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Space Charge and Field Waves in an Electron Beam
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W. C. Hahn has shown that the basic characteristics of
a new type of vacuum tube using a velocity modulated
electron beam may be explained by means of waves
propagating along the beam. For an "ideal" tube in which
the beam was assumed to be of uniform density throughout
its length he described the small amplitude, slow "space
charge" waves which have axial symmetry. In the following

paper a study is made first of the more general slow space
charge waves which do not necessarily possess symmetry
about the axis. Two cases are considered. First, a very
high magnetic focusing field is assumed, so that the motion
of electrons in any but the axial direction may be neg-

lected. Then the magnetic focusing field is assumed to be
completely absent, and waves having components of
velocity of electrons in all directions are treated. Also in

the following, attention is given to the fast "field waves"
which may exist in the idealized tube under certain con-
ditions. The waves have been termed "space charge"
waves and "field waves" because, for the former type,
the phase velocities are close to beam velocity and the
wave energy is mainly in the electrons. In the case of the
field waves, the phase velocities are large compared to
beam velocity and the energy is mainly in the electro-
magnetic field.

INTRQDUcTIQN

'HE problem of electromagnetic waves in an
electron beam has recently become im-

portant because such waves are excited and
utilized in a new type of electron tube' ' which

may be used to generate, amplify, or detect
ultra-high frequency signals. W. C. Hahn' has
shown that the basic characteristics of this
so-called velocity modulation type of vacuum
tube may be explained by means of waves
propagating along the electron beam of the tube.
In his analysis an idealized tube was assumed
in which the electron beam and its coaxial
perfectly conducting shield were assumed to be
infinitely long, the beam consisting of a uniform
density of electrons, po, all traveling at the
same constant velocity, vo, in the absence of
waves. This condition was made a possible one

. by certain additional assumptions: Sufficient
positive ions were supposed to be contained in
the beam to nullify the average current and
average space charge due to the electrons. The
heavy positive ions were assumed not to depart,
as did the very much lighter electrons, from their
drift velocity in the event of passage of a wave.
Hence, with these assumptions the positive
ions did not enter into the wave motion but
simply aided in establishing convenient steady
(zero signal) conditions.

' W. C. Hahn, "Small Signal Theory of Velocity Modu-
lated Electron Beams, " Gen. Elec. Rev. 42, 258 (1939).' W. C. Hahn and G. F. Metcalf, "Velocity Modulation
Tubes, " Proc. I. R. E., February, 1939.

For this ideal tube Hahn described the small

signal, slow "space charge" waves which have
axial symmetry and pointed out that faster
waves would be expected. In the following
paragraphs a study is made of the more general*
slow space charge waves. which do not necessarily
possess symmetry about the axis.

Also in the following, attention is given to the
fast "field waves" which may exist in the ideal-
ized tube if conditions are proper. The waves
have been termed "space charge waves" and
"field waves" because, for the former type, the

'
phase velocities are close to beam velocity and
the wave energy is mainly in the electrons. In
the case of the "field waves" the phase velocities
are large compared to beam velocity and the
energy is mainly in the electromagnetic field.

The space charge and'the field waves will be
studied for two cases, the theory being limited
to small wave amplitudes, or signals, in each
case: (1) For a very high magnetic focusing
field. The focusing field will be assumed so large
that motion of electrons in any but the axial
direction may be neglected. (2) For no magnetic
focusing field. In this case wave components of
velocity of electrons may exist in all directions.
It is found possible to divide both space charge

*The importance of the asymmetrical waves lies in the
fact that a starting and utilizing mechanism may be de-
signed for almost any conceivable wave. To determine
which type of wave should be started and utilized requires
a comparison of their characteristics, especially as regards
the potential transconductance of the tube and the opti-
mum drift tube length (reference 1). It is therefore of con-
siderable importance to consider the asymmetrical waves.
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and field waves into two classes which can exist respectively. Then using cylindrical coordinates,
independently and which exhibit diii'erences in Eq. (2) becomes
their characteristics.

