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The Nuclear Five-Body Problem*
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Perturbational and variational calculation~ with single-particle Legendre functions have
been made for the nuclear five-body problem of He'. The symmetric Hamiltonian is employed;
the values of the nuclear parameters chosen favor high binding. Kith a symmetric interaction,
Li' and He~ differ only in the Coulomb energy, states of the former lying about one Mev above
those of the latter. The calculations show that there is no state of He' which is stable against
dissociation into an alpha-particle and a neutron. There are two low-lying virtual levels, one of
~P, the other of '5 symmetry; according to the Hartree model, the energies of these states are
—11.7 and —6.5 Mev, respectively. Second-order perturbation calculations diminish the
interval 25—2I' radically and locate both the states in the neighborhood. of —19.0 Mev, The
last two results are roughly confirmed by variational calculations with two variation parameters
(alpha-. particle model), and —20 Mev may be set as a probable. lower bound to the position of
either state. These estimated values fall some seven Mev short of the experimental energy.

l. INTRODUCTION

LTHOUGH much attention has been dc-

' ~

voted to.. the theory of the light nuclei,
little consideration has been given to the nuclear
five-body problems. This is due partially to the
fact that He' and Li are of only Ininor experi-
mental importance, and partially to the fact
that Li' and higher nuclei o6er more challenging
problems and more stringent tests of theory.

There are reasons, ' however, why the five-

body problem is of interest. There are now avail-
able from several investigations data which lead
to an experimental energy of He'. Moreover, for
He', the 6rst-order (Hartree) approximation is
good, and convergence of higher terms is rapid.
For Li', the Hartree model is poor, and higher
terms converge slowly. This makes He' mathe-
matically interesting as an intermediate case. '

The symmetric Hamiltonian is assumed; the
potential between pairs of nuclear particles is
taken to be

V,;= —A 'exp( —r', ;/a')
)((w+mP, ;+bQ,;+hP, ;Q,;). (i)

For the parameters, the following values are
employed:

w = —2/15; m'= i4 ~15 b = 7/15 h = —4/1~
A =35 60 Mev ' a = 2 25 X 10 "cm. '

The values of m, rn, b, h are derived from the
Breit-Feenberg and Kemmer inequalities4 with
equality signs taken, a choice corresponding to
maximum binding in the Hartree approximation
for light nuclei.

Since individual partide coordinates are used,
the Hamiltonian. for the five-body problem is'

4 It' 2 k'
&a~j'+— ~a&E~k ~~+&I&~ ~a~

5 2' 5 2'II. ASSUMPTIONS AND PRELIMINARIES

The analysis is based upon the work of Mar-
genau and Carroll on Li'. Care has been taken
to use the same notation as far as possible, and
the reader is. referred to their paper' for an ex
planation of points which are omitted here.

+Coulomb interaction.

~ Part of a dissertation presented to the Faculty of the
Graduate School of Yale University in candidacy for the
degree of Doctor of Philosophy.

f Now with the Bell Telephone Laboratories, Red Bank,
New Jersey.' Preliminary results for the 'I' state of He' have been
presented at the New York meeting of the American
Physical Society. Cf. Phys. Rev. 55, 678 (1939).

~ H. Margenau and K. G. Carroll, Phys. Rev. 54, 705
{1938}.

The V'I, V'~ terms and the numerical factors in the
kinetic energy operators arise from the trans-
formation to the center of mass of the system.

The single-particle functions employed are
3 It has recently been suggested that an interaction of

shorter range and greater depth is needed to agree with
proton-proton scattering data. Cf. G. Breit, H. M. Thax-
ton and L. Eisenbud, Phys. Rev. 55, 603 (1939).

4 G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);
N. Kemrner, Nature 140, 192 (1937).

'H, Margenau and D. T. Karren, Phys. Rev. 52, 790
(1937).
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solutions of the Schrodinger equation for the
isotropic three-dimensional harmonic oscillator.
Thus, they are products of a radial Gaussian
exponential, an associated Legendre function,
and an azimuthal exponential, and they can be
designated by the usual spectroscopic notation.
The functions contain a common parameter
q (q or k, for the two-parameter scheme), to
be adjusted later for minimum energy. All func-
tions are symmetrized by writing them in
determinantal form. Generalized spin functions
are used:

proton, s, = —~; g3 neutron, s, = —~;
proton, s, =+-,'; g4 neutron, s, =+-,'.

For a detailed description of the method for
evaluating any matrix element II;;, reference 2

may be consulted.

