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Inasmuch as it is rarely possible to treat diffraction of
electromagnetic waves exactly, the Kirchhoff formulation
of Huygens' Principle has been frequently used in ap-
proximate calculations. If the Kirchhoff formula is applied
directly to the field intensities of the incident wave over
the aperture, the diffracted field is found to be inconsistent
with Maxwell’s equations. If, on the other hand, this
formula is applied to some auxiliary vector potential from
which the diffracted field is subsequently deduced by dif~
ferentiation, the result (although consistent with Maxwell’s

equations) depends on the particular choice of the auxiliary
vector and in some instances, at least, is obviously un-
reasonable (Appendix III). The calculations of diffracted
fields and radiation fields, based either on the Equivalence
Principle or on the more general Induction Theorem,
depend upon a priors verifiable approximations to the actual
fields in the neighborhoods of the sources of the diffracted
and radiated waves. For this reason we feel that these
methods are preferable to those based on the Kirchhoff
formula.

HE purpose of this paper is to describe
several methods for dealing with diffraction
and radiation of electromagnetic waves, which
are believed to have certain advantages over the
methods based on the Kirchhoff formula. These
methods arise out of certain ‘‘induction” and
“equivalence’’ theorems. ‘At present, it is rarely
possible to solve diffraction and radiation prob-
lems exactly. Either the usual methods or the
methods to be described in this paper require
approximations. The point in favor of the latter
methods is our ability to use physical intuition
and available knowledge, theoretical and experi-
mental, as a guide in making the necessary
approximations.

The essential feature of the following theorems
is identification of certain portions of given electro-
magnetic fields as the fields of appropriate fictitious
electric and magnetic current sheets.

Tue INpDUCTION THEOREM

It is not easy to state the Induction Theorem
in its most general form and it is more expedient
to formulate its variants to fit special conditions.
In one form, the theorem was enunciated in a
previous paper.! We shall now state it in the form
directly applicable to the problem of radiation
from an open end of a perfectly conducting
metal pipe.

Let E°, H® be the field which would exist over
the surface of the aperture if the pipe were con-
tinued to infinity; let E, H' be the ‘“reflected”

1S, A. Schelkunoff, Bell Syst. Tech. J., pp. 92-112,
January, 1936.

field, that is, the field which has to be added to
the “impressed’’ field E°, H° in order to obtain
the actual field in region (1) just within the pipe
when it is terminated; and, finally, let E", H"
be the “‘transmitted’ or the actual field in region
(2) just beyond the end of the pipe. Consider the
field E, H composed of E’, H' in region (1) and
of E"”, H" in region (2). We assert that the field
E, H could be produced, in the presence of the
pipe, by electric and magnetic current sheets
over the aperture and that the densities of the
sheets are

J=nXH, M'=—nXE (1)

J being the density of the electric current sheet,
M the density of the magnetic current sheet and
n the unit normal to the sheets pointing into
region (2). Evidently E® and H® could be replaced
by their components tangential to the surface
of the sheets.

While a formal proof of this theorem will be
discussed in Appendix I, a few details will be
given here in the belief that they will elucidate
the meaning of this theorem and the manner in
which it can be modified to suit different condi-
tions. The electric and magnetic intensities of
the total field around the pipe, under actual
conditions, must be continuous across the aper-
ture; thus over the aperture we have

E+E=E', H+H=H";
or
HII

E'—F'=F, H'—H=H" (2)

By our assumptions the field E, H satisfies
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Maxwell’s equations everywhere except over the
aperture and the surface of the pipe. This field
also satisfies the proper boundary conditions over
the surface of the pipe. Over the aperture of the
pipe, the field E, H and, in particular, its tan-
gential components are discontinuous. It follows
from the integral form of Maxwell’s equations
(or directly from the laws of Ampére and Fara-
day) that discontinuities in the components of
magnetic and electric intensities, tangential to a
surface .S, exist if and only if there are corre-

F1c6. 1. Pipe enclosing two different dielectric media.

sponding superficial electric and magnetic cur-
rent sheets over S. The density of the electric
current sheet is equal to the discontinuity in the
tangential component of the magnetic intensity
and the density of the magnetic current sheet is
equal to the discontinuity in the tangential
component of the electric intensity.?

