T= (-,')m P P (ilr1)2, ,

and
(4)

C;2"' ——p C;22+i exp [—22r2+n;(g;+-', )/N;j.
where m is the mass of the atom and ur&' is the
time derivative of the displacement. The problem
is to reduce the potential energy to a simpler
form by introducing normal coordinates without
thereby complicating the kinetic energy ex-
pression. This can be done for a general transla-
tion lattice but only the special case of a body-
centered cubic crystal will be considered here.
The basic cell then consists of two atoms, one
situated at the point (0, 0, 0) and the other at
(a/2, a/2, a/2), where a is the length of one
edge of the basic cube. The lattice position of
any atom in the crystal is given either by
r; =q;a or by r; = (q;+~2)a, the integer q; having
values which range from zero to N;, the total
number of cells along the jth axis of the crystal.

The displacement of each atom is regarded as
resulting from the superposition of plane waves
in the solid, so that

2tr' = p {w&'2, exp [22rt g (n;q;/N, )]
yl

+w'2, „exp [22r2+n;(q;, + ,')/N; J I, -(5)

where n; is an integer related to the direction of
the wave and having values from —(-,')(N; —1)
to (2) (N; —1). For the right side of this equation
to be real, it is necessary that the normal coordi-
nates m&p, „and m&'t, „be complex and that
'N~p, ='N~p, „*and m &~, „——m'~, *.The number
of independent coordinates is therefore equal to
the number of degrees of freedom of the atoms in
the crystal.

The quantity g; is equal to q
—q; and the

. summation is from g; = —(N„. —1) to g; = (N; 1). —
The kinetic energy has the following form after
reduction:

(Om2p, „) (Om»p,
T=(-,')N, N, N,mg P {

at ) E at )
(Bw'2, i (Bw"„

+{
Bt ) i Bt )

The equations of motion found by Lagrange's
method are then

O2g) k

p(C;1."w&2, „+C;2"'w&;,.) =m

O'N ), gg

Q(C, 1.."'w'2, .+C;1-"w'2„) =m,
2 Ot2

If now it is assumed that

and
w2, .' ——A2, „&' exp [tee.tg

w;, „&"=22,„& exp [2co„t]

where co is proportional to the frequency of
vibration, homogeneous linear equations are ob-
tained for the unknown amplitudes. The condi-
tion for a nontrivial solution is a sixth-order
determinant set equal to zero. However, two
third-order factors can be found and the two
determinantal equations written together in the
form,

(Cl1 ~ C11 m& )

(C12"a C12" )

(C12"a C12"')

(C12 & C12 )

(.C22 ~ C22 m10e )

(C22"~ C22"')

(C12 ~ C12 )

(C22"+C22"')

(C2pa C22"' —m(o„2)

=0.
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The positive sign gives one equation and the
negative sign another.

There is a frequency for every value of n so
that a whole spectrum is obtained. For certain
special directions in the crystal the determinant
can be reduced to linear or quadratic factors and
explicit solutions obtained immediately, but in
general numerical methods must be used in

solving the cubic equations. This necessitates
information about the values of the atomic
constants involved. By equating the potential
energy arising from a large scale distortion of
the solid to that resulting from the corresponding
atomic displacements it is possible to secure
relations between the atomic force constants and
the macroscopic elastic properties of the crystal.
However, these are not sufhcient to determine
the atomic constants uniquely unless simplifying
assumpt1ons are made. Thus) fol the body-
eentered cubit lattice, only the interactions
between a given atom and its fourteen nearest
neighbors will. be considered. After the symmetry
properties of the crystal are utilized, only hve
atomic force constants remain and these are
related to the macroscopic elastic constants,
c», c» and c44, by the following equations:

tions, which state that c» =c44 for a cubic crystal.
This relation is not experimentally verihed for
metals, so that some modihcation is necessary in
order to obtain suitable atomic constants from
empirical data. A way of doing this is suggested
by the work of Fuchs, ' who showed by means of
the signer-Seitz quantum-mechanical methods
that the failure of the Cauchy relation for a
monovalent metal is due to the e6eet of the
valence electrons on the compressibility of the
crystal. The constants c44 and c~l —c» are not
affected because they are involved in strains
where the volume is not changed. Since, in the
present work, the atom is represented as a point
mass and no provision is made for the electrons,
it seems reasonable in securing appropriate force
constants to make use of the Cauchy relation as
the third condition instead of the observed

compressibility.
The experimental values' for the elastic con-

stants of a tungsten single crystal at room tem-
perature are as follows:

c» =5.13X 10"dynes/cm',

cpm
——2.06 X 10",

c44 ——1.53 X j.0I2.

