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Perturbational and variational calculations with single-particle Legendre functions have
been made for the nuclear five-body problem of He?. The symmetric Hamiltonian is employed;
the values of the nuclear parameters chosen favor high binding. With a symmetric interaction,
Li% and He® differ only in the Coulomb energy, states of the former lying about one Mev above
those of the latter. The calculations show that there is no state of He® which is stable against
dissociation into an alpha-particle and a neutron. There are two low-lying virtual levels, one of
2P, the other of 25 symmetry; according to the Hartree model, the energies of these states are
—11.7 and —6.5 Mev, respectively. Second-order perturbation calculations diminish the
interval 25 —2P radically and locate both the states in the neighborhood of —19.0 Mev. The
last two results are roughly confirmed by variational calculations with two variation parameters
(alpha-particle model), and —20 Mev may be set as a probable.lower bound to the position of
either state. These estimated values fall some seven Mev short of the experimental energy.

I. INTRODUCTION

LTHOUGH much attention has been de-
voted to the theory of the light nuclei,
little consideration has been given to the nuclear
five-body problems. This is due partially to the
fact that He® and Li® are of only minor experi-
mental importance, and partially to the fact
that Li® and higher nuclei offer more challenging
problems and more stringent tests of theory.
There are reasons, however, why the five-
body problem is of interest. There are now avail-
able from several investigations data which lead
to an experimental energy of He®. Moreover, for
He?, the first-order (Hartree) approximation is
good, and convergence of higher terms is rapid.
For Li% the Hartree model is poor, and higher
terms converge slowly. This makes He® mathe-
matically interesting as an intermediate case.!

II. ASSUMPTIONS AND PRELIMINARIES

The analysis is based upon the work of Mar-
genau and Carroll on Lif. Care has been taken
to use the same notation as far as possible, and
the reader is referred to their paper? for an ex-
planation of points which are omitted here.

* Part of a dissertation presented to the Faculty of the
Graduate School of Yale University in candidacy for the
degree of Doctor of Philosophy.

1 Now with the Bell Telephone Laboratories, Red Bank,
New Jersey.

1 Preliminary results for the 2P state of He® have been
presented at the New York meeting of the American
Physical Society. Cf. Phys. Rev. 55, 6%8 (1939).

( ;H) Margenau and K. G. Carroll, Phys. Rev. 54, 705
1938).

The symmetric Hamiltonian is assumed; the
potential between pairs of nuclear particles is
taken to be

ii=—A exp(—7";/a*)
X (w+mPij+0Qij+hPi;Qi). (1)
For the parameters, the following values are
employed :
w=—2/15; m=14/15;
A4 =35.60 Mev;

b=T7/15; h=—4/15;
a=2.25X10"13 cm.?

The values of w, m, b, h are derived from the
Breit-Feenberg and Kemmer inequalities* with
equality signs taken, a choice corresponding to
maximum binding in the Hartree approximation
for light nuclei.
Since individual particle coordinates are used
the Hamiltonian for the five-body problem is®
4 n? 2 A
H=—- ’—zkvk2+_ — 2>V
52M

VitZis 1V
S2M

+Coulomb interaction.

The V},+V; terms and the numerical factors in the

kinetic energy operators arise from the trans-

formation to the center of mass of the system.
The single-particle functions employed are

3 It has recently been suggested that an interaction of
shorter range and greater depth is needed to agree with
proton-proton scattering data. Cf. G. Breit, H. M. Thax-
ton and L. Eisenbud, Phys. Rev. 55, 603 (1939).

4 G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);
N. Kemmer, Nature 140, 192 (1937).

( 51;) Margenau and D. T. Warren, Phys. Rev. 52, 790
1937).
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solutions of the Schrédinger equation for the
isotropic three-dimensional harmonic oscillator.
Thus, they are products of a radial Gaussian
exponential, an associated Legendre function,
and an azimuthal exponential, and they can be
designated by the usual spectroscopic notation.
The functions contain a common parameter
q (g or k, for the two-parameter scheme), to
be adjusted later for minimum energy. All func-
tions are symmetrized by writing them in
determinantal form. Generalized spin functions
are used :

m~proton, s,= —3%; nps~neutron, s,= —3;
ne~proton, s,=-+3%; ns~neutron, s,=+3.

For a detailed description of the method for
evaluating any matrix element H;;, reference 2
may be consulted.