III. FIRsT-ORDER CALcULATIoNs FoR THE Two
LowEsT STATEs

In this section, the Coulomb energy will be
omitted. In the Hartree approximation, the
lowest state of He' and Li5 has 'P symmetry and
corresponds to the configuration (1s)'2p. There-
fore, for He',

A'p = (1/5 .) '
l ski 's&2 'sgp 's&4 2Piq4l (2)

can be taken as the lowest state function. The
"fifth position" in „Pp may be filled equally well

by the product of 2Pi, 2Pp, or 2p i and either
ga or g4', the Hamiltonian is diagonal for these
six functions, and each corresponds to the same
total spin, total angular momentum, and energy.

For Li', the fifth position must contain qI or q~.
In terms of one variation parameter O. =qa',

„Pp gives the first-order energy

36 ( 1
„11„=3.5T ——Al 2+

15 E a+2) (o+2)
where T=5'/3fap. The e—xpression (3) has a
minimum of —12.3 Mev at 0- = 1.6.

In the same approximation, the next highest
state is of 'S symmetry, and is represented by
the configurations (1s)'2s and (1s)P(2P)2. In the
former configuration there is but one function:

fp= (1/5!) '
*l ski sqp sgp'sg4 2s j4l . (4)

There are 10 distinct functions in (1s)2(2P)2; each
of these is not alone an acceptable wave func-

tion, for the spin and isotopic spin matrices are
not properly diagonal. It is necessary to combine
all 10 functions linearly into a function, say, P„
which is suitably diagonalized. The method of
performing the combination is well known from
the theory of atomic spectra. ,fp and, Pi are
degenerate and may be combined linearly to
give an energy lower than that from either
function alone. Solution of the secular equation
corresponding to,gp and, Pi shows, however, that
this lowest energy differs so little from, HOO that
the configuration (1s)P(2p)2 may safely be
neglected. The excellence of (4) might be ex-
pected from the fact that, of the available 11
functions, it alone comprises the alpha-particle
group (closed s shell).

In terms of o, (4) yields the first-order energy

36 25 ( o.

.+op=3.8T.—~ 2+
l l

. (5)
15 (rr+2)2 ho+2)

This has a minimum of —7.1 Mev at cr =1.2.
The function (2) or (4) represents He' as an

alpha-particle group and a p neutron or s neu-
tron, respectively. This suggests the use of two
variation parameters, one (o =quip) for the four
1s particles, and one (~= hap) for the 2p or
2s neutron. The functions (2) and (4) then lead
to the first-order energies

~op= (2 4o+x)7'
( 1 ) 2 72 ( ir 1 pi2

4o+xJ 15 Eo.+2)
1152 ( K q

pip ( 1

15 Eo+ p) Co+ N+4)

1. 2 -9 (4 y 7
IIpp= T o'l 6 l+—x

1 —62 5 2 43 ) 2

70' 3K
+4+32 (os)2i4

(o+x)"2

36
(2-~ )

15 ho+2)
—,'(o+1) (2 —~) —o.

—+6hop14i~" 4

l (~+1)Lp(o+x)+1j —1}"'

+2(oP)"'(5(l' 3Po 6P+3)—, (—7)

' Cf. Section VI of this paper in regard to the calculation
of g; g; integrals with two parameter functions.
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l.O I.5 2.0

neutron to Inflnlty. Fo1 any value of 0',

(R'oo) „o—Xoo ——0.15To.

Th18 diRClence Rr1SCS beCRuSC IIoo and Xoo RIC

referred to different centers of mass (c.m.).
Analysis shows that, with respect to the c.m. of
He', the alpha-particle has 0.03TO. translational
energy, Rnd the neutron at in6nity has the
remaining 0.12TO. This "spurious" kinetic
cncIgy Recounts fol thc sh1f't 1n thc minimum of
IIoo for a=0.

Flg. 1. First-order energies in two parameters. Variation
with ft for o =2.6. (a) „H00, Eq. (6). (b),H00, Eq. (7).

P2 (o+ a) +1)' 1—
q

5/2

a= )t (1s),(2s) „dr=2+3(o x)s 4(x o)~—
&o+ ~)

6 is R nonorthogonality integral. The similar
integral for the P state vanishes identically on
account of a difference in orbital angular
momentum.

For the alpha, -particle, the ground state func-
tion

go=(1/4!)i~ssg spy ss8. ss4~

gives Koo ——2.25To —(72/15)A(o/(o+2)) '*, which
has a minimum of' —25.2 Mev at o.=2.6. The
quantity 1/o* measures the separation of the
particles within the alpha-particle.

