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FIG. 1. The variation of the intensity coeScient with
layer thickness for two sets of values of e1 and e&. The index
of refraction p, = (e&/c1) & is nearer unity than p, '.

(I+1)/(p+n) in Eq. (16) increases for smaller
values of p. Also from the value of dRP/dt it
may be seen that RP decreases less rapidly for
values of p, nearer unity.

The result on an exaggerated scale is illus-

trated in Fig. 1. Thus, although the reHection is
much greater for truly sharp boundaries if p,

divers considerably from one, the rate of decrease
is also much greater. Hence, the Fresnel coeffi-
cient (t= 0) becomes a better approximation for
a given thickness if the value of p, is closer to
one. In order to obtain information as to the
exact way in which R& decreases with t, it is
necessary to make some assumptions as to the
value of e in the lower and upper regions and
regarding the manner in which it changes in the
transition layer (i,e. , the nature of F(x) of
Eq. (8). These calculations will be published
later.

The formulas developed here are applicable to
the reflection of radio waves from different air
masses in the troposphere. It is known from
experiment that such reHections take place. '

' R. C, Colwell and A. W. Friend, Nature 137, 782 (1936).
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It is shown that if we approximate to a liquid by an Einstein model, in which each atom has a
restricted region of motion, wherein it moves independently of its neighbors, and is surrounded

by coordination shells of other atoms; and if we denote the density distribution of the atoms by
p(r), where r is the radial distance from any given atom", then the contribution to p(r) made by
any coordination shell, e.g. , the zth is a function p;(r) for which rp;(r) is symmetrical about its
corresponding maximum value. The complete distribution curve, rp(r) against r, is the sum of
peaks of equal width and similar shape. A semi-empirical application of this theory to liquid

sodium (a reapplication of C. N. Wall s theory) gives a latent heat of melting in fair agreement
with experiment. The model suggests a change of structure on melting, since agreement with the
experimental distribution curve is impossible if the number of atoms in the first coordination
shell is that of solid sodium. It is also shown that if the parameters in a partition function
developed in this way are chosen to give agreement with any one physical property, then it is

incorrect to add to the partition function terms representing "communal entropy, "

eI1. INTRODUCTION

sEVERAL experimental papers have appeared
recently publishing atomic distribution

curves for liquids. ' These curves, found from

(a) F. H. Trimble and N. S.. Gingrich, Phys. Rev. 53,
278 (1938); (b) C. D. Thomas and N. S.Gingrich, J, Chem.
Phys, 6, 411 (1938); (c) C. D. Thomas and N. S. Gingrich,

Fourier analyses of the intensity distributions in
x-ray scattering photographs, show p(r), or
4~r'p(r), as a function of r. 4mr'p(r)dr is propor-
tional to the probability that two unspecified
atoms of the liquid are distant r to r+dr apart.

J. Chem. Phys. 6, 659 (1938); (d) J. Morgan and B. E.
Warren, J. Chem. Phys. 6, 666 (1938).
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FIG. 1. (Left) Typical distribution curves for a liquid. (a) No structural units
present. (b) With structural units.

Fro. 2. (Right) (a) Cybotactic groups in a liquid. (b) Structural units in liquid
yellow phosphorus. From the experimental value of the density (found from the
parabolas in Figs. 4 and 5 of Thomas and Gingrich's paper), i.e. , p0 '=29.1 A' at
48'C, and =31.4 A' at 226'C, we can calculate an average distance apart for the
centroids of two neighboring P4 units. Since the data of Thomas and Gingrich
suggest that each unit has a coordination of about 10, we have taken the mean of
the results, which differ by only about 2 percent, found on the assumptions of
body-centered and face-centered cubic packing. Thus the length OO' is found to be
5.42A at 48'C, and 5.55A at 226'C. It is then clear that the first, second and third
peaks in the figures of Thomas and Gingrich refer to the mean values of PQ, QR
and PR. On account of valence saturation the atoms Q and R try to get as far
apart as possible; this is why the distances AA', which are the shortest possible
geometrically, do not occur in appreciable numbers.

In each case curves appropriate to various tem-
peratures are given.

It is important to consider with what other
experimentally determinable properties of the
liquid we can correlate these curves; we may use
either the shape of a single curve, the effect of a
change of temperature on the curve, or relations
between distribution curves for a family of sub-
stances such as the alkali metals. And the proper-
ties we deal with may be physical ones, e.g. ,

density, viscosity, electrical resistance; or ther-
modynamic ones, e.g. , entropy. , vapor pressure,
specific heat.