HIGH MAGNETIc FocUsING FIELD
+- +— +(k' —v')Ci= —~r, (4)

()y2 y Qy y2 $02

If the magnetic focusing field is sufficiently
high the theory need only consider motion of
electrons in the axial direction. This suggests
that the equations may be most easily set up in
terms of the retarded scalar electric and mag-
netic vector potentials because only the axial
component of the vector potential will be
required. If the potential functions be substituted
into Maxwell's equations by use of the relations

1 BA
E= —V4 ——

c

II=V XA,

epo
pg

——— 41,
m ((o —yvo)'

(6A)

so that Eq. (4) now becomes

(924 1 ~4&
+ +

Br' r Br r' 80'

epo
+(k' —y') 1 — 4) ——0, (5)

m((o —yvo) 2

in which k = a&/c.

It is easy to express p& in terms of 4&. From
Appendix A, we obtain

in which E is the electric field vector, H is the
magnetic field vector, 4 is the scalar electric
potential and A is the vector magnetic potential,
then the equations reduce to the well-known

wave equations for 4 and A:

1 82
V' ———4= —p

g2 Qt2

C, =8„J„(Tr)e'"', (6)

where 8„is an arbitrary constant and

epo
T= (k' —y') 1—

m(4) Qvp)

whose solution appropriate about the origin, is4

1 82
V2 ———A= ——

7

c Bt c

(2) In the space between the beam and the
conducting boundary the charge density is zero
so that we may write directly for the electric
scalar potential in this region*

in which c is the velocity of light, p and 8 are
charge density and velocity, respectively, and
Heaviside-Lorentz or rational units are used
throughout. Eqs. (2) imply that the divergence
of A has been determined by'

1 84
V. A = ———

c Bt

i((o t—7 z)
)

ppe'&"'-&'& and vze'&"'—&z~

'See for instance Introduction to Theoretical I'hysics, a
text by J. C. Slater and N. H. Frank (McGraw-Hill Book
Co. , 1933), Chap. XXI

Since only the wave part of the solution is
desired, it will be convenient to denote the
scalar electric potential, the charge density and
the velocity by

in which I„and E„are modified Bessel functions
of the first and second kind, respectively, ' and

r = (y' —k')'

The constant D„ is determined by writing
that the tangential electric field must equal zero

at the surface of the perfectly conducting
cylinder where r = bR. This requirement is

satisfied by equating 4» to zero at this radius.

4 See for instance, Electrical and Optical IVave Motion, a
text by H. Bateman (Cambridge, 1915), Chapter III.

*The modified Bessel functions are appropriate here
for the slow space charge waves because for these waves
y is very nearly equal to co/vp=pp, the propagation con-
stant of the beam. For y =pp, T will be appropriately real.

' See for instance, Theory of Bessel Functions, a text by
G. N. Watson (Cambridge, 1922).
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I„(rRb)
D =—

K„(~Rb)
(10)

For each value of n there will be a series of
mots to this equation; the mth root of the Nth
order wave will be designated as (p„„).Eq. (7)
then yields

Two more conditions remain to be applied at
the edge of the beam, where r=b. These two
conditions will serve to determine the ratio
C„/B„and also the value of y in terms of the
given parameters. Continuity of the tangential
electric field is obtained by continuity of the
potentials. This gives

p- '
&po

=(k' —y') 1—
b2 m(a) —yvo) '

Space charge waves

For the slow space charge waves y is very
nearly equal to go = G&/vp and if this be substituted
in (15) there results

For continuity of tangential magnetic Gelds

Eq. (1) discloses that since only s components
of A exist then the only component of H is the
azimuthal component, IIO. Continuity of this
component requires continuity of BA. /Bt' which

by Eq. (3) leads to continuity of 84/Br Henc. e

C„(rb) I'(rb)+D K„'(rb)

I3 (Tb) J '(Tb)
(12)

in which the primes indicate derivatives of the
Bessel functions with respect to their arguments.