In the plane z=O, the energies (6) and (7)
hRVC shallow minima at 0 = 2.4. Each expless1on
difkrs little in the two planes o-=2.4 and 2.6,
If the value 2.6 is adopted for o., „IIoo and, IIop
are evaluated quite close to their minima, and,
'in addition, „fo or,Po represents exactly an
alpha-particle in its normal state and a p or
s neutron, respectively.

Figure 1 shows the variation of (6) and (7) with
a for the 6xed value o-=2.6. The 5 state curve
has a very shallow minimum at about a=0.6;
the I' state curve has no minimum at all.

The quantity 1/K measures the separation
between the alpha-particle and the neutron.
The point ~ =0 corresponds to the removal of the

TABI.E I. fist of exrited cowffgeretions foi the 2I' and '5
stCt8$ of He~.

P STATE 8 STATE

DOUBI.Y EXCITED
NO.
OF

FUNC-
TIONS

CONFIGU-
RATION

(1s)43p
(1s)'2p2s 7
(1s)32p3d 21
(»)'(2p)'

44

QUADRUPLY EXCITED
NO.
OF

FUNC-
TIONS

(1s)44p
(1s)'2p3s 7
(1s)'2p4d 21.
(1s)'2s3p 7
(1s)'3d3p 21
(1s)'3d4f 35
(1s)'(2p)'3p 33
(1s)'(2s)'2p 6
(1s)'(3d)'2p 30

161

DOUSE EXCITED
NO.
OF

FVNC»
TIONS

(1s)43s 1
(1s)'2p3p 21
(1s)'(2s)' 3
(1$)~(3d)~ 17
(1s)'(2p)'2s 18

60

7 W. Heisenberg, Zeits. f. Physik 96, 473 (1935).

The Coulomb energy (C.E.) of the lowest
states of He' is due to the single interaction of
the two protons in the s shell; for both one- and
two-parameter functions, the C.E. of He' is
given approximately by previous calculations~
with one parameter for He'. Since, in 6rst-order
approximation, the excited proton of both Li~

and Lis is in a 2p state, the Coulomb energies of
these two nuclei are approximately equal. From
previous work, however, only the C.E. of Li' for
one-parameter functions is known.

The expressions for the Coulomb term in the
6rst-order energy are

He'. Z, =0.Slots Mev (1 or 2 parameters)
Li'. Z, =1.43a'* Mev (1 parameter only).

The inclusion of the C.E. raises the curves of
Fig. 1 by 0.51(2.6)&=0.8 Mev. For Li' with two-
pRIRIQetc1 functions, 1n thc Icglon of phys1cal
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interest (x (&r), the C.E. will raise the He'
energy surface less than (1.43—051)(2.6)' —1.S
Mev. Since the lowest states of Li' and He' differ
only in the Coulomb term and hence by about 1

Mev, the remainder of this paper will be de-
voted to He' alone. Higher order Coulomb cor-
rections will be neglected.

V. PERTURBATION CALCULAT IONS W'ITH

ONE PARAMETER

general potential (1) is straightforward though
lengthy; the only new feature is the necessity
of investigating all double spin products Q;;Q;o
and Q;;Q

Values of Gq and of the sum IIp0+Be
+B~"'+G@are listed in Table II for both states.
Since the second-order energy Bq&') due to quad-
ruply excited states has been explicitly computed
for the I' state, better bounds G8 may be calcu-
lated for this state:

Schrodinger per turbation theory gives the T~B1.E II. S~comd' org~r p~rtgrgat~olaL caLcNLat~o~s for tIE~

energy
'I' arid 'S states of He'. SNrnnzary of nNmericaL resnLts.

~P STATE

1.0 1.2 1.4 1.6 1.8 0.8 1.0 1.2 1.4

The sum is to be taken over all excited states P;.
The denominator is the difference of unper-
turbed energies:

~p Ei = sTo,

H00
Ec

ED(&)
Oq

Total

—10.0
+0.5—4.0—6.0—19.5

—11.4
+0.6-3.9-4.6

-19.3

—12.1
+0.6—3.8-3.9—19.2

—12.3 -12.0
+0.6 +0.7-3.8 —3.8

Eq&~) —3.0 -2.7 —2.4 -2.1 -1.9
6g —2.0 -1.3 —1.0

Hoo+ +6g —18.5 —18,7 —18.7

—5.7
+0.5—6.2—97—21,1

—6.7
+0.5—6.9-8.6—21.7

—7.1 —6.9
+0.6 +0.6—7.4—7.6—21.5

where n is the degree of excitation of f; relative
to Pp.

