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A theory is advanced connecting activated adsorption
with electron surface states in solids. The theory is con-
structed for Hj, but the suggested mechanism would work
equally well for other molecules. It is supposed that H
atoms interact with surface electron states of the solid
when the atom gets close enough to make the latter stable.
The stability condition for surface states and its relation to
the position of the visiting H atom is investigated in some
detail. If the energy of the surface state is low enough, the
atom will on reaching the critical distance for stability
transfer its electron to the surface state with considerable
reduction in total energy. At close distances, exchange
sets in. The energy of the various interactions is calculated

approximately on the basis of a simplified model of the
surface potential field and the surface state wave function.
By using a reasonable form for the repulsion between the
H nucleus and the positive cores in the metal, total energy
curves whose minima lie at depths up to 2.5 volts are
obtained. An H, molecule with sufficient energy may get
close enough to the surface to come into the range of
interaction of the H atoms with surface states. When this
happens the molecule can split into atoms and be bound
as such to the surface. The present theory of this inter-
action seems to be capable of properly accounting for the
observed heats of activated adsorption of Hs.

TENTATIVE theory of activated adsorp-

tion has been proposed by Lennard-Jones.!
It is assumed that the adsorption of systems with
unsaturated valencies is accomplished through
a lowering of the surface potential of the solid in
the immediate neighborhood of the visiting atom.
This would give rise to a localized potential hole
in which electrons would be caught and enter
into normal exchange binding with the visitor.
The forces involved would be large and the
binding energy of the same order as in diatomic
molecules. For molecules with completed bonds
an activation energy is involved. The process in
the case of H; on a metal is best described in
terms of Fig. 1 (which is very similar to Fig. 3
in Lennard-Jones’ paper!). The curve (m) repre-
sents qualitatively the normal interaction through
van der Waals or polarization forces of an H,
molecule with a metal 3. The other curve (a)
represents the much stronger interaction dis-
cussed above between two H atoms and the
metal. The separation of the two curves at in-
finity is the dissociation energy D of the molecule.
Consider a molecule approaching the metal with
total energy W. If W is sufficient for it to reach
the intersection G of the curves (m) and (a)
(i.e., W=A4), it can dissociate without changing
its total energy. The individual H atoms would
then follow the atomic curve (¢) to their respec-
tive minima where they take up vibrational

1]. E. Lennard-Jones, Trans. Faraday Soc. 28, 341
(1932).

energy W'. The observed heat of adsorption will
be E=Q4+W—-W’ or simply Q+4 when the
vibrational energy W' is neglected. The combined
binding of the two H atoms must be Q+D. In
order to give a satisfactory explanation of acti-
vated adsorption, therefore, any theory of the
interaction between the atom and the surface
must account for a binding of the order of
3(D+E—A). The mechanism by which the H,
bond is broken and bonds between the separate
H atoms and the surface are substituted for it
has been discussed by Sherman and Eyring? from
the standpoint of the latter’s theory of activation
energy in chemical reactions.

It is the purpose of this paper to investigate
the nature of possible interactions between mon-
atomic hydrogen and metal surfaces with a view
to determining the mechanism which gives rise
to the curve (e) in Fig. 1. We begin with a general
consideration of electronic surface states in solids.

In the periodic potential field of a crystal
lattice the solutions of Schroedinger’s equation for
an electron are the well-known Bloch functions

Y(r)=u(y, 1) exp [u-1], (1)

where u is in general complex and u(mw, 1) is
periodic with the lattice period. The total energy
of the electron with this wave function is a
function of w. For an infinite crystal there are
a number of ranges or bands of the total energy

2 A. Sherman and H. Eyring, J. Am. Chem. Soc. 54, 2661
(1932). .
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Fi16. 1. Schematic representation of the proposed mecha-
nism of activated adsorption.

for which all three components of u are pure
imaginary so that w=4k with k real. In these
solutions the function u(k,r) represents the
atomic wave function of the electron around each
lattice point and goes into the corresponding
isolated atom wave function upon infinite separa-
tion of the lattice points. The function exp [7k-r]
represents a modulation of the function u(k, r)
and is associated with the continual transfer of
electrons from one lattice point to another. These
solutions make up the totality of stationary
states in the interior of crystalline solids.

When, however, the crystal is regarded as
being of finite size and its surface is taken into
account, stationary solutions involving one real
component of u are possible. This was first
pointed out by Tamm.? These solutions represent
a state of motion in which the electron is confined
to the surface with its wave function exponen-
tially damped both into and out from the surface
but free to move over it. They are obtained from
the family of solutions (1) by choosing the com-
ponent of u normal to the surface real, taking the
other two pure imaginary, and fitting the result-
ing function smoothly across the boundary to the
exterior solution.

3 Ig. Tamm, Physik. Zeits. Sowjetunion 1, 733 (1932).
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Tamm employed a semi-infinite periodic po-
tential of the Kronig and Penny type. Let E be
the energy-of the surface state, V, the rise in
potential at the surface, and p the Kronig and
Penny parameter measuring the magnitude of
potential fluctuations in the lattice. The essential
features of his solution may be stated as follows:
(a) Surface states exist only for those values of
the energy which satisfy

E 2 Vs - h2P2/2m(12, (2)

where a is the lattice period. (b) For all energies
satisfying (2), there exists one and only one
surface state in each “forbidden’’ region or energy
gap between allowed bands of the interior states.

