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The wave functions and energy levels associated with ‘a finite one-dimensional periodic
potential field are investigated. In a plot of the energy spectrum versus intératomic distance
the surface levels appear only at lattice constants so small that the boundary curves for the
allowed energy bands have crossed. The levels appear in the ‘“‘forbidden’ region between
allowed bands in pairs one coming from each of the adjoining bands. In three dimensions
these surface levels give rise to surface bands. The surface bands probably exist and are half-
filled for diamond. They exist for all metals and are entirely unoccupied only for the monovalent

metals.

N dealing with wave functions in solids, the

problem is simplified by considering an in-
finite crystal or else a part of an infinite crystal.
This is done so as to deal with wave functions
which satisfy simple boundary conditions. How-
ever, the simplifications so introduced obscure
certain features of interest associated with the
surface of the crystal. This defect was apparent
to Tamm,! who considered the wave functions
for an idealized one-dimensional crystal in which
the atomic fields were represented by square
potential wells (the model of Kronig and
Penney?).

Tamm found in this case that it was possible
to have energy levels whose wave functions were
localized at the surface of the crystal. In this
treatment a semi-infinite crystal was used, and
Tamm found that one surface level was possible
for each energy gap between the ordinary al-
lowed bands of energies. In a later paper Fowler?
discussed Tamm’s levels for a finite crystal and
pointed out that the levels should occur in pairs
because of the two faces of the crystal. They
have since been discussed by Rijanow* and Maue®
and most recently by Goodwin.® In none of these
papers, however, was it found how the surface
levels originate from the atomic levels as the
crystal is conceived of as being formed by varying
the lattice constant from infinity to a finite
value.
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In the present paper we shall discuss the solu-
tion of this problem for a general one-dimen-
sional. crystal, Fig. 1(a), containing a finite
number of atoms each of which is represented by
a potential well whose shape is symmetrical
about the center of the atom but is otherwise
arbitrary. (This restriction considerably simpli-

‘fies the mathematical work but is probably not

essential.) The particular behavior of the po-
tential beyond the edges of the end cells does not
affect our results so long as it stays positive. We
shall find that the surface levels exist only under
certain particular conditions and shall see how
they arise from the bands of allowed levels.

The results may be best understood in terms
of a plot of energy versus lattice constant. In
Fig. 2 such a plot is shown in a qualitative
fashion. We see that at large lattice constants
we have narrow energy bands such as are to be
expected from small overlapping between the
atoms. Furthermore, all the wave functions of
the band are of the “penetrating type’’ rather
than the surface type. The surface states' first
appear after the boundary curves of the energy
bands have crossed. Postponing for the moment
the origin of these boundary curves, we note
that after they have crossed, two energy levels
have separated, one from each of the bands.
These energies correspond to wave functions of
the surface type while the other energies corre-
spond to penetrating wave functions. The energy
difference between the two surface functions
decreases exponentially as the number of atoms
increases. The wave functions themselves are of
the Tamm type near each surface—that is, they
decay exponentially in both directions away
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F1c. 1. The potential in the one-dimensional lattice.
(a) A periodic potential. (b) The potential corresponding
to Goodwin’s “‘tight binding” approximation.

from the surface. The difference between the
two surface waves is one of symmetry: The type
of crystal envisaged here possesses a center of
symmetry and the wave functions are therefore
either symmetrical or antisymmetrical, depend-
ing upon whether they have the same or opposite
signs on the two edges of the crystal.

The equations for the boundary curves of
Fig. 2 are similar to those met with by applying
Slater’s method of finding three-dimensional
wave functions.” The wave function in an in-
dividual cell is expanded in terms of two func-
tions g and # which are symmetrical and anti-
symmetrical about the center of the cell. If the
wave function is required to be of the form
Y =exp (tkx)v(x) where v(x) has the period “‘a”
of the lattice, one finds by a familiar process that

tan? (ka/2)=—(¢'/g)/ (&' /u),

where g and # are the values at the edge of the
cell of the functions g and % and g’ and #’ are
corresponding derlvatlves. The allowed bands of
energies occur where only one of the ratios (g’/g)
and (#'/u) is negative; the forbidden regions
occur where neither or both are negative. Certain
crossings of the curves of Fig. 1 are possible;
these may occur between g’'/g= o and u'/u=0
and between g'/g=0 and #'/u= »; no other
crossings are possible. It is, therefore, seen that
all possibilities for the occurrence of surface
states are represented in Fig. 2

7J. C. Slater, Phys. Rev. 45, 794 (1934).

