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On the Total Scattering of X-Rays from Crystals
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A general formula is derived for the total intensity of x-radiation scattered by a general
crystal in any direction. In those directions satisfying the Laue equations the formula gives
the usual result, while in other directions there is obtained a formula for the total intensity of
the diffuse scattering. The derivation is based on classical electromagnetic theory. The form
of the result is independent of any assumptions as to spherical symmetry of the scattering
atoms or isotropy of thermal vibrations, these factors merely affecting the numerical values of
scattering factors and temperature factors and their dependence on angle. Absorption, and the
effects of the interaction of incident and scattered radiation are neglected.

HE problem of the scattering of x-rays by
crystals has been treated by numerous

writers from many points of view. Debye'' in
his original papers on the subject was concerned
with the problem of the effect of temperature on
the intensity of the reflected radiation. He
showed' that a crystal consisting of atoms vibrat-
ing about lattice points would give rise to two
kinds of scattering: first, the regularly reflected
rays in certain directions satisfying the Laue
equations, due to the periodic arrangement of
the scattering centers; and second, a diffusely
scattered radiation in all directions, due to the
thermal vibrations of the atoms. Since a crystal
does not consist of atoms bound by elastic forces
to lattice points about which they vibrate, but
rather of atoms bound to each other and forming
a vibrating system, it is satisfactory to find that
essentially the same result' was obtained on
taking account of the normal vibrations of the
lattice. In fact, von Laue has shown the equiva-
lence of the two methods in a comprehensive
paper. ' Other treatments of the same problem
have been given by Darwin, ~ Wailer, ' Faxen, '
and v. Laue' ' the results in all cases being essen-
tially the same. Most of these papers have been
rather formidable. Their main object has been

' P. Debye, Verh. d. Deutsch. Phys. Ges. 1S, 678, 738
and 857 (1913).

2 P. Debye, Ann. d. Physik 43, 49 (1914).
3 M. v. Laue, Ann. d. Physik 81, 877 (1926).
4 C. G. Darwin, Phil. Mag, 27, 315 (1914).
5 I. Wailer, Zeits. f. Physik 1'7, 398 (1923); Ann d.

Physik '79, 261 (1926); 83, 154 (1927); Zeits. f. Physik Sl,
213 (1928); Diss. Upsala (1925).

H. Faxen, Ann. d. Physik 54, 615 (1917); Zeits. f.
Physik 1'7, 266 (1923).' M. v. Laue, Ann. d. Physik 42, 1561 (1913),

an investigation of the effect of temperature on
the intensity of the rejected radiation and they
have been concerned with the problem of cal-
culating the temperature factor in terms of known
atomic constants and crystalline properties. The
diffusely scattered radiation has usually been an
incidental feature; in none of these cases has a
quantitative formula been given for the intensity
of the diffuse scattering in a form which can be
directly compared with experiment. The scatter-
ing elements have usually been taken as atoms,
considered as points. This defect can be partially
remedied by introducing a scattering factor for
each atom' 7 but such a procedure necessarily
omits the incoherent portion of the scattering
from each atom, since point atoms do not give
rise to such scattenng. The usual procedure has
been to add on the Compton scattering. '
Although this can be justified it seems rather
artificial. From the point of view of one interested
in the diffuse scattering the Compton radiation
is just as much a part of the process as is the
radiation scattered as a result of the thermal
vibrations.

On the other hand, when considering the
theory of diffuse scattering it has been usual to
avoid reflected radiation. " This has been
done by assuming throughout the calculation
that the direction of scattering is well away from
a direction of reHection.

If one is not concerned with a detailed calcu-

' E.g. , Y. H. Woo, Phys. Rev. 38, 6 (1931), and other
papers.' G. E. M. Jauncey and G. .G. Harvey, Phys. Rev. 3'7,
1193 and 1203 (1931)."G.E. M. Jauncey, Phys. Rev. 42, 453 (1932).
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lation of the temperature factor in- terms of
known constants but merely with its existence,
then it is an easy matter to derive a formula for
the total intensity of the radiation scattered in

any direction by a general crystal. " It is the
purpose of the present note to do this from the
point of view of classical electromagnetic theory.
It is well known that such a procedure leads to
the same results as a quantum-mechanical cal-
culation except for effects of electron exchange
and relativity. Strictly speaking, a rigorous cal-
culation of the scattering from a crystal is a
problem in dispersion theory and has been
treated very fully from this point of view,
especially by Wailer. ' Ke shall here be con-
cerned with those cases in which dispersion may
be neglected.