In this note we shall discuss the bearing of
atomic distribution curves on the, geometry of
the atomic structure of a liquid, particularly in
the neighborhood of the melting point, and the

relation of this structure to the latent heat of
melting (I = TAS) which occurs at the phase
change; incidentally this entails enquiry into
the circumstances in which it is relevant to
introduce the phrase "communal entropy. " We
shall be concerned mainly with the case of liquid
sodium, for which C. N. Wall' has already given
a theoretical discussion; indeed one object of
this note is to reconsider Wall's application of
his theory, for it seems to us that this can be
done in a more satisfactory way.

)2. THE MEANING OF PEAKS IN A

DISTRIBUTION CURVE

A typical distribution curve for a liquid,
4nr'p(r) p1otte. d against r, has peaks as shown in

' C. N. Wall, Phys. Rev. 54, 1062 (1938).
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Fig. 1(a). The question arises whether these
peaks have any meaning as far as the geometry
of the structure of the liquid is concerned.

At temperatures just above the melting point
the peaks are suf6ciently sharp and charac-
teristically shaped for it to be generally agreed
that liquids have some sort of semi-crystalline
structure. ' In particular two types of atomic
arrangement have been proposed; one being
characterized by molecular homogeneity, i.e. ,

all atoms are thought to be equivalent in the
structure of the liquid, 4 and the other by the
presence of cybotactic groups, ' i.e. , it is supposed
that there are groups of atoms, probably of
varying sizes and shapes, which have a more
de6nite crystalline structure within them than
the liquid has as a whole.

It is not, however, possible to decide, either
from a single distribution curve, or from several
curves for different temperatures, whether a
liquid is molecularly homogeneous or consists
mainly of small cybotactic groups, each con-
taining less than, say, 2000 atoms: Fig. 2(a).
For in the latter case the x-ray diffraction lines
will be very much blurred by edge effects at the
boundaries of the groups„ irregularly spaced
atoms between the groups and the unequalness
of the spacings within the groups, due to their
small linear dimensions. This blurring will make
the distribution curve indistinguishable from
that to be expected with a molecularly homo-

geneous liquid.
On the other hand, we could see from a dis-

tribution curve whether there were only large
cybotactic structures, each containing more than
about 2000 atoms „' for then the peaks would be
quite sharp and separate from each other,
approaching the lines we should get if we

analyzed the intensity distribution in a powder

photograph. We can also tell whether the atoms
of the liquid form smaller groups, which we may
call structural units, as, for example, with liquid

yellow phosphorus in which the atoms are

~ {a) P. Debye and H. Menke, Ergebnisse d. Tech.
Rontgenkunde II, 1 (1931); (b) N. F. Mott and R. |At'.

Gurney, Eeports on Progress in Physics (Physical Society
of London) 5, 46 (1938).

4 J. D. Bernal, Trans. Faraday Soc. 33, 27 (1937).' It is interesting in this connection that Riley, Chemistry
and Industry 58, 391 (1939)has been able to determine by
use of x-rays the mean size of small graphite crystallites,
which have about this limiting size.

grouped, both in the liquid and in the vapor, as
I'4 molecules. In this case the fact that the first
peak is detached, p(r) vanishing, or sensibly
vanishing, between the 6rst and second peaks,
shows that there are structural units com-
paratively far apart from each other; Figs. 1(b)
and 2(b). We shall indeed have valence satura-
tion in each structural unit and therefore repul-
sion of any atom not in the same unit; see note
under Fig. 2(b). The breadth of the first peak
will be due to Huctuations in the atomic distances
within the I'4 groups, as a result of vibrations,
rotations and occasional collisions. If only a
small fraction of the atoms are grouped in
structural units, then the detached peak due to
them will be masked and not separate from the
rest of the atomic distribution curve.