These states have since been studied by several
investigators,* and it has been shown that the
second property (b) above has to be altered for
a finite lattice with a surface at each end to make
the surface states occur in pairs. Recently
Shockley® has made quite a detailed study of
these states, and has described the manner in
which they originate from the atomic levels of
the isolated atoms as the lattice distance is
continuously decreased from very large values.
The energy minimum (a) imposed on the surface
states is formulated in a much more general and
precise way. As the atoms composing the lattice
approach each other, the isolated atom levels
broaden and finally intersect. The electronic
bands on either side of the intersection are
separated with forbidden regions between. The
levels associated with surface states, however,
can originate only after the point of intersection
has been reached. In actual crystals at their
equilibrium configuration the bands above a
certain energy will have intersected and all below
will not. This energy corresponds to the minimum
imposed by condition (2).

In the application to adsorption with which
this paper is concerned, the condition (2) is of
considerable importance, and it is desirable to

associate it as closely as possible with actual

1 R. H. Fowler, Proc. Roy. Soc. Al41, 56 (1933); S.
Rijanow, Zeits. f. Physik 89, 806 (1934); A. W. Maue,
Helv. Phys. Acta 7, supp. 2, 68 (1934), Zeits. f. Physik 94,
717 (1935); E. T. Goodwin, Proc. Camb. Phil. Soc. 35, 205
(1939). The reader is referred to the accompanying paper
of Shockley’s for a discussion of this work.

8 W. Shockley, Phys. Rev. This issue. The author is
greatly indebted to Dr. Shockley for the privilege of seeing
his paper before publication.
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solids. For this purpose the treatment presented
in the appendix to this paper is useful. An
approximate solution for the surface state wave
functions is obtained there in the form

Y(x, vir)=u(x, v;1) exp [ix-o+7z]
inside the lattice (3<0)

=2 cn(V)fa(2)Qn(x, 0)

" (3)
outside the lattice (2 0)

with

Qn(x, @) =va(%, ) exp [ix-0].

Here 2z is measured normal to the surface, g is
the radius vector parallel with the surface, x a
momentum vector parallel with the surface, and
the functions #(x, v;r) and v.(x, g) are periodic
with the lattice period. The energy of the surface
state is obtained by choosing the coefficients
¢.(v) so that the interior and exterior solutions
join at the surface, and, then determining v to
make them join smoothly. It is shown that this
process leads to a condition similar to (2).

The parameter o in Shockley’s treatment may
be associated with Tamm’s [2m(V,—E)]¢/A.
Any mechanism which would lower V, (such as,
e.g., an Ht ion close to the surface) would also
lower ¢. An inspection of Figs. 4(d) and 4(e)
in Shockley’s paper makes it clear that this
would also improve the chances for an inter-
section of the ¢/u curve with the others in regions
II and III where the surface states originate. This
gives rise to a dependence of the minimum energy
for surface states on the surface potential V,
which is qualitatively similar to that in (2). The
other factor in (2) involving the parameter p
would depend on Shockley’s vy and u but the
connection between them is not evident.

APPLICATION TO ADSORPTION

Consider the approach of an ion of charge Ze
to a solid surface. If the solid is a dielectric the
region of its surface immediately below the ion
becomes polarized ; if it is a metal, this region
becomes negatively charged in such a way as to
reduce the electric field in the interior of the
metal to zero. The net effect in either case is an
accumulation of electrons on the surface im-
mediately below the visitor. Denote by g8 the
normal distance between the surface and the ion.
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If for the moment we regard the ‘“‘induced”
surface charge as removed, it is clear that the
surface potential V is reduced at the point im-
mediately below the ion by an amount Ze/B.
This creates a localized potential pocket in the
part of the surface below the-ion. The way in
which this pocket is formed is discussed in detail
in Lennard-Jones’ paper.® One can picture how
it arises by thinking of the superposition of the
surface potential curve (drawn asymptotic to
zero energy and rapidly falling near the surface)
and the characteristic horn-shaped potential
curve of a proton. The total potential formed by
this superposition is reduced near the proton by
the ordinate of the surface curve, and in the
neighborhood of the surface by the ordinate of
the proton curve. The latter reduction forms the
pocket. If an electron were now placed on the
ion it would distribute itself between the poten-
tial hole around the ion and the potential pocket
in the surface. The amplitude of its wave function
would be large around the ion, small between the
ion and the surface, and large again in the
neighborhood of the pocket. Since the depth,
Ze/B, of the pocket increases with 8, the ampli-
tude of the wave function around the ion would
decrease with 8 and that at the surface increase
with 8.

As measured by the amplitude of the wave
function at the surface, it is evident that in this
process a type of surface state gradually grows
as the ion approaches. At large B this state
would be negligible since the electron would re-
main almost entirely with the ion. The amplitude
at the surface would not become appreciable
until the depth of the surface hole became com-
parable with that of the ion. Thus the growth of
the surface state would take place in a com-
paratively narrow range of 8.

It is useful to consider the development of this
type of state in terms of the surface states of an
isolated solid discussed in the previous section.
As the visiting core approaches the surface, a
position B, will eventually be reached at which
Vs will be lowered enough to satisfy (2) for a low-
lying surface state. 8, should be regarded as lying
in the above narrow range of 8. The character of
the surface state formed in this way will, how-
ever, be quite different from those already con-
" Reference 1, p. 344.
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sidered because the stability condition (2) will
now hold only locally in a small region of
the surface below the ion. This will have the
effect of altering the character of the functions
Qnl(x, p) in Egs. (3). Instead of being of the type
v.(x, ) exp [1x-p] corresponding to free trans-
mission over the surface, they must now be large
only in a circle directly below the visiting ion
with exponentially decreasing character outside.
They will form a discrete set Q,;(p) with integral
! and have eigen energies

Ey= Z€n2(7i)(Wn(l) + fn)

associated with them rather than the E;(x) of
Eq. (29) in the appendix. In order to account for
adsorption it is necessary to have one of these
energies close to, or lower than, the lowest level
of the visiting core. For hydrogen this means a
surface state at — 13 volts or lower which places
it well below the conduction band.