THEORY

slons, the lnstantancoUs wave scattcl ed by a
Axed conhguration of the N electrons contained
in the crystal will be given by (RA where

N
A= Qh

mg g a=1
(2)

R ls a vectol from 0 to thc nth clcctlon Ln thc
crystal. The square of the amplitude of this wave
1S

(4)

b„=ho exp $27rvi fi R/—c+R„(s—s,)/c))
=Bo exp L(2mi/lI) (ct—R))

)&exp L(2+i/))(s —s,) R ). (3)

Consider a general triclinic crystal having n
atoms, of any number of kinds, in a unit cell
determined by the three translation vectors al,
R2 and R3. Let r; be a vector from the orlgm of
an.y unit CCH to the equilibrium position of the
center of the jth atom in that cell. I.et the direc-
tion of an incident beam of x-rays be speci6ed
by a unit vector s, in the direction of the beam;
it is'desired to compute the intensity of the
radiation scattered in a direction determined by
a unit vector s. We may consider an inrident
beam of plane-polarized radiation with its elec-
tron vector 8 perpendicular to the plane of scat-
tering determined by s and so. Then the electric
intensity of the incident beam at any point will

be given by

8= (RSO exp I 2wvi(i —s. r/c)),

where v is the frequency of the incident radiation,
r a vector from any convenient origin 0 to the
point ln question and 1=0 18 chosen so th.at 80
is real. (R denotes the real part of the expression
following it. Then at a distance R from the
crystal, large compared with the crystal dimen-

"Ewald (Handblck der I'hysik, Vol, 23, Pt. 2 (1933}}
has given a simple derivation for crystals of one kind of
atom, obtaining essentially Debye's result (reference 2},-

but he, too, uses atoms rather than electrons as scattering
un1ts. ' Hc states also ghat thc d18use scattcl lng increases
monotonically with scattering angle, whereas this is ac-
tually not the case on taking account of the electron
distribution in the atom.

where X* is the complex conjugate of X. The
solution to the problem now consists in evaluat-
ing Eq. (4) and then obtaining an average value
of the intensity.

Kith this end in view we express the vector
R~ 1Q IIlolc expllclt fof'm. Using Rl, R2, R3 and r~
as previously defined we introduce a vector (;
measured from the end of r; to the instantaneous
position. of the center of the jth atom in any
unit cell (this displacement being due to thermal
motion) and a vector y;~ from the instantaneous
center of atom j to the kth electron in that atom.
Without any loss of generality we may take the
crystal to be a parallelepiped Ml —1 units along
Rl, Mm —1 Units along R2 and 3f3—1 units along
R3. We may conveniently take the origin 0 to be
at the origin of the crystal. Then thc vector R
from 0 to the kth electron in the jth atom in the
unit cell my, mg, m3 Units along Rl, R2, R3, Icspec-
tively, will be given by

Rm, iL iiilal+~P2+ia3a8+ri+(i+Pi&. (5)

For abbreviation we shall write

A„=mlRI+mgRg+m3R3

and by a subscript m shall always mean three
quantities m~, m2, m3. Eq. (5) then becomes

R, ;a=& +r;+(;+p;a
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Substituting this value fof R in Eqs. (3) and (4)
gives

g4h 2 2x~
AA*= Q exp (ct —R)

R'm'C4~, ~, &

2m'
&exp (s —s.) R, ;, &

—2%4
(c&,

'—R)
X

—2%i
(s —s.) R . p, k, (8)

