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The intensity of the waves reflected from various types of diffuse boundaries in which the
dielectric constant changes only slightly is considered. The constant inside the reflection layer
is assumed to vary as some power of the distance. It is further assumed that above and below
this transition layer the media are uniform. The calculations show that the rate of decrease of
intensity of the reflected wave with increasing layer thickness is more rapid for large values of

p the index of refraction, than for values close to unity. Fresnel's equations are therefore
applicable to layers of considerable thickness if p, is very close to unity.

" T is customary to consider reflections from a
- - boundary to be of considerable magnitude
only if the boundary is very sharp compared to
the wave-length of the incident wave. This is
the case of importance in optics where the
reflected light is usually near the order of
magnitude of the incident ray. In the reflection
of radio waves, however, the sensitivity of the
receiver permits the detection of comparatively
feeble waves, and it has been shown that de-
tectable reflections may be produced by non-ionic
layers if the boundaries are considered sharp. '
It does not seem probable, on the other hand,
that the layers could have extremely sharp
boundaries, relative even to radio wave-lengths.
It is therefore desirable to consider whether or
not one is justified in using Fresnel's reflection
laws here, as has sometimes been done. The
important difference between these radio re-
flections and those of light is that the radio
reflections are from regions where the relative
refractive index is very close to unity so that
the coefficient must be very small even though
the boundary is truly sharp.

For the purpose of testing whether or not
Fresnel's laws are a good approximation for
thicker transition layers as the index approaches
unity, a one-dimensional problem will be con-
sidered, i.e., plane waves progressing in the
direction of variation of the dielectric constant.
The region near the origin will be taken as
uniform up to some point x1, above this the
dielectric constant will be assumed to vary as

some monotonic function of x up to x~, above
this it is to be again uniform.

The wave equation, after removing the time
dependent part, becomes

d~X/dx2 = —p'gX/P

where I is the space dependent part of the
electric vector, c is the velocity of light, and e is
the dielectric constant which is itself a function
of x. The general solution of this equation is

X=Af(x)+Bg(x). (2)

Xo =A p exp (ike&~x) +Bo' exp ( —ike&lx),

Xg Ag f(x)+Bgg(x), ——
Xg Bg' exp ( imp *x)——, — '

The boundary conditions which must be satis-
fied by the solution are that x and its first
derivative for the lower region must equal those
of the transition layer at its lower boundary,
and a similar set relating the upper region to
the upper boundary of the layer. Thus there are
four conditions for the six constants A, B (Ao, Bp
in the lower space; A&, 8& in the layer; A~, B~ in

the upper space). However, it is only the ratio
A 0/Bo that is required if f(x) and g(x) are made
the reflected and incident waves, respectively.
Moreover, in the upper space one may assume
that the backward component of the wave is
zero (A& ——0). Hence, there are left only four
constants (Ao/Bo, A~, B~, B~), and there are
four boundary conditions for determining these.
The solutions of (1) in the three regions are now:

' C. R. Englund, A. B. Crawford and W. W. Mumford,
Bell Sys. Tech. J. 14, 369—387 (1935). where k= v/c=2z frequency/c. For convenience,
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let

A o' exp (ikoi'*x)+Bo' exp ( 2—koilx)
=Ao exp [oko12(x —xi)]

+B exp [—tko (x—x)].
The boundary conditions then become

A 2+8 2 =A if(xi) +Big(xi),
okoi*(Ao —Bo) =Aif'(xi)+Big'(xi).

And similarly
B2=A 1f(xo)+Big(xo),

ok—o2'B2 A——1f'(xo) +B,g'(xo)
(6)

The primes on f and g of (5) and (6) indicate
differentiation with respect to x before evaluation
at x~ and x~.

Upon solving Eqs. (5) and (6) for the re-

Hection coefficient when the thickness is t

[f'(x)+2k 'f(x)][g'(x)+2k 'g(x)] Lf'—(x)+'k '*f( )]Lg'( .)+2k '.g(x)]
Z, =—=, , , , (7)—Lf'( ) —'k 'f( )][g'(x)+ok 'g(x)]+Lf'(x)+'k 'f(x)]Lg'(x) 'k —'g(x)]

P X P X
[F(x)]2 =—2io

C XI C X2
(9)

This is not a very serious restriction on F(x)
when it is recalled that the layer is not very
thick and that n may have any value whatsoever
either positive or negative. Since x lies between
xi and xo, it is evident that if (22/oi)'* is greater
than unity, 22 must be positive, while if (22/oi)' is
less than unity, n must be negative. In general
from Eq. (9)

ti = (22/o, )l= (x2/xi)"

This is applicable to any sort of transition layer
of any thickness and for any value of the relative
indeX ti = (22/o, )i.