A comparison of (11) and (12) yields

J„'(Tb) I„'(rb)+D„K„'(rb)
(T&) =(r&), (13)J (Tb) I„(rb)+D~ (rb)

which for n=0 is the same as the equation for
the determination of y derived by Hahn' for
the case of an infinite magnetic focusing field

(except for an easily recognizable difference in

notation).
Kith sufhcient time and a complete set of

tables, it is possible to determine the values of y
for the various order of waves and then compare
the n =0, 1, 2, etc. waves for transconductances,
optimum drift tube length and distribution over
the cross section. Some idea of the relative
usefulness of the various waves may be obtained
more quickly if the tube parameters are special-
ized somewhat by making R = 1. VA'th this
selection of para'meters the solution (6) holds
over the entire tube cross section. Eq. (8) is no
longer significant and the boundary condition
at the conductor yields simply

[&0 QVO) = spo m
g2(P2 ~ 2)

and finally

ln which
V =go[1m& j,

epo (yo' —k') b'

2[p 27 2 $2/2

and will usually be found so small compared to
unity that the substitution of yo for y at times
in its derivation may be considered justified.

It is now possible to write the ratio of con-
duction current modulation density (pov. +sop&)
to the velocity modulation (v,). If the former is
denoted by P„Eq. (2A) may be altered to*

& =$./v, = —po/aS

This shows that the transconductance of the
velocity modulation tube, whether due to the
symmetrical wave of zero order or waves of
higher order will have essentially the same
general characteristics. For example, the waves
may occur in pairs and if the starting mechanism
is such as to introdUce velocity modulation into
the beam but no conduction current modulation
at some point along its length, ' then there will

be another point farther along the beam at
which the conduction current modulation present
in the beam will be a maximum. The distance
between these points will be that for which gobi
is an odd multiple of m/2 radians, l being the
distance between the two points. ' Since from
Eq. (18) the value of 6 is seen to decrease as

J„(Tb)=0. (14)
This ratio will be termed "wave transconductance"

and will be denoted by G .
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p„ increases, the wave transconductance. will

increase with p„, as will also the optimum
drift tube length.

An important consideration in comparing the
potential practical application of the waves of
various n's and m's is their distribution over the
cross section. For n=0, no=1 the wave will

vary with the Jo(Tr) function between r=0 and
&=b (T=poi/b) and so will have maximum
amplitude at r = 0, and will decrease to zero at
r=b. The (0,2) wave will have one reversal of
phase between r = 0 and r = b, advance to a
negative maximum then decrease to zero again
at r=b The. (0,3) wave will have two reversals,
the (0,4) wave three reversals, etc. The* waves
of n&0 will start at zero amplitude at the
origin, have m maximum points and (m —1)
reversals of phase between r = 0, and r = b before
returning to zero at r =b.

~2 P2
b'[1 —a) 0'/a&'g

(20)

Equation (20) indicates also that there is a
cut-oA' frequency corresponding to each value of
p„'/b2 and oP below which the waves will not
propagate, since then y2 becomes negative and
p becomes imaginary. If it is remembered that
k=a&/c, the cut-oR frequency, a&„ is found from

*These statements may be verified by a glance at
curves or tables of the J functions.

t' This result makes use of the approximation (co—A@0)
=oP which amounts to neglecting y'/y02 with respect to
unity. This is consistent with the approximation that has
been made throughout in neglecting the relativity correc-
tion to mass. It is evidently not difficult to omit these
approximations and obtain more precise expressions for
very high beam velocities if necessary.

Field waves

There are also solutions to Eq. (15) for which
the value of y is far removed from yo. If y is
very much less than yo' then (a& —yvo)" is very
nearly equal to oP. The quantity epo/m which we
shall call ~G' is recognized as the square of the
familiar natural angular frequency of oscillation
of a plasma of electron charge density po. Thus we
know that coo'/cu' is appreciably less than unity
for electron beam tubes, making Lt —~02/cu'] a
positive quantity. Eq. (15) is thus seen to have
solutions for which y2 is smaller than k2 these
values of y~ being given approximately by)

(20) to be given by

Qlg = tdp +c p~nP/b (21)

At cut-off, p =0 and the wave velocity is infinite.
As the frequency approaches infinity the wave
velocity decreases to c.