III. FirsT-ORDER CALCULATIONS FOR THE Two
LOWEST STATES

In this section, the Coulomb energy will be
omitted. In the Hartree approximation, the
lowest state of He® and Li® has 2P symmetry and
corresponds to the configuration (15)42p. There-
fore, for He?,

Wo=(1/5Dsn1-sna-5m5 504 2p1ma|  (2)

can be taken as the lowest state function. The
“fifth position” in e may be filled equally well
by the product of 2p¢1, 2po, or 2p_; and either
n3 or n4; the Hamiltonian is diagonal for these
six functions, and each corresponds to the same
total spin, total angular momentum, and energy.

For Li3, the fifth position must contain 5y or 7.

In terms of one variation parameter o=ga?
Vo gives the first-order energy

3

36 1 T 3
pH00=3.5To—-—A(2+ )( ) , )
15 o+2 a+2

where T=h?/Ma?. The expression (3) has a
minimum of —12.3 Mev at ¢=1.6.

In the same approximation, the next highest
state is of %S symmetry, and is represented by
the configurations (15)42s and (1s5)3(2p)2%. In the
former configuration there is but one function:

Mo=(1/5D) sn1-sma-5m3-5n4-25m4].  (4)

There are 10 distinct functions in (15)3(2p)?; each
of these is not alone an acceptable wave func-
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tion, for the spin and isotopic spin matrices are
not properly diagonal. It is necessary to combine
all 10 functions linearly into a function, say .,
which is suitably diagonalized. The method .of
performing the combination is well known from
the theory of atomic spectra. 0o and 7 are
degenerate and may be combined linearly to
give an energy lower than that from either
function alone. Solution of the secular equation
corresponding to g and &1 shows, however, that
this lowest energy differs so little from Hy, that
the configuration (1s5)3(2p)? may safely be
neglected. The excellence of (4) might be ex-
pected from the fact that, of the available 11
functions, it alone comprises the alpha-particle
group (closed s shell).

In terms of o, (4) yields the first-order energy

(6152)2](;2) ®)

This has a minimum of —7.1 Mev at ¢=1.2.

The function (2) or (4) represents He® as an
alpha-particle group and a $ neutron or s neu-
tron, respectively. This suggests the use of two
variation parameters, one (¢=gqa?) for the four
1s particles, and one (kx=ka?) for the 2p or
2s neutron. The functions (2) and (4) then lead
to the first-order energies :®

I)H00= (2.40'+ K) T
+3. 2T¢77/2x5/2(

H00—3 8T0"“—5A[

o+« (a—l—Z

1152 K
_ Aa3/2( ) ( ) , (6)
15 o+« ct+xk+4

1 (219 /4 7
{—T[—a(——A2 +—K
1—-A%25 L2

+44/3A(ck)7*

sH00:

(U+K)7/2]

36 o 3/2
() e
15 c+2

—/6Ag?4x314 3(e+1)(k—0)—0
{(e+D[3(c+r)+1]—1}52

+%(oB)3’2(SB2—SBo~6ﬁ+3)]}, )

8 Cf. Section VI of this paper in regard to the calculation
of v:-v; integrals with two parameter functions.
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F1c. 1. First-order energies in two parameters. Variation
with « for ¢=2.6. (a) pHOO’ Eq (6) (b) sHOO, Eq (7).

where

K

3o+ +1]2—1

B8

AEf(ls),(Zs),‘drz 24/3(ek)¥4(k— 0)(6-1*— K)m.

A is a nonorthogonality integral. The similar
integral for the P state vanishes identically on
account of a difference in orbital angular
momentum.
For the alpha-particle, the ground state func-
tion
do=(1/41)¥|sny-5n2- 513574

gives 3Coo=2.25T¢— (72/15)A(¢/(c+2))}, which
has a minimum of —25.2 Mev at ¢=2.6. The
quantity 1/¢* measures the separation of the
particles within the alpha-particle.

In the plane k=0, the energies (6) and (7)
have shallow minima at ¢=2.4. Each expression
differs little in the two planes ¢=2.4 and 2.6.
If the value 2.6 is adopted for o, ,Hoo and Hoo
are evaluated quite close to their minima, and,
in addition, o or & represents exactly an
alpha-particle in its normal state and a p or
s neutron, respectively.

Figure 1 shows the variation of (6) and (7) with
k for the fixed value ¢=2.6. The S state curve
has a very shallow minimum at about «=0.6;
the P state curve has no minimum at all.