These 'states are true surface states and would
arise whenever the Eqgs. (28) of the appendix
could be satisfied for functions Q.;(gp) of the
above type. They cannot, however, be very well
interpreted in terms of those obtained by
Shockley for an isolated crystal. The reason is
that the local broadening of the bands caused by
the visiting ion is of equal importance with the
broadening arising from the degree of packing
of the atoms in the crystal.

In what follows all energies are expressed in
units of Z2%?2?/2ay and all lengths in units of ay/Z
where a, is the radius of the first Bohr orbit in
hydrogen. Application is made only to the ad-
sorption of H for which Z=1 but the results are
given in terms of an ion of charge Ze for gener-
ality. In the presence of the visiting ion, condition
(2) becomes

E2 V,—Ze*/B—h*p?/2ma?.

Expressed in the above units with £ measured
on the basis that the potential energy of an
electron far from the solid is zero (instead of the
interior of the lattice as in Tamm’s model),
this condition for all points of the surface within
a circle of radius p’ becomes

E2 =2(8°+p") "t —(p/a)?
(B*+0")}< —2/[E+(p/a)*]. (4)

or

327

The greatest value 8, of 8 for which the surface
state could exist is

Bo=—2/[E+(p/a)*] ©®)

and the radius of the circle on the surface within
which the stability condition is satisfied is

o= (Bo*— )" (6)

The part Q.i(p) of the surface wave function
would be large within this circle and exponen-
tially decreasing outside. This circle would have
some limiting radius p; attained for 8=81<pB
below which no stationary solutions would exist.
The surface state would not become possible then
until the visiting core came as close as 8; to the
surface.

As the positive core approaches the surface it
is attracted to it by a force whose potential at
large distances is

®y(8)=—2/28. (7)

There is an accumulation of electrons in the
surface immediately below the visiting core with
density (number not charge) as given by classical
electrostatics,

o=28/[4r (8 +p")*]. (8)

This surface charge is in general contributed by
the conduction band to reduce the internal
electric field to zero. For large 8, it has nothing
to do with the surface states already discussed.
The way in which it arises in quantum mechanics
may be seen as follows. In the undisturbed metal
the density of charge at any point is given by
Fermi statistics as 8«[2m(H,— U) }/3h® where
U is the self-consistent periodic potential in the
lattice calculated from this charge density.” In
the neighborhood of the surface this density falls
off very rapidly. With a visiting positive charge
near the surface, however, the potential U is
reduced in the part of the surface nearest the
charge. This automatically increases the density
through the increase of the term (Ho— U)? in it.

When the visiting ion gets sufficiently close
to the surface to have 8< B4, the surface state of
low energy whose properties we have been con-
sidering becomes stable. If now a transition from
the conduction band to this'state were possible,
it would become populated and the analog of the

7]. C. Slater, Rev. Mod. Phys. 6, 238 (1934).
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classical induced charge in the conduction band
would become very small. It seems reasonable to
identify /'|¢|%dz for the surface state with the
charge density (8). In the most important case
Z=1, both integrate to just one electron and
both peak at the same point. The local accumula-
tion of charge in the surface state would behave
electrically like the image of the visiting core in
the metal. The result of a transition to this
surface state on the interaction (7) would there-
fore be very slight.

With this behavior of the ion in mind, consider
next the approach of a neutral atom. This is
also attracted to the surface but with a force
whose potential is?

Po(B) = —(r*)n/ 32, 9

where (#*)y is the average value of the square of
the radius vector over the whole electron cloud
in the visiting atom. The potential arises from
_interaction with the images in the metal of the
dipoles formed by the electrons and nucleus of
the visiting atom. In this case, however, a de-
ficiency rather than an excess of electrons exists
in the surface immediately below the wvisitor.
When the value B; is reached so that the surface
state in the field of the core is stable, the whole
system can in general materially reduce its
energy by transferring its outer electron across
the potential barrier between atom and metal
into the surface state of the metal. If the surface
state has approximately the same energy as the
vacated state in the atom, this electron can go
into normal exchange between the two states. If
the surface state has appreciably lower energy
than the atom, the latter will remain ionized. In
either case a one electron bond is formed similar
to that in Hy+ or NaCl, respectively.

A question which suggests itself here is whether
by approaching closer the ion could not pick up
another electron from the conduction band in the
metal and so form a two-electron bond as in H,
with further reduction in total energy. Except
in very rare cases this would not happen for the
following reasons. The surface state electron is
held to the surface by the presence of the ion.
In neutralizing the ion, the condition for the
stability of the surface state would be destroyed.
Even if this condition is ignored, there would be

8 Reference 1, p. 334.
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left on the surface a strong local concentration of
negative charge in the surface state representing
a considerable excess over the local deficiency
normal for the neutral atom. This highly unstable
distribution of charge would doubtless constitute
an energy gain for the solid which would more
than outweigh the decrease resulting from the
neutralization of the ion.

It is important to point out here that these
considerations apply only when the binding is
dependent on the formation and preservation of
the surface state. In cases where no localized
surface state is present, such transfers often
occur. Neutral atoms or molecules whose ioniza-
tion potentials are smaller than the energy depth
of the top of the conduction band or whose
electron affinity is larger than this depth can,
respectively, either transfer an electron to the
conduction band or receive one from it. The
atom or molecule is then converted into either
a positive or negative ion and can be bound to
its mirror image in the metal. Such processes
have been observed experimentally® and they
have been discussed theoretically by Gurney.°
The interaction of 'an H atom with a surface
state is similar to the interaction of an atom of
small ionization potential with the conduction
band. After the H atom has transferred its
electron to the surface state, however, the system
is similar to an atom of large electron affinity
near the surface. The reason that no transfer
from the conduction band takes place here lies
in the screening of the positive ion by the surface
state electron. Insofar as the latter fulfills the
function of the classical induced charge, its
screening is perfect since it everywhere raises the
potential at the surface to the value it had in
the absence of the ion.