X

whele the summations Rle taken so Rs to Include
all possible pairs of electrons in the crystal. If for
abbreviation we write

foI radiation of wave-length x ~12, v ~1018sec.
Hence for not-too high atomic numbers and not
too long a wave-length of mcldent radlatlon we
may assume that the electrons remain essentially
at rest while the electric vector of the incident
wave goes through a complete cycle. For this
reason we may disregard the phase of the radi-
ation given by Eq. (10). In the same way we

may assume the atomic centers to be essentially
at rest whil'e the electrons perform several com-
plete excursions about their respective nuclei. "

To take account of the orbital motion of the
electrons let p;p(y)dv;g be the probability that
electron k in atom j is in a volume element dv;~
.Rt R vectoI dlstRQce &0 fI om Ale lnstan taneous
center of atom j.Eq. (10) is to be multiplied by
p~'g(y)pj'p'(g )dsrgdcr'p' and integrated over all

spRce. By de6nltlon

2m

x =—(s —s,)
X J P~~(p)dpi& =1

and use Eq. (7), expressing the summations more
explicitly, Eq. (8) becomes

e4ho'
exp [ix (A —.A )]

g2~2g4 ea

since it is certain that each electron must be
somewhere. Thus, for those terms in Eq. (10) for
which m=m', j=j' and k=k' we shall get a
contnbut~n

&& P Iexp [ix (r+(i—re —(&)]

&&& exp [f~ (e ~
—e'~)]I (1o)

t

The expression given by Eq. (10) is proportional
to the lntenslty scatteIed by a given configura-
tion of electrons instantaneously at rest, the
quantities g and y depending on the time. The
observed intensity will be obtained by averaging
over all values of g and y. g varies due to thermal
vibrations of the atoms while p varies due to the
"orbital"' motion of the electrons. The greatest
frequency of thermal vibration will be of the
order of magnitude of & „where hv /k = 0, the
characteristic temperature of the crystal. The
"frequency" of the orbital motion will be of the
order of magnitude of the orbital frequency in an

hydrogenic Bohr atom:

cv =2RcZ'/n' (11)

in the nth quantum state, R being the Rydberg
constant. co 10"Z'/n' while all v 10" sec. ',

where Z; is the atomic number of the j'th atom
and n the number of atoms in the unit cell.
Those terms in Eq. (10) for which nr=m', j j='

but k&k' refer to two different electrons in the
same atom. These terms will contribute

XP~&(p)P~~ (p)&fs~~&fsr~ (14)

the Recent denoting the omlsslon of those tel ms
for which k=k'. For the purposes of the present
discussion we are Qot interested in the form of

p;&(y) but merely recall that

exp [f'«' p~&]P«(9)ds« =f&»)~

where f&»» is the amphtude scattered coherently

»%e shall neglect the Doppler e6'ect due to these mo-
tions. See v. Laue (reference 3).
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by an electron of type k in an atom of type j.
Now

~ Ic f&»»f &~ ~ » = c- f&»»f (&'&'»

—Pf(»);f*(»); (16)

is the temperature factor for an atom of type j
in the crystal in question; it is convenient to
denote this in the usual Debye-Wal ler form
exp [—M;] where M; is defined by Eq. (22). If
we denote the atomic scattering factor for an
atom in the crystal at temperature T by f;r then

and f&»)(f*&~ ~ » =f&f(*
k, k'

(17)
f'=f «p L

—M]
and expression (2 1) becomes

(23)

where f) = Zf &»» M&M 'Ma'g'fP f; ~* exp [ir(r; .—r; )]. (24)

and
~ f; ~

is the usual atomic scattering factor for
an atom of type j. Hence expression (14)
becomes

'n

M&M2M~ 2 If f~* Zf&»—) f*&») I .

Pf;r exp [ix r;]= F, (25)

where F is the structure factor of the unit cell.
Thus the summation in (24) can be written

P'f;rf; r* exp [ix (r;—r; )]
7 t

merely have f;f; * and shall be left with p exp [z& ~ (A —A,)]
m, m'

M&MgM3+'f f; *exp [ix (r;+(;—r; —g;')] (20)
XP exp [ix (r;—r; )]f;rf;.r*

and this expression is to be averaged over al 1

values of (. Suppose the probability that the
center of atom j is in dv; at a vector distance
(; from its equilibrium position to be g;(()dv;;
then the expression (20) is to be multiplied by
g;(()g; (g')dv;dv;. and integrated over all con-
figurations, i.e., we require the value of