ZERo MAGNETIc FocUsING FIELD

Ii =Ee+e(OXH)/c. (22)

If there are no components of velocity other than
in the axial direction, then as before Ay=A, =O.
From Eq. (3)

A.= (k/y) 4 &, (23)

so that substitution in Eq. (1) shows the electric
and magnetic fields to be

BCg
jV—

'tn
Bg= ——Cg,

r

1 ink
~r +I &

r 7

k 84g
IIg

l9f
(24)

If these are substituted into Eq. (22) the condi-

Axial waves

When the magnetic focusing field does not
restrict the motion to the axial direction the
equations must contain additional variables.
Before attempting a general solution, however,
it seems pertinent to inquire whether the wave
just studied may still exist without the restrict-
ing action of the magnetic focusing field. It
would be of practical value to learn that there
is a space charge wave which in the complete
absence of focusing field will still possess only
the axial components of velocity and conduction
current modulation.

To answer this it may first be noted that in the
foregoing analysis every equation is still valid.
However it is necessary that additional equa-
tions be written if the radial and azimuthal
velocities are to be zero without the restricting
influence of the magnetic focusing field. To meet
these added restraints the force on the electron
in the azimuthal and radial directions must be
zero. Now the force on the electron is
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tion that the force components in the azimuthal
and radial directions be zero results in

ein e ein kvp
0 = — C g+—vpH„= C g

—1+—,
r c r cy

BC I e 84g
0 = —e ——vpHg ——e —1+

Br c Bf

kvp

Division of possible waves

Let us turn now to the more general case in
which radial and azimuthal velocities are pos-
sible. A convenient way to set up the equations
so that the various possible waves are disclosed
most easily is suggested by the following line of
thought. In a region bounded by a cylinder, free
of charge and in which the dielectric constant is
uniform, it is convenient to express the various
components of the electric and magnetic fields
in terms of E, and H„which satisfy the equations

(if, as usual, cross-product modulation terms are
neglected). These equations are both satisfied
when

y =ksp/c. (26)

Thus this "axial" wave, if it is to exist, must be a
very fast wave for the ratio vp/c is well below
unity in all practical cases making y much
less than k.

We have already seen that waves for which p
is less than k may occur above certain cut-off
frequencies for any given tube geometry and
electron density. There are obviously series of
discrete frequencies above the cut-off point for
which

p = kvp/c,

which frequencies are found by substituting this
value of y in Eq. (20). Since the purely axial
wave may exist at discrete frequencies for no
magnetic field and at any frequency (above a
certain cut-off frequency) for infinite magnetic
field, it appears that at some finite magnetic
field bands of frequencies will exist for which
these waves are possible.

cylindrical coordinates. It is convenient then to
speak of "E type" waves for which H, is zero
and the "H type" waves for which E, is zero. '
Now, consider an observer who moves with the
average velocity of the beam, vp. As is shown in
Appendix 8, this moving observer would set up
equations which are identical with those already
solved for the case of a cylindrical boundary by
Rayleigh' and more recently by others. ' The
dielectric constant would be a fictitious one de-
pendent upon electron density and frequency.

The moving observer might accordingly di-
vide the waves which he would predict into the E
and H types, all other field, velocity, and current
components being expressed in terms of E, and
H, . Now by use of the Lorentz transformations,
all these expressions could be transformed into
relations appropriate for a stationary observer,
H, and E, being invariant under the transforma-
tion, and the problem could be considered solved.
However, now that we are assured that all the
phenomena may be thus expressed in terms of
E, and H„ it will be well to discard the moving
observer and regard him as of only momentary
value in indicating a simple line of attack.