WILLIAM SHOCKLEY

In Goodwin's work surface states have been
found to occur for the case of ‘“‘tight binding”—
that is, the case of large lattice constant and
uncrossed bands. Goodwin’s states arise from his
use of a potential which is more realistic than
ours; his potential is shown in Fig. 1(b). We see
that it is periodic except for the outer edges of
the end cells, where it is somewhat higher than
in the other cells. If we make his potential
periodic as indicated by the dotted lines, then the
diagram for the states will be as in Fig. 2. If we
now correct the energies of these wave functions
by taking as a perturbation the difference be-
tween the periodic potential and Goodwin’s, we
find that two of the wave functions acquire
energies above the boundary curves. These two
functions will be surface states having wave
functions damped towards the interior of the
crystal. The origin of, these states is essentially
different from the origin of the states occurring
after the bands have crossed. They will always
lie near the band from which they originate. If
we had used Goodwin’s potential, we should
have found these surface states lying just above
each energy band in both the case of uncrossed
and crossed bands. In the case of crossed bands
there would then be four surface states. Goodwin,
following the treatment of Maue, has also con-
sidered the case of almost free electrons. He uses a*
periodic potential without edge effects in the end
cells. The surface states he obtains in this way
are of the same type as ours, and in Appendix 5
we show that the conditions under which he
obtains them are equivalent to the crossing of

Fi1G. 2. Energy spectrum for a one-dimensional lattice with
eight atoms.
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the energy bands. In the remainder of this paper
we shall be concerned only with the type of
surface states represented in Fig. 2, which arise
from the periodic potential.

If we suppose that there is one electron with
each spin per atom then before the crossing of
the boundary curves there are just enough states
to accommodate all the electrons in the lowest
band. After the crossing, however, there are one
too few states in the lowest band and one electron
is forced into a surface state. Hence after the
crossing has occurred, the surface states will be
half-occupied.

EXTENSION TO THREE DIMENSIONS

We can visualize to some extent how this last
result would be modified in three dimensions by
considering a potential equal to the sum of three
one-dimensional potentials. For the case where
the boundary curves have crossed so much that
there is a complete gap in energy between the
first and second allowed bands (this occurs when
the energy gap in the one-dimensional Fig. 2 is
more than twice the width of the lowest band),
there are roughly half as many electrons left over
as there are surface atoms. This may be seen as
follows: For this case the wave functions are the
products of three one-dimensional wave func-
tions. For states in the lowest band each factor
may run through (WN—1) values; hence. there
are (IN—1)* states in the lowest band. Since
there are N?® electrons there are N?—(N-—1)3
=3N2—3N+1=3N?electrons left over. For the
surface states, two possible values are available
for one factor and (N—1) for each of the other
two. Thus there will be 2(NV—1)? surface states
for the x faces or 6(/N—1)? for all six faces or
6N?—12N+6=26N? in all, the same as the
number of surface atoms. These surface states
form a band corresponding to the variations in
energy of the two penetrating factors. Our
reasoning indicates that 3N? or half of these
states will be occupied and we should therefore
expect the surface band to be conducting in two
dimensions just as a partially flled three-
dimensional band is conducting.