I

M 3f M ' . '* ex ix r - r '

= FF*P' exp [ix (A —A )

= FF*I P exp [ix (A„—A„)]
tn tn'

—
M&M2Mg I . (27)

exp [ix (A,„—A„)]
m, m'

But

2 3Ef~f, p [ (»)]
'I is the usual interference function for a paral-

lelepipedal lattice and may easily be shown" to

exp [z)& (( ( )](7.(()(7;,((')d„d„., (21) have the va ue

Next consider the terms for which m =m' but = FF' Zf 'f—'* (26)jN j'. For such terms the y;& are completely
independent of each other so that as far as sum-

Finally, those terms for which m / m' contributernation with respect to k is concerned we shall

with the requirement

3 sin' -,'M~ x a~

sin' -, x a~
(28)

I q;(&)dv; = 1.

Again, we are not concerned with the form of the
probability functions g;(() but merely remark
that the expression

J
[ ' ( ]q;(()d; —= p [—M;] (22)

Thus the average value of Eq. (10), obtained by

M & M—1
13 g g g e™g e

—im s
m '-0

= Ly +ei*+e»*+. . .ei (M-1)*j
)& I 1 +e "-+e "+~ ~ ~ +e i( '»g

ei™—$
X

e *—1 e
(e&iM —e &i ~)~ sin' -'Mx

, etc.
(e&i*—e &i*)' sin' -',x
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+M)M2M3+ [Z; Qf—(»);f*()k);

+f;f)* f)'f)'—*j (29)

Eq. (29) gives the average square of the electric
vector of the radiation scattered from an incident
beam polarized with its electric vector 80 per-
pendicular to the plane of scattering. If the
incident beam is unpolarized then we shall
obtain the actual scattered intensity by replacing
the expression e'h02/R'm'c4 in Eq. (29) by I., the
Thomson scattering from a single electron for
unpolarized radiation

e4 (1+cos' 20)

R'm'c4 E 2 ) (30)

where Io is the intensity of the incident beam
and 20 is the angle of scattering. The scattered
intensity is thus

3 sin'-',

After

a)I=I,F' ll
l=i sin' —,x R~

where we have replaced ff* by f' and under-
stand by f the usual tabulated scattering factor,
i.e.

~
fl, and have done the same for f), )„- and I".

Eq. (30) is the solution to the problem and gives
the total intensity of the scattered radiation in

any direction. However, for those directions for
which the Laue equations

a)=2m'l)) (h)=0, 1, 2, ~ ~ ~ ) (31)

or in their more usual form

(s —s0) a) = kX,

(s —s.) a~ ——kx,
(s —s.) a3 ——l'A,

(l), l. , l=0, 1, 2, ) (32)

are satisfied, the first term of Eq. (30) becomes

Ig-I,3Ig kg M3 F (33)

combining the terms in expressions (13), (19),
(26), ,(27) and (28), is given by

8 bp 3 sin ~ALII~ K Ri
AA*= FF*II—

E.'m'c4 sin2 —x ' g.~

and is thus the only one of importance since each
of the 3Es is a very large number except for
exceedingly fine particles. Eq. (33) is the usual
expression for the intensity of reHection from a
crystal. On the other hand, since the maxima of
sin' nx/sin' x are extremely sharp for large I
(having widths at half-maximum 1/n) we

may completely disregard this first term if we
stay sufficiently far away from the directions of
reHection. '4

Thus the intensity of the diffuse scattering,
which must alv ays be measured in regions in
which no regular reflection is present, will be
given by

I2 ~1~2~3I.Z )~~ Zf'&—»)r+f)' f~"I
—(34)

k=1

The first two terms of Eq. (34) are obtained by
adding intensities and correspond to incoherent
Compton scattering; if the atoms were points
instead of having finite size the sum of these
terms would vanish. The last two terms cor-
respond to radiation scattered as a consequence
of the thermal vibrations of the atoms in the
crystal lattice. If the atoms were at rest the sum
of these terms would vanish. It is to be noticed
that no assumption was made as to the isotropy
of such vibrations. If the vibrations are not
isotropic then the temperature factor Eq. (22)
will depend not only on (sin t))/)) but also on
the orientation of the crystal with respect to the
x-ray beam. ". Eq. (34), however, remains for-
mally the same. The same is true in regard to the
electronic distributions in the atoms. Whether
or not they are spherically symmetrical does not
affect the form of the result but only the values
of the f's

