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A theoretical investigation is made to see whether
nuclear motion alone can account for observed fine struc-
ture in magnesium, especially for the lines 3'So —3 iP&,

3 So—3 3Pi, 3 iPi —3 Dg, 3 P —3 'D, and the limit of the
series 3 iP& —n 'D2. Both by calculation with explicit
radial functions and by the choice of theoretical parameters
to fit observed shifts, it is shown that the values of the
core-valence parameters occurring in the theory are not at
all negligible, so that a two-electron model would not be
permissible. Calculations with explicit radial functions give
correct signs for the specific shifts of all these lines except
for the limiting shift of 3 'Pi —n 'D2. In the case of the line
3 'Pi —3'D2 the correct sign is obtained only when one
takes into account the perturbation of (3s) (3d) 'D2 by
(3p)~ iD2, however, greater accuracy in the solution of the
perturbation problem could not improve the agreement
very much as long as the present radial functions are .used.
The total shift of any member of 3'P —3'D comes out
much smaller than any of the other total shifts, in agree-
ment with Meissner's observation of the sharpness of its
members. A test of the theory independent of the use of
explicit radial functions is carried out by adjusting the
theoretical parameters so as to give the observed shifts of
the five lines mentioned. According to the theory, all these
parameters are essentially positive; the necessary values
of the parameters do indeed all turn out to be positive,
provided that the value of Jackson and Kuhn is accepted
in preference to that of Fisher for the shift of the resonance
line. The shift of the line 3 Pi —5 So and the sharpness of
the lines 3 'P —4 'S afford independent evidence that
Fisher's value is incorrect, or else that nuclear motion is

not the sole cause of the shift in the resonance line
3 'So —3 'Pi. There also arises an inconsistency unless the
perturbation of (3s) (3d) 'D2 by (3p)2 'D»s taken into
account. The necessary values of the parameters are shown

by the estimate of corresponding f values to be reasonable
both as to their absolute and as to their relative values.
With certain acceptable assumptions, it is shown that if
the shifts in Mg are due to nuclear motion alone, then
three relations may be deduced connecting the specific
shifts. These are: (1) the specific shifts of the resonance
line 3 So—3 Pi and of any member of 3 'P —(3p)' 'P must
be equal; (2) (for any members) the sum of the specific
shifts of the lines 3 'D —(3P) (3d) 'D and 3 'P —3 'D must
equal the sum of the specific shifts of the lines (3p)2 3P
—(3p) (3d) 'D and 3 'So —3 'Pi, (3) a complicated quad-
ratic relation involving the specific shifts of the five lines
3'So —3'Pi, 3'So—3'Pi, 3»i —3'D2, 3'P —3 D, and
(3p)' 'P —(3p) (3d) 3D, as well as the interaction parameter
a for 3 'D2, With the use of known shifts, including the
Jackson-Kuhn value for the resonance lirie, these relations
lead to the prediction (for any member) of total shifts of
0.035 cm i for X2778 to 2784=3'P —(3P)''P of 0.027
cm i for )3890 to 3900=(3P)''P —(3p) (3d) 'D, and of
0.061 cm i for 'A2810 to 2812=3'D —(3P) (3d) 'D. It is
concluded that the quantum-mechanical theory of nuclear
motion, without the assumption of non-Coulomb nuclear
fields or of nuclear spins, gives a good qualitative explana-
tion of fine structure in magnesium. It appears that a
measurement of the shifts of lines X2778 to 2784, X3890 to
3900, and )2810 to 2812 would furnish the best quan-
titative test.

INTRQDUcTIQN
'AGNESIUM is known to occur in three
~ isotopes, 24, 25, and 26, with relative

abundances very close to 7: 1:1. Various ex-
perimenters' have investigated the fine structure'
of Mg I. Before the investigations of Meissner'
all lines that showed fine structure were found to
have two components only. Using the method of
atomic beams, Meissner found, for most of the
lines showing structure, three components that
were practically equally spaced, the lowest fre-

i R. F. Bacher and R. A. Sawyer, Phys. Rev. 4'7, 587
(1935); D. A. Jackson and H. Kuhn, Proc. Roy. Soc.
A154, 679 (1936);R. A. Fisher, Phys. Rev. 51, 381 (1937);
K. W. Meissner, Ann. d. Physik 31, 505 (1938).