The suppositions upon which the above con-
siderations rest seem to be fulfilled for diamond.
The work of Kimball® has shown that for dia-
mond the 2s and 2p boundary curves have

3 G. E. Kimball, J. Chem. Phys. 3, 560 (1935).

319

crossed to such an extent that there is a wide
region of forbidden energies making diamond an
insulator. We should, therefore, expect that
there would be half-filled surface bands and
surface conductivity in diamond. Such a con-
ductivity has not been observed and this may
possibly be due to the presence of adsorbed
atoms. If a layer of adsorbed atoms is attached
to the surface by losing electrons to the vacant
levels in the surface band,® so many electrons
might be added that the surface band would be
completely filled and thus rendered nonconduct-
ing. The surface levels can enter into conduction
in yet another way by acting as ‘“‘impurity
levels.” Electrons in the normally filled states
can be excited optically or thermally to the
surface levels thus leaving a partially filled and
therefore conducting band; similarly electrons
can be excited from the surface levels to higher
bands and thus enter into the conduction. The
number of electrons involved in processes of this
sort would depend upon the surface area of
cracks in the crystal and would therefore lead
to a structure sensitive behavior of the properties
of semi-conductors. Considerations of this sort
are not new in their general features; however,
the fact that the surface levels will normally be
half-occupied has not been shown before.

The forbidden regions between the x-ray levels
do not arise from the crossing of the energy bands
and our theory predicts no surface levels for
them. There will be surface states of Goodwin's
“tight binding”’ type in these energy gaps; they
will lie very close to the allowed bands from
which they originate. A similar situation exists
between the highest occupied and lowest un-
occupied bands of the alkali halide crystals
(calculations for NaCl'® and LiF" show that
these gaps correspond to uncrossed bands). Even
where there are no surface states of the type
considered here, it is, of course, still possible for
electrons to be trapped on the surface because
of polarization forces and resulting distortion of
the lattice. However, this is a rather different
type of process from the one we have been con-
sidering, which is more directly connected with
the energy levels of the periodic potential.

" 9 See, for example W. G. Pollard, Phys. Rev. 55, 1147(A)
(1939) and also 56, 324 (1939).

10 W, Shockley, Phys. Rev. 50, 754 (1936).
1 D, H. Ewing and F. Seitz, Phys. Rev. 50, 760 (1936).
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The surface states should occur for a number
of metals. In the metals there is always a large
degree of overlapping of the atomic level bound-
ary curves but not in such a way as to result in
a separation of the bands. Instead the bands
overlap considerably. For a particular direction
of the propagation vector k, for example normal
to a 110 crystal face of a body-centered lattice,
there will be allowed and forbidden values of
energy. In the forbidden regions there will be
wave functions corresponding to complex values
of k and, since the boundary curves have crossed,
these will give rise to surface states. Fig. 3(a)
shows the dependence of energy upon % for the
100 plane in & space for sodium.” The surface
states correspond to values of %2 having real
components corresponding to the edge of the
Brillouin zone and an imaginary component per-
pendicular to the plane of the surface—the 110
plane in our example. The energy lies in the
energy discontinuity -at the edge of the zone.
Fig. 3(b) shows qualitatively how the energy
varies in the surface of the zone for the states
of the first zone, the surface states, and the
states of the second zone. We see that the lowest
energy for the surface states is lower than the
lowest energy in the second zone and higher than
the lowest energy on the surface of the first zone.
For the monovalent elements the first zone is
only partially filled and all the electrons occupy
states in the interior of the zone;? hence none
have high enough energies to occupy surface
states. In the divalent metals, however, some
electrons occupy states in the second zone and
therefore have energies higher than the lowest
surface levels. On the basis of this reasoning we
should expect that all metals save the mono-
valent ones to have some electrons occupying
surface levels. These surface states will affect the
charge distribution near the surface of the metal
and their contributions must be considered when
calculations of work function and contact po-
tential are carried out for polyvalent metals.

The writer would like to express his gratitude
to his colleague Mr. R. O. Grisdale and to
Professor W. G. Pollard for several stimulating
discussions upon the nature of the surface states.

12 See, for example, N. F. Mott and H. Jones, The Theory
of the Properties of Metals and Alloys (Oxford, 1936),
Chapter V.
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Fic. 3. Energies for surface states and penetrating states.