Calculations with a simplified model

Let ¢, represent the surface state wave func-
cion and ¥, the wave function of the outer
electron in the visiting atom. The wave function
of the combined system may be taken to be

Y= CY;+Dy,. (10)
For 8>p; the surface state does not exist, the
amplitude ¢ around the surface pocket is very

9 See for example, J. A. Becker, Trans. Faraday Soc. 28,
148 (1932).
10 R, W. Gurney, Phys. Rev. 47,479 (1935).
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small, and C=0 and D =1. When 8—3; and ¢,
becomes stable, the electron will transfer itself
from the atom to the surface state so that after
the transfer the coefficients will be Cx=1 and
D =0. As the ion comes closer to the surface, the
stability condition (4) becomes less stringent.
Provided the two states have nearly the same
energy, it will be possible for exchange to take
place between them to a limited extent. At still
closer distances, the stability of ¢, is no longer
a consideration and the electron will distribute
itself between the two states in a manner which
leads to the lowest energy. The coefficients C
and D will then be determined by minimizing
the energy.

As a rough approximation it seems reasonable
to regard the limitations imposed by condition
(4) as a measure of the degree to which free
exchange may take place between the two states,
i.e., the degree to which C may differ from unity.
This may be accomplished by regarding the posi-
tive charge on the ion as Ze(1—|D|?) =Ze|C|?
instead of Ze as in (4). Inserting this in Eq. (4)
and making use of the quantities 8o, and B as
introduced in Eqgs. (5) and (6) there follows

B2+ p2)i<Bo| C|?
|Cl 2 [1—(B:2—B2) /B> L. (11)

There will be some sufficiently small value of 8
which makes this lower limit on C equal to the
value of C for which the energy is a minimum.
For all smaller values of 8, Eq. (11) will no
longer be important and C will be determined by
the energy minimum.

If — V(r,) is the potential energy of an electron
in the self-consistent field of the solid, the
Hamiltonian for the electron in the field of solid
and ion is

H= =V U,— V(t) =2/,

or

where 7, is measured from the nucleus of the ion,
and U, is the interaction between the atomic
core and what remains of the solid after exclusion
of the surface state electron. The energy of the
distribution (10) with this Hamiltonian becomes

E=[|C|*H,;+C*DH .+ CD*H,,
+|D|*HaJ/[1+2|C| | D]A],

where A and the matrix elements of H have their

(12)
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usual meaning. They cannot be evaluated ex-
plicitly without introducing some assumptions
about the form of the wave functions ¢, and v,
and the potential V(r;). For ¢, the simplest case
to consider is that in which the atomic function
is the 1s function e~"¢/4/7. For ¢, we assume no
more at present than that the surface state
function is a solution of the equation

V2¢s+ (Es+ V(ra))‘ps =0.

The diagonal matrix elements then become
=Bt U= [(@ll2/ran,
Hyp=Eot Uom (1/7) f V(z.) exp [ —2r.]Jdr..

The integral in H,, is the Coulomb interaction
J1 between the surface state electron and the
visiting core. Inasmuch as we have identified the
surface state charge density with the classical
induced charge this is merely the interaction of
the core with its image. It does not include the
interaction U, between the core and the metal
exclusive of this image. Hence the classical ex-
pression (7) should be a fair approximation to it
even for small 8. Thus

H33=Es+ Uc"']ly
J1=2Z/28.

"The interaction J, represented by the integral
in the expression for H,, is the Coulomb inter-
action between the distribution |¢,|? and the
solid exclusive of the surface state charge. Its
evaluation requirés an explicit assumption for the
form of V(r,). This interaction with exchange has
been discussed by Bardeen! for electrons in the
conduction band. Outside the metal it approaches
the classical image potential of the electron
—1/2Z¢ in the units used here. Inside it is fairly
constant but depends on the momentum of the
electron. The presence of the ion near the surface
does not matter since V(r,) is the interaction
with the solid after the image of the ion has been
removed. The simplest form with the right
properties is

V(IS) = V(S) =V, ‘C‘g 0,
V(e)=(1—e2t)/2ZE £20,
a=ZZV0.

1 J, Bardeen, Phys. Rev. 49, 653 (1936).

(13)

(14)
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The interaction J, may then be expressed as

+ o0

Je=3| V(OA+2[B—E])e?rHdg,

which may be evaluated without much difficulty.
The result is

Haa=Ea+ Uc"'J2y

1 4o l—«
Jz‘—“—{ e”“»s—Jra( +6)e—23
474 — 2 2—a
+(1+28)e [ Ei(28) — Ei(— («—2)B) ]
+(1—28)e

*
XCBi(~ (429~ Ei(=291}. (1)
The exchange terms H,, and H,, require for
their calculation an explicit knowledge of the
form of the surface state function ¢, Their
evaluation is under any conditions quite difficult.
The simplest case mathematically is that in
which ¢;=v,. Unfortunately this does not give a
very good approximation. The surface state
function falls off exponentially both into the
surface and out from it. In Shockley’s solution
the wave function outside the surface is approxi-
mately exp [ —oz] which, in our units and in case
the surface state has the same energy as the
visitor, becomes exp [ —z]. This is the same as
exp [—7,] along the normal to the surface
through the visiting core. It is fortunately along
this line that the integrand of the exchange inte-
grals is a maximum. In this sense the approxima=-
tion is good. But the variations parallel to the
surface do not seem to be properly given by it.
As we have seen y, exhibits exponentially de-
creasing character outside a circle of radius p;
in the surface. But if we are to judge the rate of
this decrease by the classical expression for the
induced charge density it is not nearly as large
as e*. The fraction of an electron to be found
in a cylinder of unit radius normal to the surface
whose axis passes through the origin is 0.53 for
the 1s function e~"/+/7. The corresponding frac-
tion computed from the classical density, Eq.
(8), with Z=11s 0.05 when =2, 0.15 when 8=1,
* A definition and tabulation of the functions Ei(x) and

Ei(—x) may be found in Jahnke and Emde, Tables of
Functions (Teubner, Second Edition, 1933), pp. 78-86.
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TABLE 1. Values of the Coulomb, exchange, and overlap
integrals in Rydberg units €2/2ao for the case Z=1 and a=4
tabulated as functions of B in units of the first Bohr orbit
radius a.