2 The expression "fine structure" is used in the present
paper to denote, without assumption as to origin, any
nonelectric nonmagnetic splitting of a singlet line or of
any member of a set of multiplet lines.

quency component being the most intense in
each case and the two much weaker components
of higher frequency being of about equal in-

tensity. Meissner's results, together with the
abundance ratios, point strongly to this fine
structure as being purely a mass effect, i.e. , as
arising purely from nuclear motion and not
from nuclear fields differing for each isotope or
from nuclear spin. We may identify the main
component in each case as due to isotope 24,
and the two weaker components as due to iso-

topes 25 and 26, the order probably being 24,
25, 26; there seems to be no evidence of splitting
due to nuclear spin even in the case. of isotope 25.

For the series 3 'Pi —n 'D2 Meissner found

v26 —v24 to be +0.0831 cm ' for n =3 and +0.056
cm ' for the limit n= ; the latter figure may
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be regarded as the shift of a "line" 3 'P —3'S
(Mg II).He also found each member of 3 'P —3 'D
and of 3 'P —4 'S to be sharp, so that the shifts
must be very small in these cases. Bacher and
Sawyer' found a shift of +0.083 cm ' for the
intercombination line 3 'Sp —3 'P~, since in those
cases where Bacher and Sawyer and Meissner
investigated the same lines, the shift found by
Bacher. and Sawyer agrees rather well with
Meissner's v&6 —v24, we may attribute this to
v26 —v24. For the resonance line 3 Sp —3 Py
Fisher' found a shift of +0.066 cm ' and Jackson
and Kuhn' found +0.033 cm '.

Besides the work of Meissner, the general facts
that no nonzero nuclear spins have been detected
for elements of both even atomic number and
even mass number' and that non-Coulomb nu-
clear fields have thus far been found to be of
possible importance only in heavy atoms, ' ap-
parently leave no explanation for the shifts in

Mg except nuclear motion. In this paper we shall
investigate, as completely as current theory
allows, whether nuclear motion does fully ac-
count for the shifts above mentioned. We
shall consider especially the shifts of the lines
3'S —3'P 3'Sp —3'PI, 3'P —3 'D 3'P —3'D
and 3 'P —3 'S (Mg II); we shall also be able
from the above observed shifts to predict, with-
out the use of special radial wave functions, the
shifts of the line 3 'P —(3p)''P discovered by
Bowen and Millikan' and of the lines (3p)' 'P
—(3p)(3d) 'D and 3 'D (3p)(3d) 'D —discovered
by Paschen. '

GENERAL THEORY

Let Hp and Ep be the energy operator and a
corresponding energy for a v-electron atom, the
nucleus being supposed fixed. Then the effect of
nuclear motion can be'expressed exactly by the
addition to Hp of a term'

G =—(2M) '(P p,) ',
i=1

where M is the nuclear mass and pi the mo-
mentum of the ith electron relative to the

3H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936).Cf. pp. 217 and 225.

4 I. S. Bowen and R. A. Millikan, Phys. Rev, 26, 150
(1925).
' ~ F. Paschen, Ann. d. Physik 12, 509 (1932).' D. S.Hughes and C. Eckart, Phys. Rev. 36, 694 (1930).

nucleus. Ke shall write G—=N+cr, where

N—= ( M)-'Qp, a —= M—'QPp" p.
i=1 i)j

the summations being extended over all the
electrons, 12 in the case of Mg I. N is called the
"normal" term and 0 the "specific" term. Sup-
pose now that one knows the energy Ep and the
wave function of a given state for the case of a
fixed nucleus (M= ~); then the problem be-
comes one in perturbation theory, since G is
small compared to Hp. Before considering the
perturbation problem, however, we may mention
that the effect of the term N alone can always
be given exactly' (spin-orbit forces being left out
of account): vis. , replace Eo by Eo(1+m/M) ',
where m denotes the electronic mass. This state-
ment follows from the fact that the potential
energy U is homogeneous of degree —1; i.e. ,

U(&xg. (s„)=&-'U(xg s„). Thus if P(xg s„)
satisfies the wave equation with electron mass
ns and energy Ep, one finds on making the
transformation x~ ——&xl,

' that P($x~' gs„') satis-
fies the equation with electron mass mf and
energy Eog. Then since the effect of X is to add
1/M to 1/m, we must put $ =M/(m+ M)
=(1+m/M) '. Thus if ~ were negligible, we
should have, letting E denote the total energy
corresponding to IIO+¹E=EO (m/M)E, so-
that the part of the observed total energy due
to N would be given exactly by —(m/M)E.