APPENDIX: MATHEMATICAL ANALYSIS

1. Expressions for the lattice functions

Let the center of the left-hand cell of Fig. 1(a) be x=0;
then its edges are x=Z-a/2. For a given energy E there are
only two linearly independent solutions of Schroedinger’s
equation in the field of this cell; since the potential is
symmetrical about x =0, these may conveniently be chosen
as g(x) and u(x) where g and u are, respectively, even and
odd functions of x, i.e., symmetrical and antisymmetrical
about x=0.

We shall require that the wave function be of the form
Yr=exp (tkx)v(x) where v(x+a)=uv(x). If the function in
the cell at x=0 is expanded in the form yi=ag(x)+2bu(x),
then in the second cell it is y=exp (tka)(ag(x—a)
+2bu(x—a)) and the conditions that ¢ and its derivative
be continuous at the cell boundary x=a/2 are

ag+ibu=e'**(ag—1bu), 1)
ag’'+ibu’ =etke(—ag’+1bu’), 2)
where
g=g(a/2), u=u(a/2),

g =(dg(x)/dx)gmare, u' =(du(x)/dx)z—as2.

These equations can be solved only if their determinant
vanishes. This gives the equation
tan? ka/2=—v/u, 3)
where
vy=g'/g and u=u'/u.
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This equation determines %k as a function of ¥ and u
which in turn depend upon the energy. The wave function
is multiplied in going from cell to cell by the factor

f=exp 216 where 6=*Fka/2. 4)

2. The value of ¢'/y for the running waves

We shall next find the value of

¥i'(a/2)
By (5)
vi(a/2)
for the resulting solution of Eq. (3). This ratio is
ag’+ibu’
= iutan f= 6
agtibu iutan 0=py (6)

as may be verified by noting that from (1) b/a=(g/%) tan 6
and by using (3).

3. The boundary conditions for the entire crystal
If yr(x) is a solution in the lattice field then

Yoi(w) = ¢(—x) ¢

is also a solution for the same energy and, therefore, ¥ and
V_i represent a complete set of linearly independent solu-
tions (the pathological case of yi(—x)/¥x(x)=constant
occurs only for energies of the boundary curves; it intro-
duces no new features and is formally included in the
equations given below.) The general solution in the crystal
is

Y=Ayr+By_s. ®

This function must join continuously to wave functions
for the outside region. These outside wave functions must,
of course, be damped exponential waves as we proceed
away from the surface. This means that the ratio of
Y/ /¢=0c evaluated at x=—a/2 (the left edge of the
crystal) is a definite single valued function of the energy.
For the symmetrical array of # atoms the value of ¢¥'/y
at x=na-+a/2 (the right edge) must be —o. For negative
energies in Fig. 1, ¢ must be positive.
We must therefore satisfy the equations

O_=A¢k,(_a/2)+3¢»k,(_a/2)
Ayi(—a/2)+Byw(—a/2)

%)

and

‘r=Axlfk’(na+a/2)+B¢’_k(na+a/2)
Ayr(na+ta/2)+By_r(nata/2)

Some algebraic manipulation leads to the result that these
equations possess solutions if

(10)

g=putan 6 tan n8 (S),
o= —putan fcot nd (4),

(11
(12)

where the expressions (S) and (4) mean that the corre-
sponding solutions are either symmetrical or antisym-
metrical functions, i.e., even or odd, about the midpoint
of the crystal. The odd and even character can be estab-
lished by computing the ratio of the denominators of Egs.
(9) and (10). If Eq. (11) is satisfied, this ratio is +1; for
(12) it is —1.
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4, Determining the allowed solutions

In order to justify all the statements made in the first
part of this paper, it is necessary to investigate the solu-
tions of these equations for eight different types of allowed
bands and four different types of forbidden bands and to
carry this out twice; once for # even and once for » odd.
For the purposes of this paper we shall consider only the
cases represented by the lattice constants e¢: and @, in
Fig. 2 and these only for # even. In Fig. 4(a) and (b) are
shown the general trend of the v and u curves for these
two lattice constants. The energy scales have been dis-
torted so that the allowed and forbidden bands correspond
for the two cases.

