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It is shown that in a sequence of random events, the expected distribution of interval-sizes
in a run of given duration differs from the Bateman distribution when the counting rate is
different from the average one. The formula for ‘‘local” size-distribution to be expected for such
a run is derived by the use of Bayes’ theorem. It is pointed out that this theorem is useful in
discussing the properties of any statistical system which is known to be in a condition differing

from the idealized equilibrium state.

1. DESCRIPTION OF A FLUCTUATION PROBLEM OF
VERY GENERAL TYPE

IN analyzing the results of some counting ex-
periments the writer encountered a statistical
problem which appears to have an interest far
transcending its immediate applications. It is in
fact an instance of the following general problem:

A physical system governed by statistical laws
is described by a number of variables a, b, - - -,
etc., both independent and dependent. If the
system were in equilibrium they would take the
values 4, B, etc. In actuality the system fluctu-
ates around the equilibrium state. In a particular
experiment we find that a takes the deviant
value 4; or more accurately, we determine the
probability adA that @ lies in-the range A4 to
A+dA. We inquire, what can be inferred as to
the probabilities fdB, vdC, etc., that the vari-
ables b, ¢, etc. lay in ranges dB, dC, etc. at the
time of the experiment?

Questions of this kind arising in the statistical
mechanics of gases might be attacked by solving
the Boltzmann differential equation for the
velocity-distribution function, subject to the
restriction a=A4, but we want to point out that
when the functions 8, v, etc. do not yield to
direct attack, another method is available,
namely, the use of Bayes’ theorem of a posteriori
probabilities. For example, if there are just two
variables a and b to consider, this theorem states:

(Unconditional chance that a lies in dA4)
X (Chance -that b lies in dB when we know that
a lies in d4)
= (Unconditional chance that b lies in dB)
X (Chance that a lies in d4 when we know
that b lies in dB).

The importance of such problems lies in the
fact that their solution gives us a closer under-
standing of the conditions existing in the fluctu-
ant states which are always encountered in
nature. We proceed to the problem in radioactive
fluctuations which led to these remarks. It will
be solved by Bayes' theorem, for attempts to
proceed otherwise yielded no valuable results.

2. A PROBLEM IN THE DISTRIBUTION OF RANDOM
EVENTS

A distribution of events is said to be random in
time if the chance that one of them occurs in time
dt is a constant, fdt. Bateman’s formula gives the
chance W, that # events will occur in time ¢,
namely,

W= (fi)re~/t/n! (1)

Then the chance that an interval between two
events will exceed ¢ is

W0=e—ft» (2)

In deriving (1), all values of # up to “infinity”
are supposed to be possible, and the understand-
ing is that the formula shall be applied to a
hypothetical situation,—that in which similar
counting experiments, each of duration ¢, have
been accumulated in ‘‘unlimited numbers.”
Similarly, (2) is a mathematical idealization
referring to a single run of “‘unlimited duration.”
Here we shall discuss the physical situation en-
countered in studying long runs of events, whose
distribution may be expected to conform roughly
to the predictions of Eq. (2). Suppose we arrange
an apparatus which does two things. It records
the number of particles, %, given out by a con-
stant radioactive source in a long time D, let us
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say 5000 seconds. Also, as each particle arrives,
the instrument decides automatically whether
the interval which has elapsed since the arrival
of the preceding particle is greater than or less
than a chosen value T (let us say one second). If
the interval is greater than T, it is counted on a
recording dial, so that at the end of the run we
also know P, the number of intervals between
events which exceed the value T. At this stage
the best estimate we can make as to the average
counting rate f is #/D,! but let us continue to
record the total number of events, until f is
known with very high accuracy. We shall assume
for the present that f is exactly known, discussing
later the consequences of the fact that f is really
subject to statistical error. Now the problem we
want to solve is this:

The average counting rate is f and a certain
run has yielded # counts in time D. # is not equal
to the expected value fD. What is the distribu-
tion function G(¢) replacing (2) during the inter-
val D??

3. Tae SorLuTtiON

Figure 1 represents a chronograph sheet show-
ing the events which arrived in the run of dura-
tion D. G(T) is the chance that an interval be-
tween adjacent events, picked at random from
the run, will be longer than 7" (and less than D, of
course), when it is known that exactly # events
arrived during the run. Bayes’ theorem then says:

(Unconditional chance there are # events in the
run) X G(T") = (Unconditional chance an inter-
val picked at random from the run will be
longer than 7" and less than D) X (Chance that
n events occur in the run, when it is known
that an interval picked at random from the run
is longer than T and less than D).

The words ‘“‘picked at random’’ are defined to
mean that in the selection each interval has an

1 Strictly speaking, it is (n+41)/D, as Meixner has shown.
See reference 5.

2 The law replacing Eq. (1) can be worked out from that
replacing Eq. (2). See Ruark and Devol, Phys. Rev. 49,
355 (1936); especially p. 356.