B8 J1 J2 K J | H I T A
0.5 | 1.000 | 1.078 | 1.244 | 1.039 | 0.039 | 1.001 | 0.960
1.0 .500 750 970 .625 1251 1.011 .858
1.5 333 514 .676 423 .090 | 1.014 125
2.0 .250 | .360 | .470 | .305| .055|1.012| .586
3.0 167 .202 210 185 .018 | 1.007 .348
4.0 125 .138 .086 131 .006 | 1.005 .189

and 0.55 when 8=1%. Thus in the range of impor-
tance 1 <8 <4 the approximation gives too strong
a local concentration of charge parallel with the
surface.

In the absence of detailed knowledge of the
form and properties of ¥, and the potential V(z,),
it seems useless to try for anything beyond a
rough idea of the magnitude of the results. For
this purpose, the fact that y.=(1/7)  exp [ —7,]
is best in the region which contributes most to
the integral is sufficient. The only case of impor-
tance in the exchange terms is FE,=FE,. When
E;<E, the important term is H,. When E;>E,
the atom is unaffected by the presence of the
surface state and no adsorption from this source
would result anyway. With these approximations
and limitations, the result is

Hsa=Haa=(Ea+ UL)A—K)

where

K=(1/n) f V(r) exp [— (ra+r)Jdre  (16)

The integral for K is best evaluated by trans-
forming to elliptic coordinates. Introducing the
expressions (14) for V(r,), the integral is written

w —1/¢
K=(2/42) [ e—ﬂfds{<aﬁ/2> [ @=man

+1
+ [1—e¢taB(Hn]
—1/¢

x[(zz—n2>/(1+zn>]dn}.

The second integral in {} may be simplified by
the substitution y=3%aB8(1+4#n). The evaluation
from here on is complicated but straightforward.
The result is
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1 2 a?—4 2
2 )
47 o? 2a a?

7 12— a—9 a
+ (" + )32 f o “—.34]3#
4 6a 12 12
a?—4 a+2 3 o
+[. +——ﬁ“‘—52_—53].32E’5(—5)
2a? « 4 12
—B*P(a, B)+(1+B)e F(In yaB — Ei( — af))
+ef[Ei(— (a+2)B) —(1—B)Ei(—26)]

_af*(2+a)+4(1-h)

e—-(H—a)ﬂ
2a?
af24a)—2(2—a) .
- CEEWESE
202

XEi(—(1+3a)8) ¢, (A7)

where
Pla, B) = f [In 3yaB(1+2)
1

—Ei(—3aB(1+48)) Je#dg/&.

This function was evaluated by numerical inte-
gration. v is Euler’s constant.

The electronic part of the energy exclusive of
E, and the interaction U, of the cores of solid
and atom is

W.=E—E,—U,.
This becomes on substitution of Egs. (13), (13),
and (16) in Eq. (12) for real C and D

C*J,+D?J,+2CDK
W,=— . (18)
1+2CDA

In minimizing this expression with respect to C
and D it is convenient to introduce the following
quantities

J=3(J1+J2),

H=3(Js—J1),
I=[1+H2(1—A%) /(K —JA)2 .

(19)

In terms of these the niinimum value of W, is

J—KA+(K—JA)T
W.= . (20)
1—A?
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The percent ionization, x, of the visiting core is
x=100(1—D?% =100C2.

When C'is given its limiting value in Eq. (11) and
for simplicity 8, is taken equal to By, this is

x = 1008/ Bo.

For the case in which C is determined to give W,
its minimum value, however, the percent ioniza-
tion is given by

@1

~ 50(K — JA)(1—TA)?
MK —JA) (T —A)+H(1—2%)]

(22)

Computations were made for the special case
Z=1 and a=4(V,=2). In this case the visitor is
a hydrogen atom, the energy is in the usual
Rydberg unit €2/2a,, and B is in units of a,. In
Table I, the values of the various interactions
computed from Egs. (13), (15), (17), and (19)
with these values of the parameters are given as
functions of B.

In the upper part of Fig. 2 the percent ioniza-
tion of the visiting atom is plotted against 8. The
full curve is a plot of Eq. (22) for the case giving
minimum energy. The broken curves are plots of
Eq. (21) for 8y=1.5, 2, 3, and 4. In the figure x
is shown to rise discontinuously from 0 to 100.
Actually the rise would take place rapidly in a
short interval of B around the value By, and
would, doubtless not go all the way to x=100.
However, the energy curves are not particularly
sensitive to this behavior and the energy minima
obtained later would not be appreciably affected
by it. In the lower part of Fig. 2 the energy W, is
plotted as a function of 8 under various con-
ditions. The upper full curve represents the
interaction J’ of the neutral atom, Eq. (9),
before the surface state becomes stable. In this
case it is simply —1/8%. The lower full curve
gives the minimum value of W,, Eq. (20), in the
presence .of the surface state, and with E,=E,.
The dotted curve represents the energy W= —J;
for the case E;<E,. The broken curves are plots
of Eq. (18) with C given by its minimum value in
Eq. (11) (when B;=p,) for the same values of B
above. Each curve is joined to the minimum
energy curve when the corresponding value of C
is reached. For comparison the corresponding
contribution for Hyt
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F16. 2. Upper part: Percent ionization of the hydrogen
atom as a function of its distance from the surface. Full
curve for minimum energy and broken curves determined
by the stability condition. Lower part: Upper full curve J’
is classical image interaction of a neutral H atom with the
metal and the dotted curve J; the corresponding interaction
of an H ion. The lower full curve is the minimum electronic
energy and the upper broken curves are this energy de-
termined by the stability condition. The lower broken
curve is the corresponding term for the hydrogen molecular
ion.