Three ranges of values for y/u must be considered
I v/u<0, I1 0<vy/u<1, IIT 1 <v/u. For the first of these
tan? 6 is positive and 0 lies between zero and w/2. The
value of y/u=1 cannot occur since it implies that g and »
are not linearly independent. For II and III tan?8 is
negative and we write 0 in the form

0=a—1B. (13)
In Table I we have tabulated the expressions associated
TasBLE 1.

'Y/I"'<0y ﬁ=01

tan f=tan «
tan nf=tan na

tan a=| (y/u)}|
f=82w

cot nf=cot na

11
0<y/n<l, a=0, tanh B=|(v/m)}?|
tan = —< tanh 8 =g
tan #0= —1 tanh #n8 cot n0=1 coth nB
111
1<y/u, a=r/2, coth 8= [ (v/p)}|
tan = —1 coth 8 = —¢%
7 even
tan #6 = —1 tanh #B cot #0 =1 coth nB
#n odd

tan nf= —1 coth n8 cot n0=1 tanh #8

with these three cases. The equations have been so written
that positive values will be obtained for « and 8; there is
no loss in generality in this since both positive and negative
values of % occur in (8). In Table II we give the values to

TasLE II.
|
o/p= tan «tan na (S)
og/u= —tan a cot na (4)
II
o/u= —tanh 8 tanh #n8 (S)
o/u= —tanh B coth nB (4)
111
7 even
o/u= —coth 8 tanh ng S)
o/u= —coth B coth n3 (4)
n odd
o/u= —coth B coth ng (S)
o/u= —coth B tanh »n8 (4)

which tan 6 tan 76 and —tan 6 cot #0 reduce for these
ranges.

The method employed in finding the solutions is a
qualitative graphical one. Fig. 4(c) represents the variations
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Fi16. 4. Graphical results of the analysis. (a) v and u
vs. E for a=a,. (b) v and u vs. E for a=a,. (¢) « and B
vs. E for a=a, and a=a,. (d) Plot corresponding to Eq.
(11). (e) Plot corresponding to Eq. (12).

of @ and B which are qualitatively the same for Fig. 4(a)
and (b). In Fig. 4(d) is plotted tan 6 tan #n6 for the (S)
type functions for the case of six atoms. Also on this figure
are shown curves of ¢/u for both a; and a, lattice constants.
For energies below zero on Fig, 1, ¢ will be a monotonically
decreasing positive function of the energy and the vari-
ations in ¢/u will arise chiefly from those of u. Inersections
of o/uand tan 6 tan #6 on Fig. 4(d) correspond to solutions
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of (11) except for two indeterminate cases occurring at the
energies marked K and L in Fig. 4(d); these correspond
to p= » and a study of Eq. (11) for them shows that the
right side is proportional to 1/# and hence that 1 and 2 are
not solutions of (11). In Fig. 4(e) are similar curves for the
4 functions. The curve for ¢; at M and N and the curve
for a; at P in the figure can be shown to give no solutions
of Eq. (12). It is not practical to draw figures correspond-
ing to large values of # as some of the significant features
of Fig. 4 would not be apparent. However, in reaching the
conclusions given in this paper, it has been supposed that
n is very large; this means that |1/%#| and |z]| are surely
lesser and greater than |o/u| in Fig. 4(e) and (d), respec-
tively.

From consideration of the significant intersections on
Fig. 4(d) and (e), one can establish the results portrayed
in Fig. 2 and similar considerations for other values of #n
render these conclusions general.