At first sight it seems that the problem we have set up
differs from the general ones discussed above. The only
difference is that we are seeking the-integrated distribution
G(t) while (dG/dt)dt is the chance that an interval lies
between ¢ and t+d¢; this corresponds to BdB in the dis-
cussion above.
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equal chance of being picked. For example, they
might be assigned labels, and the labels could
be thrown into an urn, after which one label
would be drawn. In evaluating the unconditional
chance in the right-hand member we must re-
member that all the intervals considered are less
than D; for this subclass of intervals it is easy to
show?® that the probability of a length between
T and D is (¢e/T—e7P)/(1—e/P). Calling the
last factor in Bayes’ theorem ¢, we have

~fT __ p—/D
e /T —egt )

1—e® (fD)reP/n)

G(I)= (3)

In getting ¢, we must remember the exact condi-
tions: an interval I has already been picked out
at random and has turned out to have a length
between 7" and D, as shown in Fig. 1. An interval
satisfying these conditions belongs to a subclass
different from the subclass considered above, and
the chance that its length lies in a range dr is

eIfdr /(eI —e~IP). (4)

A slight approximation will now be made.
When fD is large we can afford to neglect the
cases in which I is the first or the last interval
in the run. These end intervals are each bounded
by a single count, for the chance is zero that a
count occurs exactly at time zero or at time D.
Leaving these two intervals out of consideration,
the very fact that we have picked an interior
interval assures us that the run contains at least
two counts, namely, the ones which initiate and
terminate I. We are interested, then, in the
chance that the two stretches outside I, which
have a total length of D—7, shall contain just
(n—2) counts in all. This chance is just the same
as though the intervals were contiguous, namely

[f(D=1)]=2et @0 /=21 (5)
Taking the product of (4) and (5), and integrat-

¢ A. Ruark and L. Devol, Phys. Rev. 49, 355 (1936); see
Section A-1.
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ing over 7, we get

LfD—-1)]*

(& @D 1) (n—1) !

1 n T\ ™!
G ———-~—-(1——) ; m=2,3--.
1—e/2 fD D

Here the approximation sign is used because of
the simplification introduced above.* Neglecting
the first fraction we rewrite (7) in the form

n T n—fD—1 fT D
Ge=—(1 -——) : (1 -—) .
D\ D fD

Here the last factor. approximates e/7 very
closely, so the first two factors show the effect of
a known fluctuation in counting rate on the
probability than an interval has a length greater
than 7. The first factor increases with # but the
second decreases, and the rapidity of its fall de-
pends on 7. Either factor may predominate, de-
pending on the value of 7. It is easy to explain
this physically. Suppose we have a set of counts,
fD in number, which obey Eq. (2) very closely.
We insert an extra count at random. By choosing
ST large enough, we can make it certain that the
total duration-of the intervals shorter than T is
large compared to the total duration of those
longer than 7. In such a case, there is a large
probability that the extra count will fall into an
interval shorter than 7T, splitting it into two still
shorter ones and thereby decreasing the fraction
of the intervals which are longer than 7. The op-
posite conclusion is reached when fT" is chosen
very small. Detailed analysis shows that when
fT is unity we are at the border between the two
cases and G is insensitive to changes of #.

We next consider the influence of the fact that
f itself is not accurately known. Suppose f has
been determined by taking » counts over a time ¢

IIS

(6)

@ n=2,3 -+

lis

(7

(7

4 Therefore Eq. (7) really gives the chance that an
interior interval is greater than T when there are # counts
in the run. The accurate formula for G can be obtained, but
the situation is complex, so we prefer to work with (7).
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which is much longer than D. Meixner® showed
that the chance f lies in df is

((fe)r/v Ye 7 udf.

With this weight-factor the average of (7’) over
all values of f% is found to be

_ tm T\ ™!
—2(s -—)
v D D
The expected number of intervals, P, having
length greater than T is therefore #G. One wishes
also to know the standard deviation of the
numbers P;, P,, etc. encountered in a series of
runs. A direct attempt to evaluate this standard
deviation leads to a result so complicated that it
is useless, but when (#—fD) is a small fraction
of fD we can get a useful approximation.’
Dropping the restriction that the counts must
occur in a time D, we ask for the probability
that in a run of # counts, P of the intervals are
longer than T
This is merely

(8)

(9)

W(n, P)=C,e~TP(1—e~/T)—P_  (10)

On this simple basis, considering a large group
of runs, the fractional standard deviation of P
is [(1—eT)/ne/T]}, and in applications this
may be replaced by {[1—(P/xn)]/P}*

To summarize: if we deal with a limited por-
tion of a random distribution and find that the
local counting rate is higher or lower than the
average, the length-distribution law of the inter-
vals differs from Eq. (2), and the expected local
form of this distribution is given by Eq. (7),
which is fundamental in the sense that it deter-
mines the expected local values of all properties
of the sequence of events.

5 J. Meixner, Ann. d. Physik 30, 665 (1937).

¢ Equation (7) can be averaged over f with the aid of a
formula on p. 243 of Whittaker and Watson, Modern
Analysis, fourth edition. The result is a series which
converges uniformly for all physically possible values of
its variable, and in fact very rapidly when » is large.

" This has already been used in the doctoral dissertation
of Dr. Mary W. Hodge, not yet published.