Therefore, if we start with the current sheets
(1) and wish to determine the field produced by
them in the presence of the pipe, we must regard
the field E, H as a possible solution. If we accept
for the moment that any solution of Maxwell’s
equations which satisfies given boundary condi-
tions and behaves in the proper manner at in-
finity is unique, then E, H is the field which we
would calculate from the current sheets (1) no
matter what particular method of calculation we
are likely to adopt.

Let us consider another situation. Let a
perfectly conducting metal pipe enclose two
different dielectric media which are separated by
a plane boundary (Fig. 1) and let a progressive
wave E°, H° move from left to right in region (1).
By the Induction Theorem, the wave reflected
from the interface between the two media and
the wave transmitted into region (2) could
be produced by electric and ‘magnetic current
sheets over the interface, whose densities are
given by (1). In this instance, the exact solution
can be obtained directly as well as from the

21t also follows from the integral form of Maxwell’s
equations that the discontinuities in the normal compo-

nents of electric and magnetic current densities are deter-
mined by the discontinuity in the tangential field intensities.
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Induction Theorem, thus affording a verification
of the theorem.

Consider now a system with one degree of
freedom. An example of such a system is an
ordinary transmission line terminated in some
impedance (Fig. 2). Let V°(x), I°(x) be the
voltage and the current that would exist in the
progressive wave moving from left to right if the
line were terminated in its characteristic im-
pedance instead of the actual impedance. Choose
some particular point xo on the actual terminated
line. If V"(x), I'(x) is the actual voltage and
current to the right of this section and 7'(x),
I’(x) is the voltage and the current which must
be added to V°(x), I°(x) in order to obtain the
actual voltage and current to the left of the
section, then the continuity conditions at x=x,
require

V(o) 4 V' (o) = V"' (x0),
I%(xo) + 1" (o) = 1" (x0) 5
or

V" (x0) — V' (x0) = V°(x0),
I" (o) — I' (x0) = I°(x0).  (3)

In this case, the Induction Theorem consists in
asserting that the wave V(x), I(x), equal to V7,
I’ on the left of x=x¢and to V", I" on the right
of it, could be produced by a zero impedance
generator 1n series with the line and an infinite
impedance generator (comstant curremt gemerator)
in shunt with the line, the voltage of the series
generator and the current through the shunt
generator being, respectively, V°(xo) and I°(x).

EQUIVALENCE THEOREMS

Broadly speaking, the equivalence theorems
differ from the corresponding induction theorems
in that the latter specify the current sheets
capable of producing both the reflected field E’,
H' and the transmitted field E”, H"' while the
former specify the current sheets capable of pro-
ducing only the transmitted field. Thus, if in

1V°(x)

I°(x)

RN

Vo(x)
—_—

I°(x)l

F1G. 2. Transmission line terminated in an impedance.
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region (1), we postulate a zero field in place of
the reflected field E’, H' and two current sheets
(over the surface of the aperture) defined by

JII:nxj{lI' M”=—‘n><.E”, (4)

to take care of the discontinuities in the total
field E, H comprised of the zero field in region (1)
and the actual transmitted field E", H" in region
(2). It should be noted that in equivalence
formula (4) the densities of the current sheets are
not known in advance as is the case in the corre-
sponding Induction Formula (1).

Another equivalence theorem may be obtained
by choosing a closed surface S comprised of the
surface of the aperture and the outer surface of
a horn, postulating a zero field inside the surface
and E"', H" outside, and introducing electric and
magnetic current sheets over .S of densities given
by (4). We assert, then, that these sheets will
produce the postulated field. This theorem may
be called the “free-space’”’ equivalence theorem
in order to emphasize that in carrying out the
calculations, the horn must be ignored and the
response must be calculated by the ‘“‘free-space”
retarded potentials in contrast with the previous
equivalence theorem according to which the re-
sponse to the current sheets had to be calculated
subject to the boundary conditions at the surface
of the horn. On the other hand, the current sheets
required by the free-space equivalence theorem
extend over the outer surface of the horn as well
as over the aperture while in the other theorem
they extend only over the aperture. In a previous
paper! the “free-space’” equivalence theorem has
been named the Equivalence Principle® in the
belief that it is a precise expression and a general-
ization of a physical principle enunciated by
Huygens.