The result that no surface states exist for the energy
gap at a; can be established without recourse to the
mathematical methods leading to Egs. (11) and (12).
Since this proof gives a more intuitive notion of the condi-
tion for the existence of surface states, it is given here: For
any given energy value in the gap between bands in Fig. 2,
v and u are positive and only damped waves are possible
(this follows from Eq. (3)). The two solutions for the
crystal are damped waves, one damped to the right and
one to the left. Furthermore these waves can be taken as
real as may be seen from the equation b/a=(g/u) tan 6.
(Also if the waves could not be made real by multiplying
by a constant factor, the real and imaginary parts
would be linearly independent and our one-dimensional
Schroedinger equation in the lattice would have four
linearly independent solutions—an impossibility.) Con-
sider the right edge of the crystal and choose g(x) and
u(x) so that g=u=1, then g'=+, #'=pu. In order to have
a surface state at the right edge, the wave function must
consist predominantly of a wave damped to the left: if
the crystal is large, the wave damped to the right is
negligible at the right edge. Hence the wave function must
be larger on the right edge than on the left edge of each
cell. These various statements together mean that it
must be of the form Ag(x)+Bu(x) in the cell where 4
and B have the same sign (positive for simplicity) so that
on the right edge the value A+ B is larger in absolute
value than 4 = B on the left edge. This requirement means
that the slope on the right edge, Ay By, is also positive
(since in the gap at a1, v and u are positive). The above
reasoning shows that if a surface state exists on the right
edge of the crystal and has a positive value on the right
edge of the last cell it has also a positive slope, i.e.,
dy/dx>0 at x= (n+%)a. This wave function must join a
wave function from the outside and if the energy is below
zero the slope to value ratio for this outside wave function,
denoted by —g, is certainly negative. It is, therefore,
impossible to join the two wave functions with continuous
values and slopes and hence no surface states can exist for
this energy gap. The situation is different for the gap at a:
because there v and u are both negative and hence the
ratio of slope to value for the wave function in the lattice
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is negative at the right edge and a solution is possible. In
order to prove that solutions actually do occur, con-
siderations like those of Fig. 4 are needed.

5. Comparison with the case of almost free electrons

For the case of free electrons all the boundary curves
have just crossed. This must be true because otherwise one
would have the absurd result of forbidden energy ranges
for free electrons; it can also be seen by considering the g
and # wave functions corresponding to the boundary curves
of Fig. 2. In the notation of section 1 of the appendix these

are
(14)

Even values of m including zero give the bottoms of g
bands and, except for m=0, the tops of # bands; odd
values of m give the tops of g bands and bottoms of u
bands. For free electrons the energy depends only on the
value of m and we see that the bands are just crossed.

Goodwin, following the work of Maue, finds that if a
potential of the form

V= —Vu(—)™ cos 2zmx/a

Zm(x) =cos mmx/a, un(x)=sin rmx/a.

(15)

is present, there will be surface states in the energy gap
which appears at the energy corresponding to the unper-
turbed gn and #,, if Vi, is positive but not if V,, is negative.
A first-order perturbation calculation shows that for Vi,
positive this potential raises the energy of g, and lowers
that of #x if m is odd; for m odd g, is the top of a g band
and u, the bottom of a u band. Hence the perturbation
causes the bands to cross. A similar crossing occurs for m
even. For V, negative the bands are uncrossed and we have
no surface states. Hence the findings of Maue and Goodwin
for the case of almost free electrons are in keeping with the
results of Fig. 2.

6. Comparison with Tamm’s potential

In Fig. 5(a) we show the potential which Tamm used
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1 (b)

Fi1G. 5. (¢) Tamm’s potential. (b) The periodic and sym-
metrical potential equivalent to Tamm’s.

in his original paper on surface states. The heavy lines
represent §-function potentials. Tamm’s potential is not
periodic for the last cell is incomplete. In Fig. 5(a) we
have constructed a periodic potential from Tamm's
potential by attributing one-half a §-function to each edge
of each cell. There is a negative half of a §-function left
over at the left edge of the crystal. Now a first-order per-
turbation calculation using the wave function of Section
4 shows that this potential corresponds to uncrossed
bands. The Tamm states arise because of the negative
s-function which is left over. For the case of uncrossed
bands we found a negative value of ¢//¢ at-the left edge
of the crystal for a wave function which decayed exponen-
tially into the crystal. Since the value of ¢//¢ was positive
for the exponential outside and to the left of the crystal,
no surface state could occur. The role of left-over s-function
is to reverse the value of ¢//y before it reaches the edge
of the cell and thus permit the existence of a surface state.