On the assumption of m.olecular homogeneity
the fullctloll 47l'r p(r), wlllcli gives 'tile distribu-
tion of interatomic distances in the liquid, will

give the distribution of' the distances of the
atoms from any one particular atom. If, for
clarity, we suppose that there are no small
structural units, then according to Bernal' we
can define round any atom first, second. . .
coordination shells as in a crystalline solid except
that now the atoms in these are distributed,
somewhat randomly, about mean distances from
the central atom, For the shells to be properly
defined a suitable probability function for the
distribution of the radial distances about the
mean radii of the coordination shells ought to be
prescribed. 8ernal, following earlier work of
Prins, assumes a Gaussian distribution, so
that in a shell of mean radius R,, p;(r) n

Xexp L
—X(r —R~)'g. On the other hand, Wall

finds- that, to his approximation, ' rp„.(r) and not
p;(r) or even r'p;(r) is, for each shell, symmetrical
about the mean radius. - There seems to us to be
insufficient experimental data for deciding be-
tween these three possibilities; we shall, however,
show theoretically in the following paragraph
that for any Einstein model of a liquid, rp;(r) for
a single shell, is symmetrical about the mean
radius of that shell. Wall's theory, which we are
going to reapply to liquid sodium, is based on a
particularly simple Einstein model.

An Einstein model is characterized by the
assumption that each of the atoms of a substance

' J. A. Prins, Physica 3, 147 (1936).
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p;(r) = E;p (r): further, if we denote the length
O'P by x, and angles about the lines R; and x by
XI and X2, then we may write

0 Vl xyllxtyllxl/R Z'U2 =yr2&&28x2/x'

Introducing these results into (1), and taking the
integration over d U2 to precede that over d U~,

we find that

FIG. 3. Mean positions 0 and 0' of the atoms P and Q.

moves independently of its neighbors, vibrating
to and fro about a fixed center in some kind of
average field which is determined by the rest of
the substance. (See papers by Lennard-Jones and
Devonshire. ~) Thus, in Fig. 3, 0 and 0' are the
mean positions of two atoms P and Q. R;, i.e. ,

the length 00', is then the mean radius of the
shell in which Q is found relative to P. We denote
the average potential field in which each atom
is assumed to move independently of its neigh-
bors, by g(s), and suppose that it is spherically
symmetrical. Then the probability that P lies in a
small volume element d UI, distants=rI from 0, is
proportional to exp [—(t)(r))/kT]dV), similarly
the probability that Q lies in (EU2, distant s=r2
from 0', is proportional to exp [—p(r~)/kT jd U2

And in fact, the joint probability that P lies in
d V) and Q in (t V2 is

rp, (r) =
+m ~R(+el ~r+z

P. 2~~i&»=o~ ~=1~&—» l~ r~=1 s —&I

g
—P (r1) /kT

r2g ~ "' ~ .dr2dx'dry.

For the integration over r~ also, only the range
from rI = 0 to rI ——0. is significant, and so we find

Now owing to the shape of (t(s)—see Fig. 1 of
Lennard-Jones and Devonshire' —we can assume
that there is a, length (r such that p(s) is effectively
infinite for s&~ a. The integration over r2 gives a
factor

p(r+x) p(I r x
I ), — —

where )t(t) = Jo's exp [—(t)(s)/kTjds. Now r+x
is necessarily greater than (y, and clearly P(t)
= f(o) if t &&(y, so this factor is equal to

where

1
l, 4 (s'1)+y (s'2)] /~~d U d U

p2

s= e 4'»/"r(IU( ——"e ('(~»//'"
/IVAN.

ai.

4~y&p. '(y)(ty —
~

e
—(( (n)+( (~s))/&r(t U((t U2

p2

subject to
r& IPQI &r+dr.

Now if there are X; atoms in the ith shell,
7 J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy.

Soc. A163, 53 (1937);A165, 1 (1938).

The probability that the length PQ lies between
r and r+(Jr is the integral of (1) taken over all
those coordinates of P and Q for which r ~&

I PQ I

~& r+dr: thus, if p„'(r) denotes the density con-
tribution per atom in the ith coordination shell,
it follows that

Bf+r1

X 2r(P(0) —) P(Ir xI)dx d—r, . (2)
~ g j—Tl

This is a function of
I
r R;

I
and van—ishes if

I
r R, I

&~2o.. It th—erefore represents a contribu-
tion to the total function rp(r), in the form of a
symmetrical peak with a spread at the base given
by 4a. , i.e. , independent of 8,, and therefore the
same for each coordination shell. Wall's Eq. (10)
is a particular example of our equation for the
case in which p(s) is constant for s &&0.

According then to Wall's theory, or to any
theory based on an Einstein model for a liquid,
4~rp(r) is resoluble into peaks of equal width
(40) and similar shape. We give below, Fig. 4(a),
the result of an empirical attempt which we have
made to separate into symmetrical peaks the
curve for 47rrp(r) which pertains to the experi-
mental data of Trimble and Gingrich" for liquid
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as the structure of the liquid approaches that of
a very imperfect gas.