W(H )= —2[(1/8)—(1+(1/8))e**
+(1+B)e?1/[1+1+B+(1/3)8%)e "]

is shown in the dashed curve.

At first sight it appears that the binding energy
is considerably less than in Hy*. But this may not
at all be the case. In Hy* there is superposed on
the electronic energy W, a strong repulsion of the
two nuclei. In this case no such repulsion exists
at large distances. The interaction is given
entirely by the electronic energy W, until the
visiting core actually penetrates the electron
clouds of the surface atoms, The character of the
repulsion due to this penetration depends also on
whether the adsorption occurs above a lattice
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point or on a space intermediate between lattice
points. Thus the repulsive term U, is of much
shorter range in this case than in Hy* where it is
2/B. From the standpoint of its source in the
penetration by the ion of the electron clouds
extending from the surface, U, for this case
would presumably be of the approximate form
(2/B8) exp [—B/b]. Without attempting to de-
termine a particular value of b, the depths and
positions of the minima formed by the superposi-
tion of the W, curves in Fig. 2 and this term were
obtained for different 8y. The values so obtained
are plotted as functions of b in Fig. 3. For
convenience, the equilibrium energy and separa-
tion are given in kilogram calories per mol and
angstroms, respectively, as well as in the units
used here.

COMPARISON WITH EXPERIMENT

Activated adsorption of Hp on Cu and Ni has
been observed by Benton and White!? with heat
of adsorption from 10,000 to 30,000 calories.
Beebe et al.’® give 11,000 to 12,000 calories for the
heat of adsorption of Hy and D; on Cu. For H,
on zinc oxide, Taylor and Sickman give a heat
of adsorption of 21,000 calories with activation
energies ranging from 7000 calories to 15,000

.calories depending on the temperature and the

fraction of surface covered. The heat of the low
temperature molecular adsorption represented by
the minimum in curve (m), Fig. 3, is in this case
1100 calories. Taylor and Williamson!® have
examined H, on manganous oxide and manga-
nous-chromic oxide. The heat of adsorption on
the latter at low temperatures is 1900 calories
while at high temperatures the heat of activated
adsorption is 20,000 calories per mol. The
activation energies are respectively 19,000 and
10,000 calories on the two adsorbates. Kingman?!®
obtained 30,000 calories activation energy for Hy
on charcoal.

The theory in the form presented here cannot
hope to account for the specific properties
of activated adsorption of H, on particular

2 A, F. Benton and T. A. White, J. Am. Chem. Soc. 52,
2325 (1930).

18R, A. Beebe ¢t al., J. Am. Chem. Soc. 57, 2531 (1935).

4 H, S, Taylor and D. V. Sickman, J. Am. Chem. Soc. 54,
611 (1932).

15 H. S. Taylor and A. T. Williamson, J. Am. Chem. Soc.

53, 2177 (1931).
16 F, E. T. Kingman, Trans. Faraday Soc. 28, 269 (1932).
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adsorbates. It should, however, be capable of
accounting for heats of adsorption between
10,000 and 30,000 calories per mol and for
activation energies between 5000 and 30,000
calories. The latter are easily accounted for by
Lennard-Jones’ proposed mechanism since the
intersection G of curves (¢) and (m), Fig. 3, is
subject to considerable variation. It could easily
occur for values of the activation energy A

between, say, 0 and 3D which for H, gives it a’

range of 50,000 calories. To account for the
former, use is made of the result obtained at the
outset that the required binding per mol of
atomic hydrogen adsorbed in the activated state
is 3(D+E—A). The above ranges of E and 4
mean a maximum range in E—A4 of —20,000 to
425,000 calories. Since D is 103,000 for H,, this
means that a binding between 40,000 and 65,000
calories per mol of H is needed to account for the
observed activated adsorptions of H,. An inspec-
tion of Fig. 3 shows that for 8,2 3 this range of
binding energy is obtained for values of b
between 1.5 and 2.0. This is a highly probable
range for the parameter b.

The model employed here is of course a rather
crude representation of the actual conditions and
the form assumed for the repulsive term U, is
only a very rough approximation to the truth. It
would be unwise, therefore, to draw any con-
clusions from the curves of Fig. 3 as to the actual
values or ranges of values of the parameters (8
and b to be associated with observed adsorptions.
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But it does seem possible to conclude that the
proposed scheme of binding to surface states
leads to the right order of magnitude of binding
energy and gives enough flexibility to account for
the wide range in the observed values of E and 4.

In conclusion the author wishes to express his
gratitude to Dr. William Shockley for the
priviledge of seeing and using his paper on
surface states before publication and for his
several helpful criticisms of this paper.