In Appendix C it is shown that E, and H, obey
the equations

(72+kE2)E. =O,

(72+k212)II =0

in which

k~'=k' 1— (3o)

These equations have solutions of the form

J [(k@2 ~2)$y]pieP

and
(31)

j [(k&2 +2)2y]pipP

The components of the first two of Eqs. (1B)

(g [c2(gp2 vppMpp]+cp(happ[(gp2 2MMp]
kE' —— (29)

c (ppp pp )
and

GOp

('7'+k ')E, =O,

(V2+k 2)a, =o,

whose solutions can immediately be written in

' See for instance "Hyper-Frequency Wave Guides" by
Carson, Mead and Schelkunoff, Bell Sys. Tech. J., 5, 15
(1936).

7 Rayleigh, Phil. Mag. , Vol. 43 (1897).' See for instance, Electricity and Magnetism, a text by
J. H. Jeans (Cambridge, 1927), page 604.
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&o
Eg y2+k2-

c

n o'vo BHz
E,—ik

r GDpc Br

COp

H„y2+k'—
c

n ~o2 —k E,+iy
(Ogc

may be rearranged to give

J.[(kE' —p') ~b] =0, (36)

and vg components in general, only the v, and

f, components being missing.

The E type wave

When H, =O the boundary condition at r =b
requires that

( Vpg Mp

Z„&e+ke —
) k+&—

~

C ) cope

(32)

so that

2 ~2 —P 2/$2 (37)
kn vp BE

=—H, —i y —m-
r c Br

( vol ooo'

He y'+k' —
) k+y—

~

E. C ) cope

For the space charge waves cry=~ —pep is very
small compared to or and approximations based
on this fact permit (37) to be solved for y, and
give the approximate relation

2/2 $2 2

7 Vp 1+
cPnm cP

p2 BEz—k
Goyc Br

'Yn
= ——H.+2

r
p coo( oe p e

These expressions, together with those for the + 1+
l

+ +
$2 Kooeoioe 52 ioe io 2)

velocities (SC) (9C) (10C), the currents (13C)
(14C) (1SC), and the charge density (21C) con- In the case of the fast field waves, coo is very
stitute the necessary relations for all the wave nearly equal to oo (unless the beam velocity is
quantities in terms of E, and H, very high) and ks' is given approximately by

The H type wave

Consider now the wave for which E, is zero.
The single boundary condition requires that
Eg vanish at r = b or that

J '[(keI' —y')'b] =0.

M —
GOp COp

=k' 1—
c M

which substituted in (37) yields

+p Pnm

62

(39)

(4o)

Designating these roots by q, we have from (30)
The cut-off frequency of these waves is given by

Goo7'=k' 1—
M

q~m
2

b2
(34) G P~~

Np =Mp +
b2

(41)

oeo =choo +& g~m /~ . (35)

Only values of p which are less than k are
evidently possible. Thus the H type of wave is
always a fast wave with a velocity of propaga-
tion exceeding c and a cut-off frequency given by

For both the space charge and the 6eld waves
only the following components may be present
in the Zo type waves: E., Z„, He, v„v., P„&.,
and pI. The E„waves in which n)0 will in
general have all components.

The n=0 or symmetrical H waves, which

might be designated as the Ho waves will have
only the following components: H„H„,Ee, v& and

Pe, all other field, velocity, current, and charge
density components being zero. The n&0 waves
will however have H. , H„Be, E, He, fe, $., »,
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APPENDIX A

From continuity we have

From continuity,

—Scopy = V ' $ =poeV E/ zcotl$ (48)

or

Vpp
(2A)

p» =+epo~ E/~'~.