The quantity 1/«* measures the separation
between the alpha-particle and the neutron.
The point k=0 corresponds to the removal of the

WARREN A. TYRRELL,
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neutron to infinity. For any value of o,
(Ho0) k=0—3C00=0.15T0.

This difference arises because Hy and 3Cqy are
referred to different centers of mass (c.m.).
Analysis shows that, with respect to the c.m. of
He?, the alpha-particle has 0.037¢ translational
energy, and the neutron at infinity has the
remaining 0.127¢. This “spurious” kinetic
energy accounts for the shift in the minimum of
Hoo for k=0.

IV. Tue CouLoMB ENERGY

The Coulomb energy (C.E.) of the lowest
states of He? is due to the single interaction of
the two protons in the s shell; for both one- and
two-parameter functions, the C.E. of He® is
given approximately by previous calculations’
with one parameter for He*. Since, in first-order
approximation, the excited proton of both Li®
and Li®is in a 2p state, the Coulomb energies of
these two nuclei are approximately equal. From
previous work, however, only the C.E. of Li® for
one-parameter functions is known.

The expressions for the Coulomb term in the
first-order energy are

He?: E,=0.51¢% Mev (1 or 2 parameters)
Li%: E,=1.430* Mev (1 parameter only).

The inclusion of the C.E. raises the curves of
Fig. 1 by 0.51(2.6)¥=0.8 Mev. For Li® with two-
parameter functions, in the region of physical

TaBLE 1. List of excited configurations for the 2P and %S
states of He?.

P STATE S StATE

DousBLy Excn;izn QUADRUPLY EXCIT]‘\IIED
o.

DouBLY EXCITED
0. No.

OF OF OF

CoNFIGU- FuNc- CoNFIGU- Func- CONFIGU- Func-
RATION TIONS RATION TIONS RATION TIONS
(15)13p 1| (1s)4p 1| (15)13s 1
(15)32p2s 7 1 (15)%2p3s 7 | (15)32p3p 21
(15)32p3d 21 | (15)32p4d 21 | (15)3(2s)? 3
(1s)2(2p)3 - 15 | (15)%253p 7 | (15)3(3d)? 17

— | (1)%3d3p 21 | (15)2(2p)22s 18
44 | (15)13d4f 35 —
(15)2(2p)23p 33 60
(1s)2(25)22p 6
(15)2(3d)22p 30

161

7 W. Heisenberg, Zeits. f. Physik 96, 473 (1935).
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interest (k<o), the C.E. will raise the He?
energy surface less than (1.43-0.51)(2.6)}==1.5
Mev. Since the lowest states of Li® and He? differ
only in the Coulomb term and hence by about 1
Mev, the remainder of this paper will be de-
voted to He® alone. Higher order Coulomb cor-
rections will be neglected.

V. PERTURBATION CALCULATIONS WITH
ONE PARAMETER

Schrédinger perturbation theory gives the
energy

| Hos| 2

E=H00+Z’ =Ho+E®.

g 0 Lug

The sum is to be taken over all excited states ;.
The denominator is the difference of unper-
turbed energies:

EO—E,': -nT0',

where # is the degree of excitation of y¥; relative
to §[/o.

Table I is a list of doubly and quadruply ex-
cited configurations for the 2P state and a list of
doubly excited configurations for the %S state;
all configurations are included whose functions
combine with . The number of different func-
tions subsumed by each configuration is also
given.

Table I gives numerical results for both states.
The Coulomb energy, the first-order energy, and
the second-order energy (corresponding to the
pertinent functions of Table I) are listed for
significant values of ¢.

It is desirable to find the convergence limit of
the second-order energy:

| Hoi?

0 1

E®=Y"

=Ep®+Go.

Gq is the second-order energy due to all states
higher than doubly excited; the smallest de-
nominator in —Ggq is 47¢. No kinetic energy
terms appear in Gg on account of selection rules.
From matrix algebra

_GQ<(1/4T0'){(V2)00— VooZ—EDVoiz}.

On the right-hand side, the only unknown is
(V?)go. The calculation of this quantity with the
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general potential (1) is straightforward though
lengthy; the only new feature is the necessity
of investigating all double spin products Q;;Q;x
and Qi,‘le.

Values of Gg and of the sum Hy+Ec¢
+Ep®—+Ggq are listed in Table 11 for both states.
Since the second-order energy Eqo® due to quad-
ruply excited states has been explicitly computed
for the P state, better bounds Gs may be calcu-
lated for this state:

TaBLE 1I. Second-order perturbational calculations for the
2P and 2S states of Heb. Summary of numerical results.