More specifically suppose that Eq. (1) inside

the layer is

+I"(x)X=O,
dx

where

or using

xo —xi = t, xi = t/(t2"" 1);—

where

f s16+2
g
— s i6+2—

k&,l x~+~ n
8 = ——log xy,

rt+1 (xi)" 2
(13)

as may be verified by substitution into Eq. (8)
with the aid of (9).

If these values of f and g are put into Eq. (7),
the coefficient R~ takes the form

where t is the thickness of the transition layer.
In the cases under consideration p is greater

than one by a very small amount so that in

Eq. (11), xi and xo are large except for layers
which are extremely thin. Under these circum-
stances, it is allowable to put

Rg ——

—zn
—ikik

ik
4koi*X1 exp (22 X2 oi Xi)

n+1

1 xg
exp (oo~x2 21 xl) ———exp (22 x2 212xi)

n+1 p x2 n+1
(14)

"n+1kf=—
eI' p+n

(16)

(y+n)
22'(ti"" —1)' sin' koi't~

&22+1&
It may easily be verified from this that the

(15) value of the thickness t for the first zero is greater
for a value of p nearer unity, since the factor

R]' ——

4k'&It'

If use is now made of the value of x& and x2 The value of RP reaches zero at approximately
from Eq. (11) along with the restriction that ti is
always near unity,
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FIG. 1. The variation of the intensity coeScient with
layer thickness for two sets of values of e1 and e&. The index
of refraction p, = (e&/c1) & is nearer unity than p, '.

(I+1)/(p+n) in Eq. (16) increases for smaller
values of p. Also from the value of dRP/dt it
may be seen that RP decreases less rapidly for
values of p, nearer unity.

The result on an exaggerated scale is illus-

trated in Fig. 1. Thus, although the reHection is
much greater for truly sharp boundaries if p,

divers considerably from one, the rate of decrease
is also much greater. Hence, the Fresnel coeffi-
cient (t= 0) becomes a better approximation for
a given thickness if the value of p, is closer to
one. In order to obtain information as to the
exact way in which R& decreases with t, it is
necessary to make some assumptions as to the
value of e in the lower and upper regions and
regarding the manner in which it changes in the
transition layer (i,e. , the nature of F(x) of
Eq. (8). These calculations will be published
later.

The formulas developed here are applicable to
the reflection of radio waves from different air
masses in the troposphere. It is known from
experiment that such reHections take place. '

' R. C, Colwell and A. W. Friend, Nature 137, 782 (1936).
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It is shown that if we approximate to a liquid by an Einstein model, in which each atom has a
restricted region of motion, wherein it moves independently of its neighbors, and is surrounded

by coordination shells of other atoms; and if we denote the density distribution of the atoms by
p(r), where r is the radial distance from any given atom", then the contribution to p(r) made by
any coordination shell, e.g. , the zth is a function p;(r) for which rp;(r) is symmetrical about its
corresponding maximum value. The complete distribution curve, rp(r) against r, is the sum of
peaks of equal width and similar shape. A semi-empirical application of this theory to liquid

sodium (a reapplication of C. N. Wall s theory) gives a latent heat of melting in fair agreement
with experiment. The model suggests a change of structure on melting, since agreement with the
experimental distribution curve is impossible if the number of atoms in the first coordination
shell is that of solid sodium. It is also shown that if the parameters in a partition function
developed in this way are chosen to give agreement with any one physical property, then it is

incorrect to add to the partition function terms representing "communal entropy, "

eI1. INTRODUCTION

sEVERAL experimental papers have appeared
recently publishing atomic distribution

curves for liquids. ' These curves, found from

(a) F. H. Trimble and N. S.. Gingrich, Phys. Rev. 53,
278 (1938); (b) C. D. Thomas and N. S.Gingrich, J, Chem.
Phys, 6, 411 (1938); (c) C. D. Thomas and N. S. Gingrich,

Fourier analyses of the intensity distributions in
x-ray scattering photographs, show p(r), or
4~r'p(r), as a function of r. 4mr'p(r)dr is propor-
tional to the probability that two unspecified
atoms of the liquid are distant r to r+dr apart.

J. Chem. Phys. 6, 659 (1938); (d) J. Morgan and B. E.
Warren, J. Chem. Phys. 6, 666 (1938).