In liquid sodium there will be no structural
units other than atoms (or ions) and possibly a
small percentage of diatomic molecules if the
temperature is great enough. At 100'C, i.e. ,

2.4' above the melting point, we can ignore the
possibility of the latter. We shall make the
assumption, which in this case seems to us most
reasonable, of molecular homogeneity, and
interpret the peaks in the 4~rp(r) curve as cor-
responding to coordination shells. Unfortunately
the small, 2.5 percent, volume change of sodium
on melting does not rule out the possibility of
cybotactic groups in the way that the com-
paratively large changes of —9 percent and 11
percent for water and argon, respectively, seem
to do in those cases: for large volume changes
must imply a radical change of structure, but
small volume changes leave the question open.

02
FIG. 4. Distribution curves for liquid sodium at 100 C.

(a) Empirical separation into symmetrical peaks. (b)
Comparison of predicted distribution curves with the
experimental curve.

sodium at 100'C, and we see that the peaks are
approximately of equal width and similar in
shape. This is as satisfactory as we can reason-
ably expect, bearing in mind that the peaks are
successively more sensitive to the precise shape
of the first peak, i.e. , to the position of its
maximum and its form for small values of r, for
which we cannot be certain of the experimental
values.

The first two or three peaks do not overlap
much and therefore may be supposed to cor-
respond to coordination shells which have some
physical meaning. But subsequently there is very
considerable overlapping, and so there is little
geometrical basis for assigning atoms, at these
greater distances from the central atom, to
definite coordination shells about that atom.
This is even more the case at higher tempera-
tures, and eventually the peaks can have little
significance as far as the geometrical structure of
the liquid is concerned; for whether this is
interpreted in terms of coordination shells or
small cybotactic groups, which will subdivide as
the temperature is raised, it loses its significance

3N;
y =4~r p„(r) =-

SoR;

5(R;—r)'
1—

400-'
(3)

This depends on three unknown parameters 0.,

N; and R;. o. has been defined already; N; is the
number of atoms in the coordination shell

corresponding to the peak for which R; is the
mean radius. To get the complete distribution
curve, 47rrp(r) against r, it is necessary to add
together the effects of successive peaks; 0- will

be the same for each of them but their N's and.
R's are further unknown parameters. Wall deter-
mines No, Ro and 0, where No and Ro appertain
to the first shell, by making the left-hand side

f3. REAPPLECATION OF WALL S THEORY TO

LIQUID SODIUM AT 100'C

Wall's theory is based on the assumption that
for each atom (or ion) of the liquid there is a
sharply defined, spherical volume of radius 0., in
which its center can move without increasing the
potential energy of the liquid as a whole. This
implies among other things, that the atoms (or
ions) behave as hard rigid spheres. On this
assumption Wall finds a theoretical form for the
shape of an isolated peak, vis:



ATOM IC DISTRIBUTION CURVES FOR LI QVI DS 1221

of the first peak, r~&Rp, coincide as closely as
possible with the experimental curve. He then
uses some semi-empirical calculations of Bernal'
to find, from Np and Rp, the N's and R's which
correspond to more distant shells. Knowing
these, the complete distribution curve can be
constructed, and Wall gets a curve which agrees
fairly well, but by no means exactly, with the
experimental one. Unfortunately, in drawing a
curve through the experimental points a small,
but quite definite, peak (strictly speaking the
second), was smoothed out; this makes the
agreement Wall has obtained (reference 2, Fig. 2)
seem rather better than it really is.

Now the values of o and Np found in this way
are very sensitive to the precise shape of the first
peak in the experimental curve. Moreover, we
must not expect Wall's theoretical peaks to fit
the experimental curve exactly, since that would
imply that the atoms (or ions) behaved as rigid
spheres. Finally it seemed to us better to try to
test Bernal's formulae for N; and R; in terms of
Np and Rp, rather than to assume them in the
course of this theory. So to find o. and ¹,N1 ~ ~

we proceed rather diA'erently.
An essential feature of Wall's theory, and

indeed of any theory based on an Einstein model,
is that, for any shell, N; is proportional to R;Y;,
where Y; is the value of y in Eq. (3) which cor-
responds to r =R;. We find the correct values of
R; and I';, for each peak, from our empirical
resolution of the experimental distribution curve
into separate peaks. We then determine Np and
N1 from the two conditions

We find
Rp=3 78A, R1=4 96A,
5 p=2 45) F1=1 21)

and with these values, (4) and (5) then give

Np ——8.78, N1 ——5.69.