2P STATE 28 StaTE

o 1.0 1.2 14 1.6 18 0.8 1.0 1.2 14
Hoo —10.0 —11.4 —12.1 —12.3 =120} —5.7 —6.7 —7.1 —6.9

¢ +0.5 406 +0.6 406 +0.7| 405 405 -40.6 +40.6
Ep® —4.0 -39 —-38 —38 —38| —6.2 —69 —74
Go —6.0 —4.6 —3.9 —9.7 —86 —T7.6
Total —19.5 —19.3 —19.2 —21.1 —21.7 —215
Eq® —-3.0 —2.7 ~24 -21 -19
Gs -20 —13 -~-1.0

Hoo+---+Gg —185 —18.7 —18.7

—Gs<(1/6T0){(V?)oo— Vos?—Zp Vit —Zq Voui?}.

Values of Gg and of the sum Hy+E¢+Ep®
+Eq®+Gg are given in Table II for the P state.

VI. FURTHER VARIATIONAL CALCULATIONS
wITH Two PARAMETERS

In an effort to improve the first-order energy
(6) for the P state, the function

\l/=p¢0+ﬂvvp‘l’0 (8)

has been used. Here ¢, is the P state function
(2) in two parameters, u is another parameter,

and V=3 J;;. The function (8) iterates the ordi-
>1
nary potential. From test work on H3, it appears

that such iteration may be almost as effective as
iteration of the total Hamiltonian.
With (8), the variational energy is

E_Hoo+2#(HV)oo+#2(HV2)oo

)
14-2uVoo+u2 V%00

The parameter u is to be eliminated by setting
dE/du=0 and solving for p.® The calculation
of the denominator of (9) is simple. In connection
with the numerator, it is to be noted that the

8 Since ,¥o is complex, in general p will also be complex.
In the present work, however, u is real.
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V;-V; terms cannot be evaluated by the scheme?
used for one-parameter work. The fundamental
relation between coordinate and momentum
matrices, upon which the scheme depends, is not
valid for a set of functions in which some func-
tions have one parameter and the rest have a
different parameter. Hence, the V;-V; integrals
must here be computed in a straightforward
fashion. On this account, the numerator of (9),
especially (HV?), involves considerable in-
tegration.

For ¢=2.6, and with u given its minimizing
value, (9) yields energies almost uniformly lower
than (6). The lowering is slight : between 0.3 and
0.4 Mev for 0<xk<2.

Tt is worthy of mention that for k=0 (alpha-
particle referred to c.m. of He?), ,[H o is lowered
0.37 Mev. A four-particle function similar to
(8), where ¥, is replaced by ¢, lowers 3Coo ex-
actly the same amount. Thus, the difference in
the kinetic energy terms due to change of center
of mass has no effect upon the more refined
calculation of this section ; the lowering given by
(9) at k=0 is a true lowering of the alpha-particle
energy. It is interesting that iteration of the
potential is not nearly so effective as a linear
variation function scheme.®

VII. DiscuUssION

The order and the spacing of the Sand P states
will be discussed first. The Hartree model gives
about 5 Mev. for the difference 2S—2P. Table II
shows that the second-order calculations di-
minish the interval so radically that, with the
inclusion of the bounds G, the S state apparently
may lie below the P state. Examination of
Table II shows, however, that as second-order
energies from functions of higher excitation are
gradually included, the minimizing value of ¢
becomes progressively smaller. At the smaller
values of ¢, convergence is slower, and the
bounds G are larger. This is true for both states.
In addition, the convergence of the second-order
energies is slower for the S than for the P state;
the bounds Ggq are poorer for the former than
for the latter. In view of these facts, it may be
expected that further second-order approxima-

9 H. Margenau and W. A. Tyrrell, Jr., Phys. Rev. 54,
422 (1938).
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tion would locate the S state slightly above the
P state.

For the S state, some matrix elements Ho;
involve only s functions. Such integrals are
large, because, for oscillator functions, the
strongest combination occurs between functions
of the same symmetry. On the other hand, for
the P state, most Hy; contain 1s and various p
functions, and these integrals are small because
of the difference in the orbital (angular momen-
tum) part. For He?, the Hartree model appears
to give correctly the order of the low-lying levels
but it does not give the spacing between levels
accurately, because second-order effects depend
critically upon the orbital symmetry of the level
concerned. There are other instances of this sym-
metry effect. For Li%, Margenau and Carroll?
found that the interval 3D —3S, which is 2 Mev
according to the Hartree model, becomes 6
Mev upon higher approximation. Margenau'
observes no appreciable change in the interval
1S (He®) —3S (Li®) upon the inclusion of second-
order terms, because both levels possess the
same orbital symmetry.