Huygens' principle is commonly stated as
follows:* Each element of any wave front acts
as a new source of disturbance, sending out
secondary waves, and these secondary waves

3 The Equivalence Principle was ox:iginally discovered by
A. E. H. Love [Phil. Trans. Roy. Soc. A197, 1-45 (1901)]
and subsequently by H. M. MacDonald [Electric Waves
(1902), p. 167. The latter supplied two proofs [MacDonald,
Electric Waves (1902), p. 16; MacDonald, Proc. London
Math. Soc. Series E, 10, 91-95 (1911) ] of the theorem, of
which only the second is valid. A few years ago, the the-
orem was rediscovered by the present author as one of a

group of theorems treated in a previous paper (reference 1)

and here.
¢ A. E. Caswell, An Outline of Physics (1929), p. 544.
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combine to form the new wave front. I am in-
clined to believe that if with the aid of a hypo-
thetical perfectly absorbing screen we could
isolate the disturbance produced by an individual
secondary source, we should find this disturbance
identical with that produced by the elementary
source (4). It is impossible to prove this conten-
tion any more than to prove that the energy flow
per unit area in an electromagnetic field is ex-
pressed by EXH. Just as in the latter case, it
can be proved only that the total flow of energy
across a closed surface can be obtained by inte-
grating the Poynting vector, in the former case
it can be proved only that when we integrate a
certain expression over a closed surface we obtain
the correct field. In either case it is possible to
modify the integrand and still obtain the same
results when the integration is performed over the
closed surface. The choice of a particular inte-
grand must necessarily be made on other than
mathematical grounds.

Let us now consider a perfectly conducting
metal tube and a progressive wave moving from
left to right (Fig. 3). The actual field at some
point P to the right of some cross section S;
could be produced by electric and magnetic
current sheets given by (4), or by (1) since in
this case: E”=FE" and H''=H". The action of
these current sheets must be calculated subject
to the boundary conditions at the surface of the
pipe. This field could also be calculated by the
free-space equivalence principle by using the
current sheets spread over a closed surface S,
surrounding point P and whose densities are
still given by (1).

RapiatioN FroM HORNs

Preceding theorems can be used for the ap-
proximate calculation of the power radiated by
horns and the radiation patterns of those horns.
Three methods of approach present themselves:

F16. 3. Perfectly conducting metal tube; progressive wave
moving from left to right.
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1. In accordance with the free-space equiva-
lence principle the sources within the horn and
the horn itself’ are replaced by electric and mag-
netic current sheets, surrounding the horn, with
densities given by (4); then, the free-space field
of these sources is calculated by means of the
following formulae.

1
E= —iwpd +— grad. (div. 4) —curl F,
Twe

©)

1
H= —iweF+— grad. (div. F)+curl 4,
ram

where the magnetic vector potential 4 and the
electric vector potential F are given by
J”e—iﬂr
dS, F=
Sy 4wr )

M”e—iﬁr

—aS. (6)

A -—3
47y

These formulae become much simpler if we are
interested only in the field at great distances
from the horn.®

In practical applications neither J nor M"
are known exactly and suitable approximations
must be made, with available theoretical and
experimental knowledge as a guide. The situation
is similar to that in which we find ourselves when
calculating the power radiated by antennas and
by transmission lines from the electric current
distribution. The latter is not known exactly but
available evidence points to the fact that it is
nearly sinusoidal.

If the aperture of the horn is so large that the
cut-off frequency of the horn is appreciably below
the operating frequency, practically all energy
reaching the aperture passes into the outer
medium. In this case, it is reasonable to suppose
that the field over the aperture will be sub-
stantially the same, except near the edges, as if
the horn were infinitely long. Thus, we can as-
sume that over the aperture J'" and M' are ap-
proximately equal to the known quantities J°
and M°. Over the surface of the horn M" is
known to be very small (it would vanish for
perfectly conducting horns) and J' is assumed
to be small.

5 That is, the sources induced in the horn.
8S. A. Schelkunoff, 4 General Radiation Formula (to be
published).
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F1G. 4. Pipe ending in a perfectly conducting plane.

It may be pointed out that in theory it is
possible to calculate the radiation pattern and
the radiated power from the conduction current
in the horn. In practice, however, no basis has
been found for making a reliable a priori as-
sumption with regard to this current distribution.

2. The second method of approach consists in
replacing the sources within the horn by electric
and magnetic current sheets with the same
densities (4) as in the preceding case but extend-
ing only over the aperture. These current sheets
are supposed to.act in the presence of the horn
as a reflecting surface. Thus, 4 and F are
given by

A =
(Sa)

J"d(x, v, 2,2, 9, 2)dS,
(7

F= M Yo(x, 3,2, %", ¥, 2)dS,

(Sa)

where ¥, and ¢, are two diadics and the integra-
tion is extended over the surface S, of the aper-
ture. The scalar product of the moment of an
electric current element and diadic ¥, is the mag-
netic vector potential of the electric current
element and, similarly, the scalar product of the
moment of the magnetic current element and
diadic ¥ is the electric vector potential of the
element.