0; 0, 0+2C I, P, P+4C p„y, p+8C

Cll' ' '+ C»' ' '= —(l)«»,
~11' ' '+ Gl'* ' '* = —(2)«44

Clg& & ' = —(~)«12.
Cgl' ' '=6aC44,

Cgg' ' p= —aC44,

Clif. k, i —Clmk, k, k — (1 )gC44

(12)
The superscripts refer to the difference in lattice
positions for the atoms concerned.

If central forces are postulated, C~P ' ' may
be neglected, since a displacement at right angles
to the line connecting two atoms gives rise to a
second-order effect in the potential energy. More-
over, the model used leads to the Cauehv rela-

Without isotropy the atomic constants would be
expressed in terms of two parameters instead of
the single one appearing here. The sums which
enter the secular equation (9) may now be evalu-
ated and the determinant written out as follows:

The lsotropy colldl'tloll, c44 = (2) (cll —cia), ls
therefore satished' and the equations for the

(10) atomic force constants can be solved.

(1+sin' xWcos x cos y cos s —f„') (csin x sin y cos s) (&81n x cos y sill s)

(~sin x sin y cos s)

(&sin x cos y sin s)

(1+sin' yWcos x cos y cos s —f ') (icos x sin y sin s) =0.

(icos x sin y sin s) (1+sin' rWcos x cos y cos s f ') (13)—

Here, x=7rnl/¹, y=7rnl/X~, - sn4/¹, and-—
f =(nil& '/4«44)', a quantity directly propor-
tional to the frequency.

In order to find the values of f„' at various
points in ten planes perpendicular to the s axis,

140 cubic equations were solved. Then, by inter-
polation, curves of constant frequency in these

' K. Fuchs, Proc. Roy. Soc. 4153, 622 (1936); 1Q', 444
{1936).' P. W. Bridgman, Proc. Nat. Acad. 10, 411 (1924).

7 S. J. Wright, Proc. Roy. Soc. A120, 613 (1930).
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planes were determined, their areas found nu-
merically, and the volumes bounded by surfaces
of constant frequency built up out of these
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the crystal as a last resort is artificial and
contradictory. In the present work where the
atomic nature of the solid is considered from the
beginning, the existence of a maximum fre-
quency is a natural and necessary consequence.

One of the applications of the frequency dis-
tribution is in computing the specific heat at
constant volume, which can be written in the
foi m)

($2v2/PT2) (s v/hhr)

(de/d v) d v. (14)
(shv/hT 1)2

Fro. 1. Frequency distribution.

slices. This gives the number of modes of vibra-
tion having a frequency less than a certain value
and may be designated by n. To obtain the
frequency distribution an approximate differenti-
ation was performed and the curve in Fig. 1

secured for (1/3%)(dn/df), a quantity equal to
the fraction of the total number of vibrations in
a given frequency range. N is equal to 2X&N&N3,

the total number of atoms in the lattice.
It is found that at very low frequencies the

Debye type of distribution is valid, a result to
be expected when the wave-length is long in

comparison with interatomic dimensions. A para-
bolic extension of this part of the curve gives a
Debye function with a characteristic tempera-
ture 8=367', agreeing closely with the value of
373' calculated from the elastic constants by
means of the Debye theoretical formula. How-

ever, it is clear that there is agreement between
the two curves only over an insignificant portion
of the complete spectrum. The most distinctive
feature of the distribution for the atomic model
is the presence of two steep maxima. This is to
some extent a justification of the Nernst-
Lindemann specific heat formula where two
frequencies are utilized instead of the single
frequency of the Einstein theory. Another differ-
ence between the distributions for the atomic
model and the Debye theory is in the determina-
tion of the upper limit of the frequency. Accord-
ing to Debye, the distribution derived for a
continuum is abruptly terminated at a point
where the number of vibrations equals the
number of degrees of freedom of the atoms in
the solid. This sudden use of the atomicity of

TABLE I. Specific heals (ca/. per mole per 'E).

26.01' K
32.3
38.8
46.7
54.7
74.4
78.3
84.2
91.1

100
150
200
250
300

cv
(ATOMIC
MODEL)

0.242
0.495
0.842
1.34
1.84
2.94
3.12
3.37
3.63
3.92
4.90
5.32
5.52
5.66

cv

(OBS.)*

0.213
0.434
0.750
1.21
1.80
2.87
3.07
3.33
3,60
3.77

5.30

5.87

cv
(DEBYE,
e =367')

0.165
0.310
0.528

. 0.861
1.25
2.25

. 2.42
2.69
2.97
3.30
4.50
5.06
5.36
5.54

C~
(DEBYE,
0 =310o)

0.272
0.506
0.826
1.28
1.77
2.85
3.03
3.29
3.55
3.85
4.86
5.30
5.52
5.65

*F. Lange, Zeits. f. physik. Chemic 110, 343 (1924). (For tempera-
tures from 26.01 to 91.1.) C. Zwikker, Zeits. f. Physik 52, 668 (1928).
(For temperatures from 100 to 300.)