The empirical resolution of the distribution
curve into peaks, as shown in Fig. 4(a), suggests
that the third peak is specified by R&——6.1.8A,
V~=1.74. But when we come to use Wall's.
formula to construct the curve theoretically, we
find that we get a much better fit if we move the
third peak a little to the left, and have R2 ——6.06A,
P'~=1.74. This shift of R2 lies within the uncer-
tainties unavoidable in any graphical separation
of the peaks. The formula N /No~=Ro Yo/R~ Y~

then gives ¹=10.The results, are summarized
in Table I. We give Wall's values for comparison.
In Fig. 4(b) we show the distribution curve ob-
tained on using our values for the parameters in
Wall's theoretical formula. o is given by
3No/5Ro Yo and is found to be 0.57, whereas
Wall's value was 0.60. Wall's curve is shown by
the broken line in Fig. 4(b).

We shall not give the details of a similar
analysis of Trimble and Gingrich's experimental
curve for liquid sodium at 400'C, because we
do not suppose that, at that temperature, a
resolution into peaks will have much meaning.
The calculations give, at 400'C:

Np =8.50, N1 ——6.81;
Rp ——3.80, . R1——5.14.

Np/Ng =R p Yp/Rg Yg, (4)
TABLE I. Comparison of constants.

1+No+ Nz/2 =4/3 or RP po, (5) .

where pp is the density of the liquid in atoms per
unit volume. We use the experimental value for
sodium at 100'C,' which is pp=0. 0247A '. The
first formula (4) is essential to Wall's theory and
the second (5) is the result of assuming that if we
take a small imaginary sphere of radius R1 then
it will enclose the same. number of atoms
wherever it be situated in the liquid. This is
approximately true for. a crystalline solid body,
and' we may suppose that it will be even more
so for a liquid.

' E. Rinck, Ann. de Chemic 18, 395 (1932).

¹ ¹ ¹ Ro R1, Re RI/Ro Rs/Ra cr

Values; this note 8.78 5.69 10 3.78 4.96 6.06 1.31 1.60 0.57
Wall's values 9.28 6 13 3.79 5.1 6.2 1.34 1.63 0.60

Finally the entropy change on melting (AS)
and the associated latent heat of fusion (I,) are
estimated as in Wall's paper; the results are
shown in Table II.

$4. DISCUSSION OF THE RESULTS

We do not wish to attach any importance to
the precise numerical values which we have
found and given above; indeed it would be un-
reasonable to expect better agreement than that
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TABLE II. Melting of sodium.

[AS] . 1 {KILOJOULES/MOL. )

Present paper
Wall's paper
Experimental

0.747 R
0.906 R
0.861 R

2.31
2.8
2.65

shown in Table II from so simple a theory,
but we believe that certain conclusions can,
legitimately, be drawn from them.

In the first place, at 100'C, i.e. , only 2.4'
above the melting point, No differs quite appreci-
ably from its value, which is 8, for sodium in the.
solid state. The first two shells together contain
nearly the same number of atoms (14.4) as in
the solid state (14). We have tried to obtain a
fit with the experimental curve on the assump-
tion that NO=8, but could not obtain even
reasonably good agreement. We conclude there-
fore that there is quite a definite change of
structure on melting. Moreover

¹
(400'C) is

less than ED (100'C) while
¹

(400'C) is greater
than NI (100'C), so that it appears that at
higher temperatures the number of atoms in the
second shell increases at the expense of those in
the first. The liquid, then, does not tend to
become close-packed at high temperatures.

Secondly, on comparing the predictions of
Bernal's paper, i.e. , that for Eo ——8.78 we shall
have

¹

——8, ¹

——12, Rq/Ro ——1.33 and R2/Ro
=1.63, with the results of Table I, we find that
Bernal's values for RI/'Rp and Rg/Ro are in

good agreement with those we have found
empirically; but his values for N&, N2 ~ ~ are
not those which we have found. The only agree-
ment here is that if No, when in the neighborhood
of 8, decreases, then

¹
increases. Bernal himself

states that his estimates of successive N's are
less reliable than those of successive values
of R/Rp.

Next we observe that using the same N's and
R's as in Table I, we could have got a better,
and almost perfect, fit with the experimental
curve if Wall's theoretical shape for a single
peak had been rather fatter at the base. This
would have been so if the atoms (or ions) had
not been treated as hard spheres, with sharply
defined free volumes, but their repulsive inter-
actions had been taken into account, as in

Lennard-Jones' picture of a liquid. ~ This is an
essential defect of Wall's theory.