In applying (7) we no longer need approximate
estimates of the field over the outer surface of
the horn ; instead we have to approximate ¢, and
¥s. In the case of the horn considered above, we
would say that the effect of the horn, as a reflect-
ing surface, on the radiation field is probably
small and that we could replace ¥, and ¥» by the
free-space transmission factors. In this case we
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obtain the same result whether we follow the
first or the second method of approach.

The second method may, however, be more
valuable than the first in other situations. For
example, consider a pipe and an infinite perfectly
conducting plane (Fig. 4). The first method will
give us the same result as if the plane were absent
since, not knowing a priori J'' in the plane, we
should be forced to ignore it. The second method
will supply us with a better result since we shall
deal with electric and magnetic current sheets
over a perfectly conducting plane.” This problem
can be solved by the free-space retarded poten-
tials. The image of the electric current sheet in
the plane is negative and will cancel the effect of
the sheet itself. The image of the magnetic cur-
rent sheet is positive and will double the effect
of the sheet. In other words, instead of (6) we

now have
M
F= f z
(Se) 27y

fle—iﬁr
S, A4=0.

(8)

Since M" is determined by the tangential
components (E,”, E,”) of the electric intensity,
we can obtain from (5) and (8)

1 1\ e #r
E,=— Ez”(iﬁ+—)——~ cos 6d.S,
27 Y (Sa) r] ¥
1 1\ e #7 '
E,=— Ey"(iB—}m —— cos 0d.S,
2w Y (Sa) v] 7
. 9
E,=—— (E,;" cos o+ E," sin ¢)
27 ¢ (Sa)
1\ e #r
X(iﬂ—i—— ——sin 6d.S.
v/ r

These results agree with Sommerfeld’s modifica-
tion of the Kirchhoff formula.?

3. By the Induction Theorem the field E, H
consisting of the reflected field E’, H' inside the
horn and the transmitted field E”, H'"' outside
the horn can be produced by electric and mag-
netic current sheets Wwith densities given by (1).

7 While the actual plane has a hole in it, in applying the
second method we are permitted to plug the hole with a
perfectly conducting disk since the field due to the postu-
lated current sheets is known to be identically zero on the

side of the pipe.
8 A. Sommerfeld, Gottinger Nachr. 1894, Nr. 4.
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Thus, we have

A= Jo¢dS, F= MO 4.dS,
(Sa) (Sa)

(10)

where ¢, and ¢, are the same diadics as in (7).

In theory, this theorem is more powerful than
either of the two preceding theorems. It does not
require any approximations to the field over the
surface of integration and it gives both the
reflected and the transmitted field. In practice,
however, the major value of this theorem is to
furnish a basis for approximating the field over
the aperture. In transmission systems admitting
of only one transmission mode, the Induction
Theorem leads toa definite solution (see Appendix
IT). We then assume that the known results in
the simple case may be taken as a first approxi-
mation in more complex cases.

TueE KIRCHHOFF FORMULA

It is only fitting that we should not pass in
silence the well-known Kirchhoff formula which
has been universally used for solving diffraction
problems and recently has been applied to
problems of radiation.® 1% ' This formula is

1 Ve #r
V= [(iﬁ—}——) V cos (n, ) ———] S, (11)
(S) ¥ 4

ond 4wy

where V is a wave function, .S any closed surface
surrounding a. source-free region, and # is the
normal to S looking into this region.

When applying (11) to electromagnetic prob-
lems, we are confronted with greater difficulties
than we were when applying previous methods.
In either case, we have to make approximations
to the integrand over the surface of integration
but while before we were aided in making the
necessary approximations by physical intuition
and experience, we have nothing to guide us, at
least at present, in the case of the Kirchhoff
formula. We could interpret, for example, V as a
cartesian component of the magnetic vector
potential, but we have no knowledge of its

9 R. Darbord, L’Onde Elec. 11, 53-82 (1932).

10 H. Diamond and F. W. Dunmore, Nat. Bur. Stand.
J. Research 19, 1-19 (1937). (Paper RP1006.) Proc.
I. R. E. 25, 1542-1560 (1937).