Thus substitution in (18) yields

V E(1—epo/mes') =0,

V H=o

(58)

(This neglects modulation cross-products of p
and s and thus limits the theory to small signals. )
But

H
V'XE = ——

c B&'
(68)

dV, BV, BV, dS
+ —= i[co —yvo)v„

Bs 4 (4A)

mdv, ~dr =eE„

in which E, is the amplitude of the s modulation
component of E, e is the charge and ns is the mass
of the electron. Now

1 BE( epo)VXH=-
e 8$ 4 cd tp1~

which are identical with the equations for
a medium of uniform dielectric constant

for small signals and from Eqs. (1) and (3), E,is.
seen to be iven b

APPENDIX C
g y

Taking the curl of the 6rst of Eqs. (18) and
&*=&5'@i—&~.]= &[v —&'/v]@i. (SA) combining with the second yields

The above equations then yield

t.'pp
p] = C'y.

m (cv —yt'o)'

APPENDIX 8

(6A) or

1 B2E
~X~XE=

c B$ c Bf '
(1C)

(2C)

The moving observer would write, in his own
units and system of moving axes,

( '+&') — 5/ ' —~( )=o (3C)

1 BH
V'XE = ——

c

1' BE
V XH= +p, —

c Bt

V' E=pg

(18)

the s component of which is

(V'+fe')E. ia P,/e'+~gpss 0——

In a similar fashion it is found that

Now in the force equation (22), terms of type
vxH will not occur since cross-products of wave
components are being discarded. Thus

1 O'H
'7XV'XH= —'7X$ ——

c c2 R2
(5C)

$ =pov =p peE/$Mrri

happ BE

M tP B$

(28)
(V2+ u2)a, +(1/e)(r Xj),=O. (6C)

$„pq, and (VX/), must now be expressed in
terms of 8, and II,. This may be done as follows:



From the force equation (22)

iggg(&o —yvo) V.=eE„ (&C)

Q)o
V' 8=

Zp p(d y

Vp Vo

P 1 ~ogE* —(—P lvo+ Pov. ) i (19C)
C2

V*= goo ~*/gpooga2~~
QPp Vo Vo

p y
——ZQ)Ez

ZppMg C C

Mp

. -E
ZMg

and, similarly

o Vo
Z„——IIg,

ZppMg' C

Mp 'Vo

+g+—IIg
C

Vg=
Zpp(dg

in which the substitutions,

ogog = epo/m

have been introduced, Now

(10C)

(11C)

(12C)

p] =ZVoeo up —a
Z ~

C CVy (dg Mp

(21C)

This result may now be substituted into (13C)
to give

Mp c —Vo Goo cong —C cop Goy

e ogg(ogg —goo )
from which,

kg' = i(os,/—cE,+imp 1/E, +k',

~OLeg~ o
V g~ gj

+e G)o Polo 2(oMgj
(24C)

C Gdg
—Mp

Mp Vo

E,——Hg,
ZMy C

(14C)

mo Vo

pg
—— Eg+ H„. —

ZMg C

And from the continuity equation

poV*+VoPl=goo E*/i&g+Vopl~ (13C) 1 8 18$„
(V Xt) *=-—(rb) ——= po(V Xv).,

r Br r Bg
(2SC)

uo2 Vo ~

(V XE)„+ — (rH„)— —
ZGDy

crier

Vp 1 BIIg
+—— . (26C)cr 80

iMpl V'$ poV ' v O'vopl (16C) (V XE).= io)H, /c— (2'iC)

V ' v = goggp1/po

But from Eqs. (8C), (9C), and (10C),

o
V'. 8=--

ZppMg

and from V H =0 it follows that17C

1. 8 i BIIg
gyH. = (rH„)+-—

r Br r 89

Substltutlon ill (26C) 1 eslllts 111

(28C)

Vp 1 BIIr 1 I9

X V E+ — —— (r—Hg) . (18C—)
c r 80 r Br

o Z~ ZV py mo
(V X $),=———+ H. = II,. (29C)

Zcog C C . C

The binomial in the brackets is recognized as the
s component of (—curl H) and so by the second
and third of Eqs. (1B), (18C) becomes

kgr' ——k'+ —(V X &).=O'L1 —oooo/cog]. (30C)
C