Finally, since our value for the latent heat of
fusion is too low, we are led to enquire whether
this also is due to the essential limitations of a
model in which the atoms are treated as hard
spheres, or whether it is due to our having
neglected a communal-entropy term (see, in
particular Lennard-Jones and Devonshire, 1938).
We are driven to the former conclusion and end
with a discussion of this point;

(5. THE MEANING OF COMMUNAL ENTROPY

The introduction of the notion of a free-
volume for each atom of a liquid, in which,
effectively, it can move without infIuencing the
other atoms, at once elicits the idea of communal
entropy. '

Free volume may be defined in two ways.
We shall say that it is defined thermodynamically
if it is defined purely formally from the partition
function. The partition function F(T, U, N) is
supposed known (though in pra.ctice only ap-
proximations to it are known) as a function of
T, V and N, where T is the temperature, V the
volume and N the total number of atoms of the
liquid; the thermodynamic free-volume v&h„ is
then defined by the equation:

F(T, U, N) =(27rmkT//1')'"" 8th", (6)

where m is the atomic mass, and the other
symbols have their usual meanings.

On the other hand, we shall speak of the
geometrical free-volume v„, when we approxi-
mate to the liquid by an Einstein model. v„, is
then v of Eq. (1) and replaces v,z in Eq. (6).
It has a well-defined meaning geometrically in
the simple approximation in which it is supposed
that each atom may be treated as a. rigid sphere
imprisoned in a cell whose size' is fixed by the
density of the liquid; this is the approximation
on which Wall's theory is based.

If we restrict ourselves to Einstein models for
liquids, v&I, is an ideal quantity to which we try
to approximate by assuming suitable forms for

as a function of T, V and N. vth is an

' (a) O. K. Rice, J, Chem. Phys. 6, 476 (1938); (b) R. W.
Gurney and N. F. Mott, J. Chem. Phys. 6, 222 (1938); (c)
L. Tonks, Phys. Rev. 50, 9$5 (1936),
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average determined by all the positions of all
the atoms of the liquid, though only those that
are at all likely will count significantly. v„, , in
which each atom is confined to the neighborhood
of a certain site, may then be too small, since
by conFining the atoms to particular regions of
space, large fluctuations in the interatomic
distances are ruled out; but it need not be too
small because exact agreement with v&h may be
obtained, at any one temperature, by suitable
choice of the potential field @. Of course it may
not be possible to get a good approximation
to @~i, at all temperatures by choice of a potential
field p, which must depend explicitly only on
the density and be otherwise independent of the
temperature. For this reason an approximation to
the partition function is sometimes made (e.g.
Lennard-Jones and Devonshire, 1938) in which a
reasonable form for p is chosen, and then the
resulting "Einstein" partition function is multi-
plied by another factor, frequently e~, to take
account of large fluctuations in the atomic
distances. It is this extra factor which is called
the communal entropy term and e~ is chosen
because that is the difference which would be
made to the partition function of a perfect gas
of X molecules if its volume were to be sub-
divided into X equal cells and each molecule be
confined to one cell. But of course the factor
ought strictly to be temperature dependent and
its nature must depend on the initial choice of p.

Now at any temperature, the measurable

properties of a liquid depend on all the possible
positions of all the atoms of the liquid, and to
predict them theoretically we must use a good
approximation to v~h. If we include parameters
in the potential field @ of v„, —for example in
Wall's case the radius of his spherical free volume—and so choose these that some physical
properties of the liquid have their correct experi-
mental. values, then we are not at liberty still
to include a communal entropy term in the
partition- function. If the resulting formulae do
not give the correct experimental values of other
measurable properties, this is because we do not
have sufficient parameters in Q, i.e. , to an
essential limitation of the model used.

This is the case in the present instance. We
have chosen 0. inWa11's theoretical formula for an
atomic distribution curve, Eq. (3), so as to get
as good a fit as possible with a distribution
curve found experimentally, and the fact that
Wall's theory does not then give a good value
for the entropy of melting is due, we suggest,
not to omission of a communal entropy term—
inclusion of which would mean that there were
positional distributions of the atoms which
affected the entropy but not the atomic dis-
tribution curve —but to the essential limitations
of a model which treats the atoms (or ions) of
the liquid as hard spheres.
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