1'W. L. Barrow and F. M. Greene, Proc. I. R. E., 26,
1498-1519 (1938).
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behavior over the outer surface of the horn. We
can expect no help from the experiment since we
cannot measure the magnetic vector potential
either directly or indirectly. Likewise, we could
apply (11) to the electric vector potential but
with no better success. If we simply ignore the
contributions coming from the outer surface of
the horn, we get different radiation patterns,
depending upon the choice of V. If we apply (11)
directly to cartesian components of E and H and
ignore the contributions of the outer surface of
the horn, we obtain a result which is inconsistent
with Maxwell’s equations. In other words, while
(11) is correct when applied to a closed surface,
there seems to be no way to adapt it to practical
needs when we are forced to make approxi-
mations. An interesting example of the difficulties
which may confront us is given in Appendix III.

At this point a few words must be said about
the comparison made by Barrow and Greene!!
between experimental radiation patterns and
those calculated with the aid of the Kirchhoff
formula from the magnetic vector potential. As
the authors point out the agreement is satis-
factory only in the horizontal plane (in the plane
perpendicular to the electric vector). The agree-
ment would have been satisfactory in the vertical
plane (but not in the horizontal) if (11) were
applied to the electric vector potential. In the
case considered by Barrow and Greene
formula (6) agrees satisfactorily with experi-
mental results in both planes. Fig. 5 represents a
comparison between an experimental vertical
radiation pattern and patterns calculated by
different methods.

CONCLUSION

It is hardly necessary to emphasize that the
proposed methods of dealing with radiation and
diffraction problems are based, at least in the
important practical cases, on certain approxi-
mations. Fortunately these approximations are
susceptible of direct experimental verification. It
is hoped that this paper will stimulate such
experiments.

These experiments should be made preferably
on fairly small apertures. As the aperture be-
comes larger, the difference (but not the ratio)
of the radiation intensities obtained from the

313

Equivalence Principle on one side, and from the
Kirchhoff formula on the other, becomes small;
this is because the “‘space factor’ of the array of
secondary sources over the aperture becomes the
dominant factor and the precise nature of the
secondary sources loses its importance. In fact,
one could make almost arbitrary assumptions
with regard to the secondary sources and obtain
the radiation patterns, for large apertures, which
would differ but little.

ArPENDIX I

The essential parts of our proofs of induction
and equivalence theorems are the appropriate
uniqueness theorems, that is, theorems asserting
the uniqueness of the field defined by a given set
of conditions. If the given set of conditions is
known to lead to a unique solution, we are
assured of obtaining the same solution no matter
what method we happen to use even if we were
simply to guess the solution and then to verify it.
For instance, in dealing with free oscillations
inside a perfectly conducting spherical sheet we
may obtain a certain solution subject to the
condition that the tangential component of the
electric intensity vanishes at the surface of the

1.0 0.8 0.6 0.4 0.2 [o] 0.2 04
RELATIVE FIELD INTENSITY

0.6 0.8 1.0

Fic. 5. (1) The experimental vertical radiation pattern
obtained by Barrow and Greene for the open end of a
rectangular tube; this curve is taken from Fig. 10B of
reference 11; (2) the preferred theoretical curve calculated
by Barrow and Greene by applying the Kirchhoff formula
to a Hertzian vector; (3) the theoretical curve calculated
by Barrow and Greene by applying the Kirchhoff formula
directly to the electric vector and disapproved by them
because the direction of the electric vector in the radiation
field is wrong; (4) the theoretical curve obtained from the
Equivalence Principle on the assumption that the ratio of
E to H over the aperture is the same as for plane waves
in free space; (5) the theoretical curve obtained from the
Equivalence Principle on the assumption that the field
over the aperture is the same as would have been over the
same surface in case the tube were continued indefinitely;
(6) the theoretical curve for the case in which a perfectly
conducting infinite flange is added to the open end of the
tube.
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spherical sheet. The field outside the sphere may
be taken equal to zero. Having obtained the
solution, we find that the tangential component
of the magnetic intensity is discontinuous across
the sphere. In accordance with Maxwell’s equa-
tions, this discontinuity implies electric current
in the sphere, the density of this current being
equal to the above-mentioned discontinuity. If
we were to calculate the field of this current sheet
by the retarded potential method, we expect to
obtain the field from which we started.