The two-parameter variational calculations of
Sections III and VI constitute a partial check
upon the reliability of the perturbational work
with one parameter. A 2p or 2s function with
a parameter « is equivalent to an expansion of p
or s functions, respectively, with the parameter
0. For 6=2.6 and 0<«k<2, calculation shows
that several coefficients in each expansion are
large. The curves of Fig. 1 show, therefore, the
variational energy corresponding to several
important functions. Further variational refine-
ment may change the shape of the curves, es-
pecially the curve for the P state, but marked
lowering is not to be expected. '

It is to be emphasized that the general poten-
tial (1) has been used throughout. In regard to
more extended variational calculations, one may
anticipate that, since there is a considerable
correlation? 1 between variational and second-
order perturbational results, many one-param-
eter functions would be needed for a close
approximation to the convergence limit. Like-
wise, in an iteration scheme, many powers of V
or H would be required.!!

10 To be published soon.
11 G, Horvay, Phys. Rev. 55, 70 (1939).



NUCLEAR FIVE-BODY PROBLEM

As to the results of experimental investiga-
tions involving He® Williams, Shepherd and
Haxby,2 from a study of the reaction Li7 (d, ),
concluded that He® is unstable by 0.84 Mev
against dissociation into an alpha-particle and a
neutron. The work of Rumbaugh, Roberts and
Hafstad® seems in agreement with this. Staub
and Stephens,!* from experiments on the scatter-
in of neutrons by alpha-particles, support this
energy value and conclude that this unstable
state of He® has a 2P symmetry. In marked con-
trast to these harmonious results, Joliot and
Zlotowski'® claim that He® has a stable state,
located 2.2 Mev below dissociation. Bethe!® has
indicated reasons for rejection of the Joliot
result. It appears, then, that the lowest energy
of He®is —27.64+0.8=—26.8 Mev.

In the scattering of neutrons by He?, only one
resonance was observed.!* The present calcula-
tions suggest that both s and p waves of the
incident neutron participate in this resonance.
Staub and Stephens have concluded that the
scattering of p waves must predominate in
order to account for the height of the resonance
peak. The present suggestion in no way vitiates

127, H. Williams, W. -G. Shepherd and R. O. Haxby,
Phys. Rev. 51, 888 (1937); 52, 390 (1937). Cf. also M. S.
Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 318-319
(1?33174)H Rumbaugh, R. B. Roberts and L. R. Hafstad,
Phys. Rev. 54, 657 (1938).

1;‘3];) Staub and W. E. Stephens, Phys. Rev. 55, '131
( 15 F.'Joliot and I. Zlotowski, Comptes rendus 206, 1256

(1938).
16 H, A. Bethe, Phys. Rev. 55, 434 (1939).
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their analysis, for, from the figures they give,
a considerable amount of s scattering would give
only a small contribution to the total resonance.

VIII. CoNCLUSIONS*

From a study of Table II and Fig. 1, it is con-
cluded that the 2P and 2S levels of He? lie close
together, with the 2P probably lower. With a
symmetric Hamiltonian, the value —20 Mev
may be set as a probable lower bound to the
position of these states. From the work of
Carroll'” on Li%, it is inferred that the set of
parameters recently proposed by Breit® will give
levels for He® which are even higher. The esti-
mate given above falls some 7 Mev short of the
experimental value. The discrepancy between
theory and experiment has the same direction
and about the same magnitude as for Li® and
Li’. The general conclusions which may be
drawn from the present results have already
been given.!3

The writer is indebted to Professor Henry
Margenau for suggesting this problem and for
advice and supervision throughout the course of
the work.

* Note added in proof:—Since this manuscript was sub-
mitted for publication, there has appeared an article by
S. Watenabe, Zeits. f. Physik 112, 159 (1939), in which
the nuclear five-body problem is also treated. Watenabe's
analysis differs in some detail from the present work; his
general results, however, are in substantial agreement with
the author’s conclusions.

17 K, G. Carroll, Phys. Rev. 55, 1128(A) (1939).

18W, A. Tyrrell, Jr., K. G. Carroll and H. Margenau,
Phys. Rev. 55, 790 (1939).