A numerical integration has been carried out for
the atomic model, and the comparison between
theory and experiment is shown in Table I.
The Debye values for 0=310' are the result of
fitting the empirical data for tungsten. The fact
that the Debye characteristic temperature is
often selected to give the best fit with the ob-
served specific heats instead of being calculated
from the theoretical formula involving the elastic
constants is perhaps a cause of undue confidence
in the theory. Although the present work also
gives a specific heat which depends on a single
constant, it was not thought advisable to evalu-
ate it from observations which include the
effect of electrons as well as atomic vibrations
and probably interactions between the two.

It is seen that the Debye values for 8=367'
are too low at all temperatures, while those for
0=310' are in very good agreement with experi-
ment. The atomic model and the Debye theory
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O'K
100
200
300
400
500

(ATOMIC
MODEL)

0.0251A
0.0307
0.0401
0.0480
0.0550
0.0613

pk
(DEBVE,
e =367')

0.023 1A
0.0279
0.0356
0.0426
0.0488
0,0544

pk
(DEBVE,
8=310 )

0.0251A
0.0319
0.0417
0.0502
0.0576
0.0642

TABI.E II. Root mean square disp/acements. y being the grazing angle of incidence, ) the
wave-length, and p the mean square displace-
ment of an atom from a given plane. For a
cubic crystal p has the same value for all planes
and is given by the following expression:

y ~m

p = (k/12m'Xm) (1/v)
0

X ( $1/( """ —1)j+-,' }(d /d )d v, (16)

M= (8m'p sin' y)/X', (15)

C. Zener and G. E. M. Jauncey, Phys. Rev. 49, 17
(1936); C. Zener, Phys. Rev. 49, 122 (1936).

have in common the variation of the specific
heat as the third power of the temperature near
absolute zero and the asymptotic approach to
the equipartition value at high temperatures.
The specific heat for the atomic model checks
very well with the empirical data at inter-
mediate temperatures, but the results are too
high at low temperatures. This is probably due
in part to the fact that it was necessary to use
elastic constants which had been measured at
room temperature. An increase in the elastic
constants as the temperature is lowered would
lead to a smaller specific heat. Although no
information is available for tungsten, metals
with similar crystal structures do have elastic
properties which behave in such a way. On the
other hand, the rise of the observed specific heat
above the equipartition value at high tempera-
tures may be caused in part by anharmonic
vibrations which are responsible for the thermal
expansion of the solid and in part by the excita-
tion of electronic motions.

Another application deals with the variation of
the intensity of reHection of x-rays with tempera-
ture. The theory was first developed by Debye
and has been put in more concise form by
Zener and Jauncey. ' Because of their thermal
motion the atoms do not remain in the lattice
planes but undergo displacements which increase
with the temperature and result in destructive
interference and lower intensity for the reHected
x-rays. The temperature factor may be written
as e™,where

where v is the maximum frequency. This in-
tegral has also been evaluated numerically for
the atomic model and the results are compared
with the Debye theory in Table II, where the
root mean square displacements are given in
ar|gstroms.

At high temperatures the theoretical formula
for p is particularly simple and significant,
showing a linear temperature variation with a
slope equal to the average value of the reciprocal
of the square of the frequency with respect to
the frequency distribution.

Atomic model:
p = (6.28+0.0742T) X10—"cm'

Debye (0 =367'):
p= (5.34+0.0583T) X10 "

Debye (0=310'):
p= (6.32+0.0815T) X10 'o.

(17)

Thus, the various theories give different values
for the intensity of x-ray reHections at high
temperatures, although the specific heats all
agree in approaching the equipartition value.
However, it is not possible at present to compare
these results with experiment since there are no
data available for tungsten.

It is hoped that this work may be continued
by applications to other body-centered cubic
lattices and also to face-centered cubic crystals.
The numerical difficulties increase with the com-
plexity of the crystal structure and a less com-
plicated method of obtaining the frequency
distribution from the secular equation would be
desirable.

The author is greatly indebted to Dr. W. V.
Houston for many valuable suggestions without
which this work. would not have been possible.