APPENDIX

In the interior of a crystal lattice the potential
may be expressed in the usual Fourier series and
the solution has the general form (1). If the
surface of the solid is regarded as lying in the x, ¥
plane with the origin in the surface, then the
wave function analogous to Shockley’s one-
dimensional case may be written for the interior

V() =u(r) exp [vz+ikx+ik,y]; 250, (23)

Outside the solid, the potential may be expanded
as

V(r) = Voo(2)+ 2 Ve(2) exp [27ig-0], (24)
g

where o is the vector (x,9) and g is a two-
component vector drawn to points of the recipro-
cal lattice of the surface. The Schroedinger
equation for this potential function is not
separable and hence its solutions are rather
difficult to discuss even approximately.

We denote by « the vector (k,, k,) and by ¢.(r)
the solution of Schroedinger’s equation in the
region exterior to the surface. The fitting at the
surface where =0 is performed by making

‘Pe(@v O) =u(‘l<, Y50 0) exp [7’K9]

v="[(3/02) In (/%) J—o. (25)

The second of these conditions means that in the
neighborhood of z=0, ¢.(r) must have the form

¥e(r) =f(2)h(e)u(r)

in order to make the fitting possible for all . By
comparison with the first of the conditions (25),
this means that

and

lim ¢.(r) = f(z)ulx, v; 1) exp Lix-o]

with
f(0)=1.
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It is possible to introduce an alteration of the
potential (24) which makes the Schroedinger
equation separable. The basis for the alteration is
the observation that the periodic variations with
o of the potential of an electron in the surface
field must be fairly rapidly damped out with
increasing distance from the surface. As a first
approximation it is therefore quite proper to
neglect all terms in (24) except the first Voo(2).
The electron wave function in this field is then
quite simple being given by

. Yo(r) = fu(2) exp [ix-p]
with

a*f,
dz?

2m
—}——h—z—(En"——h2 l%12/2m— Voo(2)) fn=0. (26)

It is convenient to denote the eigenvalues of this
equation by e,= E,—A%|x|%/2m. The subscript #
enumerates a set of solutions of Eq. (26) which
are regular at infinity and appropriate for the
fitting involved in Egs. (28).

As a second approximation we regard the
neglected terms in the potential (24) as a
perturbation. The first-order correction to the
energy is then > ,V,(g) where

Va(g)= ffn*(z) Ve(2) fr(2)ds.

In view of this the substitute potential

Un(r) = Voo(2) + 2 Va(g) exp [2mig-o]

will give the same energies for an electron in the
exterior field of the solid as the true potential
(24) to the extent of first-order perturbation
theory. This potential makes the Schroedinger
equation separable and leads to the solution

‘pe(r) =fn(Z)Qn(K, 9)! (27)
where
9%2Q 9°Q 2m
——F——+—{ W= Va(g) exp [2rig-0]}Q=0
ox?  dy* A? g
a*f 2m
and —F—(E—W—Vu(2))f=0.

dz?  h?

The solutions of the equation for Q with the
proper physical behavior are of the well-known
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form
Qn(K, 9) =71n(1€, 9) exp I:ﬂCQ:]

while the equation for f(z) has the same solutions
as before with the same eigenvalues e, The
energies E, are therefore given by e,= E,— W,(x)
or by

E.=W,(x) +e,=E +W,(x) — || 2/2m.

The eigenvalues W,(x) of the equation for Q are
functions of both # and x since the coefficients of
the substitute potential depend on #. W, plotted
against k., k, would give the usual discontinuous
bands around a paraboloid-like surface.

In order to perform the fitting of the interior
and exterior wave functions, generalize the
exterior solution by taking a linear combination
of the solutions (27) with respect to #,

\l’e(r) = ;Cnfn(Z)Qn(K: 9)-

Smooth fitting of this at the boundary z=0 with
the interior wave function (23) is performed by
taking

u’(“y Y 0 0) = zn:cnfn(o)vn(Kr 9)

and
[(a/82)u(x, v; @, 2) Jomo
= ;Cn(fn,(o) ""an(o))vn(“: 9)- (28)

The solution of these equations implies the
determination of the ¢,’s as functions of v, c.(v),
to satisfy the first equation in whatever range or
ranges of v it is possible to do so. Then a par-
ticular value or values of ¥ must be found if
possible for which the second of the equations is
satisfied. This would in general be possible only
for discrete values v;. For these values, stable
surface states would exist and their energy
would be given by

Ei(x) = 2 (i) (et Walx)). (29)

As a practical attack on the problem of surface
states, this particular method is probably out of
the question. The functions 2.(x, ) are not
orthogonal for different # so that the determi-
nation of the coefficients ¢, would be most
difficult. To make matters worse, v appears
implicitly in the functions #(r) as indicated in
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Eqgs. (28) so that the determination of the
particular values which satisfy the equations
would be extremely difficult.

Certain general conclusions can, however, be
drawn from this treatment. If the energies E; are
plotted against k, and k,, the resulting surface
would show the usual characteristics of continu-
ous bands with forbidden regions between. This
must be the case since the behavior of the
solution in any plane parallel with the surface is
identical with that of the interior solutions. In
the corresponding plot of energy (but not now of
E;) against k, (not v) at constant %, and k,, the
bands obtained represent possible energies for the
interior electrons and form the spectrum of the
totality of solutions for which u, is pure imagi-
nary. If there is no degeneracy between surface
states and interior states, this spectrum will not
overlap the spectrum of E; as a function of «.
This places the surface states in the energy gaps
between allowed bands of the interior states.