Equation (34) is as far as classical theory can
take us under the assumptions made. But recog-

14 Just what is meant by "sufficiently far" is a question
into which we do not enter here."In this connection see, for example, C, Zener, Phys.
Rev. 49, 122 (1936); G. W. Brindley, Phil. Mag. 21, 790
(1936). Also G. E. M. Jauncey and W. A, Bruce, Phys.
Rev. 50, 408 and 413 (1936); E. 0, Wollan and G. G.
Harvey, Phys. Rev. 51, 1054,(1937)."A formula similar to Eq. (34) has been given by
Jauncey (reference 10) for the diffuse part of the scattering
from a complex crystal. In his derivation, however,
Jauncey made the (unnecessary) assumption that the
thermal vibrations and electronic distributions had spheri-
cal symmetry.
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nizing that the first two terms of this equation
are due to Compton scattering we may see what
modifications would be brought about in a
quantum-mechanical treatment of the problem.
First, the Pauli exclusion principle would restrict
the number of possible transitions giving rise to
incoherent scattering. This means that an amount

sents a small correction term. " In addition, all
those terms corresponding to Compton scattering
must be divided by (1+n vers 28)', where
n=h/mcus, in order to take account of the fact
that the scattered quanta have lost some of
their energy in the scattering process. Thus the
intensity of the diffuse scattering is given by

Zf (k&)7&
kgb

(35)
r Zg

~~ —Zf'«k&I E—f'«~) ~

k=1 kQ l

the summation being taken over all pairs of
electrons with the same spin and k~/, is to be
subtracted from the expression in I I in Eq.
(34)."The quantities f» are defined by

(1+n vers 28)'

+f~' f~" — (37)

fk( JtP—k—exP ter. r]f&"dv (36)

and for 0 = l reduce to the expressions in Eq. (15)
since ~f~kdv=p(o)dv. The expression (35) repre-

where the intensity is now expressed in electron
units per molecule of scattering substance; X,
is the number of molecules per unit cell of the
crystal.

'8 For the relative importance of this term in the diffuse
'7 I. Wailer and D. R. Hartree, Proc. Roy. Soc. 119, 124 scattering from crystals see G. G. Harvey, P. S. Williams

(1929). and G. E. M. Jauncey, Phys. Rev. 46, 365 (1934).
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On Alleged Discontinuities in the Diffuse Scattering of X-Rays from
Crystals at Small Angles

G. G. HARvEY
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It is pointed out that the positions of discontinuities in the difl'use scattering from crystals,
reported by Laval, all occur at places corresponding to reflections of radiation of one-half,
one-third, etc. the wave-length of the main beam. For the case of aluminum, microphotometer
traces of films exposed in such a way as to accentuate the expected eEect, are reproduced.
They show no discontinuities of the kind reported by Laval, but do show peaks corresponding to
the reflection of radiation of half the primary wave-length. It is concluded that the eSect re-
ported by Laval most probably does not exist.

" 'N a short note Laval' claims to have found
~ ~ that the diffuse scattering from a large number
of crystals varies in a discontinuous manner at
small angles of scattering. Taking the case of
Cu Xn radiation diffracted by powdered alumi-
num, he reports a total of nine discontinuities,
six of which occur at values of (sin 8)/X less than
that corresponding to the first Debye-Scherrer-

' J. Laval, Comptes rendus 201, 889 (1935).

Hull line (111) for this wave-length. He states
that the diffuse scattering increases smoothly
with increasing scattering angle until a discon-
tinuity is reached; the scattered intensity then
suddenly drops to a smaller value and then
increases again until the next edge is reached,
and so on. A decrease of 40 percent in intensity
is reported for one edge at (sin 0)/X=0. 072.
The magnitude of the discontinuity is not given