An exhaustive analysis of uniqueness theorems
of electromagnetics would require considerable
space and could properly be regarded as a
subject in itself. We shall restrict ourselves to the
simplest case of monochromatic waves in dissi-
pative media. This case is really sufficient for
our purposes since we can assume the conductivity
of the medium to be so slight that its effect is
negligibly small and yet be sure that the needed
theorems are applicable.

We shall write Maxwell’'s equations in the
following form

curl E= —twuH— M,

curl H= (g+iwe) B+ J, (12)

where J and M are the densities of the applied
electric and magnetic currents. Let us multiply
scalarly the first equation by the conjugate of H,
the conjugate of the second equation by E, and
subtract; thus we obtain

H*-curl E—E-curl H¥*= —M -H*—E-J*

—gE-E*iwel - E* —iwuH - H*, (13)

where the asterisks designate the conjugate

complex numbers. Integrating over a volume
enclosed by a surface .S and taking into account
that

H*.curl E—E-curl H¥*=div. EXH¥*,

(14)
f div. ExH*dv= | (EXH?).dS,
(2) )
we obtain
——f (E-J*+M-H*dv=g| E-E*dv
() ()
+iw | (WH-H*—eE-E*)dv+ (EXH*).dS,
(9 () (15)
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where # is the normal to .S pointing away from
the volume under consideration. In (15) the
region v may be a multiply connected region
enclosed by surface .Sy externally and by surfaces
S1, Se, etc. internally; in this case, .S consists
of Sg, Sl, 52, etc.

In dissipative media the field at great distances
from the sources vanishes as an exponential
function of the distance; hence, the last term in
(15) vanishes in the limit as Sq recedes to infinity.
If there are no impressed currents or if in the
regions occupied by impressed currents, the
components of the field in the directions of these
currents vanish, then the left member of (15) is
equal identically to zero. The first term on the
right is real and the second is a pure imaginary;
therefore, in absence of impressed currents these
terms must vanish separately. Since E-E* is
essentially positive, the volume integral can
vanish only if E vanishes everywhere; then H
also vanishes everywhere and the electromagnetic
field is identically zero.

Let us now prove with the aid of the above
result the free-space equivalence principle (4).
The assertion is that the current sheets (4) over a
surface .S enclosing given sources produce the
field E, H which is equal to the field E”’, H' on
the source-free side of .S and to the field 0, 0 on
the other side of S. This synthetically obtained
field is certainly one solution of Maxwell’s
equations subject to the proper boundary con-
ditions across .S and behaving in the appropriate
manner at infinity. The question is whether it is
the only one. In other words, shall we obtain the
same field E, H if we solve (12) by the retarded
potential method or shall we obtain a different
field E,, H,? Let us suppose that the latter is the
case. Then we have

curl E= —fwuH —M",
curl E1= —iw,u.l—{l—M”,
curl H=(g+iwe)E+J",
curl H,= (g+iwe)E1+J”.

On subtracting these equations we find that the
difference field E— E,, H — H, satisfies the homo-
geneous form of (12), that is, the form in which
M= J=0. Therefore, this field vanishes identi-
cally throughout the entire space and E,=E,
H,=H.

Similarly we can prove

(16)

an equivalence
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theorem for the case in which the horn is retained
and the impressed current sheets (4) extend only
over the mouth of the horn. The Induction
Theorem (1) is also proved in the same manner.
In connection with the above theorems, the
reader has undoubtedly noted an interesting
paradox. The electric and magnetic current
sheets on S imply only discontinuities in the
magnetic and electric intensities across the
surface. How is it that in accordance with the
above theorems we know the actual intensities on
either side of the sheet and not only their
differences? The explanation lies in the fact that
in these theorems the densities of the superficial
current sheets are not independent, these densities
are obtained from functions satisfying the homo-
geneous Maxwell’s equations and theoretically
either the electric field alone or the magnetic
field alone suffice for defining both current sheets.

ArpPENDIX 11

In the case of a simple transmission line,!? a
direct verification of the Induction Theorem is
possible and the results are useful as an aid to the
study of more complex cases. As before we shall
designate by a single prime the reflected voltage
and current and by a double prime the trans-
mitted voltage and current. The subscript 1 will
be used to designate those parts of the voltage
and the current which are produced by the
impressed series voltage V° and the subscript
will refer to the voltage and current produced by
the shunt current I°.