Now introduce the energies

E{=Ei= Yo (r) Wale) = Loy en

which may be regarded as the contribution to the
total energy E; by the z dependent part of the
wave function. They are therefore directly
comparable to the energy in the one-dimensional
solutions of Tamm and of Shockley. None of the
energies E;/ can be smaller than the lowest
eigenvalue ¢; of Eq. (26). This in turn together
with all the other eigenvalues ¢, is determined by
the form and magnitude of the potential Vo(2).
A decreasein the surface potential would decrease
all the ¢,’s and so the surface state energies E;. It
would seem, however, that as a result of the
complicated dependence of the €,'s on the form
as well as magnitude of Vo(2), the relation (2)
for actual solids might involve V, in a much
more complicated manner. The other factor
which limits the energies E, is the set of coeffi-
cients c¢a(y). As the coefficients for large =
become larger at the expense of those for small #,
the lower limit to the energies E, increases.
Since these coefficients arise from the fitting of
the functions wv.(x,9) and u(x,v; g, 0), this
dependence may be associated with the term
involving p in (2). The actual dependence is,
however, very complex. It is on the whole far
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better to interpret the energy above which
surface states appear in terms of the intersection
of the bands as described in Shockley’s paper.
The other alternative of expressing it in terms of
parameters associated with the surface and
interior potentials as in (2) would seem to lead to
considerable complexity. At the same time the
use of (2) which is made in this paper is probably
justifiable as a simplification of the same order
as the others employed.

As a particular example, we may chose Vo(z)
equal to the image potential, —e?/4z, for z2 2,
and equal to the mean potential energy, —e?/4z2,,
in the interior for 0< 2< 20. Eq. 26 then possesses
solutions which are regular at infinity and also at
2=0 even for 2o=0 as follows

fu(2)=[2n!(nao) T exp [ —3/4na,]
X[ La(z/2n00) —nLa_1(z/2na0) ];
=[4n'(nae)* " exp [ —z0/4na, ]
X {4 exp [ipa(z0—2)]
+A.* exp [ —ipalzo—2)]1}; 2< 20

Z;ZO

with
A n= (1 —i/4npna0)Ln(zo/2nao)
—n(144/4npao) Lo_1(z0/2na,),

Pn=1/220—1/160%,.
These functions are normalized for z;—0. The
functions L,(x) are Laguerre polynomials of
degree n. The eigen energies associated with these
functions are e,= —e?/32a,n?, so that the lowest
state ¢; corresponds to only about 0.85 volt.

In addition solutions regular at infinity exist

for all e<0 which are highly singular at z=0 if
20=0. These solutions are

f(z) = e—az/ao[id__.}___(@) :
z (Bat+1)\z

48 Qo 8
, ()] e
(12a+1)(8a+1)\ 2

with e= —e%a?/2a,. When 2,>0 these solutions
can be made everywhere finite by setting

f(2) =B exp [ipo(z0—2) ]
+B*exp [—1po(z0—2)]; 2< 20

and fitting continuously to the above at z=3g,. If
now this solution is denoted by fo(z) and the
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associated energy by ey= —e2a?/2a,, a sufficiently
general linear combination of solutions for use in
Eqgs. (28) is probably obtained by taking

Yo(r) = i::o cnfn(z>7’n(‘<: 9)-

The coefficient ¢, the energy €, and the function
vo(x, o) will all be functions of the adjustable
parameter «. The corresponding quantities for all

GINGRICH AND C. N. WALL

other values of 7 will be independent of a. The
energy E/ is

E/ = —(e*/2ao)[co’a?+ 2 c.2/16n2].
n=1

The fitting is performed by choosing the ¢,'s
including ¢¢ and the parameters a and v ‘to
satisfy both Egs. (28) and the condition that «
and v shall lead to the same total energy.
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The Structure of Liquid Potassium
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The method of Wall for calculating the free volume per atom in a liquid has been applied to
liquid potassium, using the atomic distribution curves for potassium at 70°C and at 395°C
given by Thomas and Gingrich. From the free volumes at these temperatures, the entropies of
the liquid at its melting point and at its boiling point are obtained. These values, together
with the entropy of solid potassium at its melting point and the entropy of potassium vapor at
its boiling point, supply the entropies of fusion and of vaporization. Hence the latent heat of
fusion is calculated as 2.06 kj/mol, and the latent heat of vaporization is calculated as 87.5
kj/mol. These values are to be compared with the observed values 2.38 kj/mol and 84.0 kj/mol,

respectively.

HE atomic distribution curves, as obtained
from x-ray diffraction patterns of liquid
elements, have been used in the determination
of certain characteristics of the liquid state. Wall!
has made use of the atomic distribution .curves
for liquid sodium at two temperatures to obtain
the free volume of the liquid, and the dependence
of this free volume upon temperature. These
quantities were used to calculate numerical
values of the latent heats of fusion and vaporiza-
tion, which values compared favorably with the
corresponding experimental values. Hildebrand?
used a somewhat different method to calculate
the ratio of the energies of vaporization of liquid
potassium at two temperatures from the results
of Thomas and Gingrich.® The experimental
value of this ratio was nearly identical with the
1 C. N. Wall, Phys. Rev. 54, 1062 (1938).
2 J.H. Hildebrand, J. Chem. Phys. 7, 1 (1939).

3C. D. Thomas and N. S. Gingrich, J. Chem. Phys. 6,
411 (1938).

calculated value. De Boer and Michels? use the
liquid potassium results® in a qualitative com-
parison with their theoretical calculation of
atomic distribution functions at’various tem-
peratures. In the present work, the method of
Wall is used to calculate the free volume and its
temperature dependence in the case of liquid
potassium. These quantities are then used to
calculate the latent heat of fusion and the latent
heat of vaporization for comparison with the
corresponding experimental values.

In developing an analytical expression for the
atomic distribution function, Wall has adopted
a quasi-solid model for the liquid. This model is
essentially equivalent to that proposed by
Lennard-Jones and Devonshire,® i.e., each atom
in the liquid is assumed to be trapped (at least

4 J. de Boer and A. Michels, Physica 6, 97 (1939).

8 J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy.
Soc. A163, 53 (1937).