Table I is a list of doubly and quadruply ex-
cited configurations for the 'P state and a list of
doubly excited configurations for the '5 state;
all configurations are included whose functions
combine with Pp. The number of different func-
tions subsumed by each configuration is also
given.

Table II gives numerical resu1ts for both states.
The Coulomb energy, the first-order energy, and
the second-order energy (corresponding to the
pertinent functions of Table I) are listed for
significant values of a..

It is desirable to find the convergence limit of
the second-order energy:

Gg is the second-order energy due to all states
higher than doubly excited; the smallest de-
nominator in —Gg is 4Ta. No kinetic energy
terms appear in G@ on account of selection rules.
From matrix algebra

—Gq ((1/4To) I ( V') pp
—Vpp' —ZD Vp,'I.

On the right-hand side, the only unknown is
(V') oo. The calculation of this quantity with the

—Gs ((I/6T~) }(V')oo —Voo' —&~ Vo"—~o Vo"}.
Values of G8 and of the sum IIpp+Eq+ED"~
+E~&'&+G8 are given in Table II for the I' state.

VI. FURTHER VARIATIONAL CALCULATIONS

wITH Two PARAMETERs

In an effort to improve the first-order energy
(6) for the P state, the function

4 = Ao+~VAo

has been used. Here „Po is the I' state function

(2) in two parameters, p is another parameter,
and V= g J;;.The function (8) iterates the ordi-

4&g

nary potential. From test work on H', it appears
that such iteration may be almost as effective as
iteration of the total Hamiltonian.

With (8), the variational energy is

~op+2~(~V) oo+I '(~ V') ooE=
1+2' Vpp+ p'( V') pp

The parameter p. is to be eliminated by setting
BZ/By=0 and sol~ing for y. o The calculation
of the denominator of (9) is simple. In connection
with the numerator, it is to be noted that the

s Since ~&0 is complex, in general IJ, will also be complex.
In the present work, however, p is real.
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V'; V'; terms cannot be evaluated by the scheme'
used for one-parameter work. The fundamental
relation between coordinate and momentum
matrices, upon which the scheme depends, is not
valid for a set of functions in which some func-
tions have one parameter and the rest have a
different parameter. Hence, the V'; ~ V'; integrals
must here be computed in a straightforward
fashion. On this account, the numerator of (9),
especially (IXV') 00, involves considerable in-

tegl ation.
For 0=2.6, and with p given its minimizing

value, (9) yields energies almost uniformly lower
than (6).The lowering is slight: between 0.3 and
0.4 Mev for 0&a&2.

It is worthy of mention that for «=0 (alpha-
particle referred to c.m. of He'), „IIoo is lowered

0.37 Mev. A four-particle function similar to
(&), where „Po is replaced by @0, lowers Xoo ex-
actly the same amount. Thus, the difference in

the kinetic energy terms due to change of center
of mass has no effect upon the more refined

calculation of this section; the lowering given by
(9) at «=0 is a true lowering of the alpha-particle
energy. It is interesting that iteration of the
potential is not nearly so effective as a linear
variation function scheme. '

VII. DrscvssroN

The order and the spacing of the 5 and I' states
will be discussed first. The Hartree model gives
about 5 Mev. for the difference '5—'I'. Table II
shows that the second-order calculations di-
minish the interval so radically that, with the
inclusion of the bounds Gq, the 5 state apparently
may lie below the I' state. Examination of
Table II shows, however, that as second-order
energies from functions of higher excitation are
gradually included, the minimizing value of 0.

becomes progressively smaller. At the smaller
values of 0., convergence is slower, and the
bounds G are larger. This is true for both states.
In addition, the convergence of the second-order
energies is slower for the 5 than for the I' state;
the bounds Gq are poorer for the former than
for the latter. In view of these facts, it may be
expected that further second-order approxima-

tion would locate the 5 state slightly above the
P state.

For the 5 state, some matrix elements IIo;
involve only s functions. Such integrals are
large, because, for oscillator functions, the
strongest combination occurs between functions
of the same symmetry. On the other hand, for
the I' statem, ost IIo; contain 1s and various p
functions, and these integrals are small because
of the difference in the orbital (angular momen-

tum) part. For He', the Hartree model appears
to give correctly the order of the low-lying levels
but it does not give the spacing between levels
accurately, because second order eg-ects depend
critically upon the orbital symmetry of the level

concerned. There are other instances of this sym-
metry effect. For Li', Margenau-and CarrolP
found that the interval 'D —'5, which is 2 Mev
according to the Hartree model, becomes 6
Mev upon. higher approximation. Margenau"
observes no appreciable change in the interval
'5 (He') —'5 (Li') upon the inclusion of second-
order terms, because both levels possess the
same orbital symmetry.