We shall consider the case of a semi-infinite
transmission line, with characteristic impedance
Z,, terminated in the impedance Z at some point
x=1x0. Carrying out the calculations in accord-
ance with the Induction Theorem, we obtain

Iy (x0) = V°/(Zo+Z),
Izl(DCo)= —ZIO/(Z0+Z),
I (x0) = Vo/(Zo-I"Z),
12/'(x0)=ZoI°/(Zo+Z)y
Vl’(x0)= *ZoVO/(Zo+Z),
Vz’(x0)=ZQZIo/(Zo+Z),
Vll’(xO)=ZV0/(Zo+Z),
Vz”(OCQ) =Z0ZIO/(Z()+Z).

(17

Thus, the total reflected voltage and current

2 A transmission line admitting of only one transmission
mode.
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and the total transmitted voltage and current are

Zy—2Z YA
I V'(xo)= Ve,
Zot+Z Z+Z,

I'(x0)=
(18)

2Z, 2
() =1, V() =——— V",
Zot2 Zyt+Z

These expressions are precisely the same as
would be obtained directly from the boundary
conditions at point x=x,.

If Z is nearly equal to Z,, V' and I’ are small
while V" and I' are nearly equal to V° and I°.
This is the case when practically all power
carried by the wave V°, I is transmitted beyond
x=x,. Similarly we expect that in the case of a
horn with a large mouth, when practically all
power delivered to the mouth passes on into the
outer medium, E"” and H’ are substantially
equal to E° and H° as we have previously assumed
in our applications of the equivalence theorems.

On the other hand, if Z is either very small
compared with Z, or very large, then the
reflection is nearly complete and one of the
quantities 7"/, I'" nearly vanishes while the other
is nearly doubled. In this case the effect across
the impedance Z is produced largely either by the
series generator alone or the shunt generator
alone. In the correspondirg three-dimensional
case (which occurs when the frequency is near
the cut-off frequency) we expect, therefore, that
as a first approximation we can calculate the
radiation patterns by assuming only one current
sheet over the mouth of the aperture. The
corresponding radiation patterns will be sym-
metrical about the plane of the aperture of the
horn. The departure from symmetry will be
caused by the incomplete reflection.

AppENDIX III

Consider a perfectly conducting semi-infinite
coaxial pair with an open end. Let the radii @ and
b(b>a) be very small compared with the wave-
length. The field inside the coaxial pair is
approximately

601 il 2T
E,=—cosBz, H,=———sinfz B=—, (1)
o 2mp A

where: I is the maximum amplitude of the
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current, A the wave-length, p the distance from
the axis and z the distance along the axis. The
open end is in the plane 2=0.
The field can be obtained from a vector
potential whose components are
il P
A,=4,=0, A,=—log— sin pz. (2)

2 Po
This can be verified by substitution in
04, 1 924,

H,=— , E,=— . (3)
dp 1we 0pdz

The values of the above wave function and its
normal derivative over the aperture are

94. 1B P
4.=0, =—1I1log —. (4)
on  2m 00

Using the Kirchhoff formula in the customary
manner (i.e., by applying it to the aperture) we
find that at great distances from the aperture the
approximate value of 4, is

A. SCHELKUNOFF

A4 iIl:(bz 1 b 2] ¢ )
2= —— og ——a?log —
4N Po Po
e-—iﬁr

-1 f— ©

r

From this we calculate the field and then the
radiated power ; thus we obtain

4074 b a
W= [(b‘“’ log ——a?log ~—)
IS po po

) PO

By choosing p, properly we can make the radi-
ated power W equal to anything from zero to
infinity. The approximate value for W found
with the aid of the Equivalence Principle corre-
sponds to po satisfying

b a
b2 log ——a?log —=0. @)
Po Po

Note: On Diffraction and Radiation of Electromagnetic Waves

J. A. StraTTON AND L. J. CHU
Massachusetts Institute of Technology, Cambridge, Massachusetts

Dr. Schelkunoff has kindly shown us the manuscript of the preceding paper
which is closely allied to ours.?® Since our formulation of the problem differs
somewhat from that of Dr. Schelkunoff in ‘“Some Equivalence Theorems of
Electromagnetics and Their Application to Radiation Problems,”!* and in
the preceding paper, it appears worth while to point out that the results ob-
tained by the Equivalence Principle are identical with ours. If the field of the
equivalent surface currents is calculated from the vector potential or the
Hertz vector, the contour charges need not be introduced explicitly. The
contour charges simply ensure the self-consistency of the assumed field on

the surface.
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