The two-parameter variational calculations of
Sections III and VI constitute a partial check
upon the reliability of the perturbational work
with one parameter. A 2p or 2s function with
a parameter ~ is equivalent to an expansion of p
or s functions, respectively, with the parameter
cr. For r =2.6 and 0 & ~ & 2, calculation shows
that several coe%eients in each expansion are
large. The curves of Fig. 1 show, therefore, the
variational energy corresponding to several
important functions. Further variational re6ne-
ment may change the shape of the curves, es-
pecially the curve for the I' state, but marked
lowering is not to be expected.

It is to be emphasized that the general poten-
tial (1) has been used throughout. In regard to
more extended variational calculations, one may
anticipate that, since there is a considerable
correlation' " between variational and second-
order perturbational results, many one-param-
eter functions would be needed for a close
approximation to the convergence limit. Like-
wise, in an iteration scheme, many powers of V
or H would be required. "

'H. Margenau and W. A. Tyrrell, Jr., Phys. Rev. 54,
422 (1938}.

"To be published soon.
G Horvay, Phys. Rev. SS, 70 (1939}.
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As to the results of experimental investiga-
tions involving He, Killiams, Shepherd and

Haxby, '2 from a study of the reaction Li" (d, n),
concluded that He' is unstable by 0.84 Mev
against dissociation into an alpha-particle and a
neutron. The work of Rumbaugh, Roberts and
Hafstad" seems in agreement with this. Staub
and Stephens, "from experiments on the scatter-
in of neutrons by alpha-particles, support this
energy value and conclude that this unstable
state of He' has a 'I' symmetry. In marked con-
trast to these harmonious results, Joliot and
Zlotowski" claim that He' has a stable state,
located 2.2 Mev below dissociation. Bethe" has
indicated reasons for rejection of the Johot
result, It appears, then, that the lowest energy
of He' is —27.6+0.8= —26.8 Mev.

In the scattering of neutrons by He4, only one
resonance was observed. '4 The present calcula-
tions suggest that both s and p waves of the
incident neutron participate in this resonance.
Staub and Stephens have concluded that the
scattering of p waves must predominate in

order to account for the height of the resonance
peak. The present suggestion in no way vitiates

' J. H. Williams, W. -G. Shepherd and R. D. Haxby,
Phys. Rev. 51, 888 (1937); 52, 390 (1937). Cf. also M. S.
Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 318—319
(1937)."L.H. Rumbaugh, R. B. Roberts and L. R. Hafstad,
Phys. Rev. 54, 657 (1938}."H. Staub and W. E. Stephens, Phys. Rev. SS, 131
(1939)."F.Joliot and I. Zlotowski, Comptes rendus 206, 1256
(1938)."H. A. Bethe, Phys. Rev. 55, 434 (1.939).

their analysis, for, from the figures they give,
a considerable amount of s scattering would give
only a small contribution to the total resonance.

VIII. Cown, Usrows~

From a study of Table II and Fig. 1, it is con-
cluded that the 'I' and '5 levels of He' lie close
together, with the 'P probably lower. Kith a
symmetric Hamiltonian, the value —20 Mev
may be set as a probable lower bound to the
position of these states. From the work of
Carroll" on Li', it is inferred that the set of
parameters recently proposed by Breit' will give
levels for He' which are even higher. The esti-
mate given above falls some 7 Mev short of the
experimental value. The discrepancy between
theory and experiment has the same direction
and about the same magnitude as for Li' and
Li~. The general conclusions which may be
drawn from the present results have already
been given. "

The writer is indebted to Professor Henry
Margenau for suggesting this problem and for
advice and supervision throughout the course of
the work.

*¹teadded in proof:—Since this manuscript was sub-
mitted (or publication, there has appeared an article by
S. Watenabe, Zeits. f. Physik 112, 159 (1939), in which
the nuclear 6ve-body problem is also treated. Watenabe's
analysis differs in some detail from the present work; his
general results, however, are in substantial agreement with
the author's conclusions,"K. G. Carroll, Phys. Rev. 55, 1128(A) (1939),

' W. A. Tyrrell, Jr. , K. G. Carroll and H. Margenau,
Phys. Rev. 55, 790 (1939}.