In the perturbation problem let us consider
only the case of IS coupling, and suppose that
the unperturbed wave functions make Hp and
the operators corresponding to S, I, J, and Sf'
diagonal. There arises a question about the de-
generacy due to M&, this difficulty is at once
resolved, however, since both N and 0 commute
with the operators corresponding to S, I, J,
and AISLE. Thus N and a are already almost
diagonal with respect to the unperturbed wave
functions, having no components between un-
perturbed states of different 5, I., J, or MJ (or
of different S, I, Ml„or M8 if that representation
is the starting one); they may have components
between states which, in an approximation in
which Hp is not diagonal, can perturb each
other. They have no components between states
of equal energy, so that the perturbation theory
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for nondegenerate systems may be applied at
once. In the first order we have the familiar
result that each state simply gets an additional
energy equal to X+0, where the bar denotes the
diagonal element with respect to the unperturbed
wave function. It is easily seen that the second
approximation in each case leads to a correction
which is smaller by a factor of the order m/M.

The term X can easily be calculated by use
of the virial theorem for a Coulombian system.
Since N= (m/M)T, where T is the operator
for the kinetic energy of the electrons, we
have N=(m/M)T; the virial theorem tells us
that, spin-orbit forces being neglected, T= —Eo,
so that N= —(m/M)ZO. The spin-orbit restric-
tion means that in this approximation X has
the same value for all J values of a given mul-

tiplet. We have here a check on our neglect
of higher approximations in the perturbation
problem: with spin-orbit neglect, an exact
theory gives —(m/M)Z and first-order theory
gives —(m/M)E0 for the correction due to N;
the difference is entirely negligible. Ke may thus
feel safe in applying first-order theory also for
the effect of o-.

We should now show that 0 (as well as N) has
the same value for all J and M~ of a given
multiplet, at least to the approximation that we
shall use for our wave functions. This inde-
pendence is physically reasonable, since de-
pendence on Mg would indicate something like
a Zeeman effect due to nuclear motion and
dependence on J would be expected only for a
perturbation like a spin-orbit interaction. To
show it, suppose we start with a system of ap-
proximate wave functions, linear combinations
of determinants, which form an orthonormal sys-
tem and make the operators for S, L, ML„and
M& diagonal. If there are any important con-
figuration interactions, this system of functions
is supposed to take that fact into account. Now
suppose an operator X commutes with an angular
momentum P, where the eigenvalues of P' are
P(X+1)k'/4~' and those of P, are M„h/2m. Then
not only is X diagonal in a representation in
which P' and P, are diagonal, but the diagonal
components of X in such a representation are
independent of 3IIJ. Now it is easily shown that

~ E.U. Condon and G. S. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, 1935), p. 49.

cr or N commutes with any component of L or 8,
where L denotes the total orbital angular mo-
mentum and 8 the total spin angular momentum.
Thus we must obtain the same 0 for all MJ. and
Mg of a given multiplet. Then, performing a
unitary transformation to the SLJM& scheme,
we easily prove that the same cr results for all J
and M~ of the multiplet, The same argument
applies to E, so that the procedure for X, which
led to a value independent of J or M~, is con-
sistent with such a system of wave functions.

The above discussion covers the cases where
configuration interaction is or is not negligible,
and shows that in either case we may use
SLM~Mg functions rather than SLJMg func-
tions. For the cases where configuration inter-
action is negligible, we shall use the Slater'
method of diagonal sums, so that in such cases
we need not find even the SLM~M8 functions.
All that we shall then need will be diagonal ele-
ments of 0 with respect to certain of the de-
terminants (slm~m, functions) corresponding to
the multiplet.

THE MATRIX ELEMENTS

Let A, (r, 0, @, a,) denote the total function for
the pth orbit, the product of the space function
a, (r, |j, P) and the spin function 8,(o,); the func-
tions t2'p are supposed to form an orthonormal set.
Let U be the normalized determinantal wave
function corresponding to the configuration A~,

A2, A„A~ ~ .A„and U' that corresponding
to A~, A2, A„A& A„, so that U and U'

differ by two orbits. Then, since

=M-"ZZp' p;,

and since (a, l pl a„)=0 unless f„/, =&1,' w—e
ave '0

(&l~l &) = —M "ZZI(a. lpla. ) I'~-
v) p

(f/I. I
U') =M-'I (a. lpia"). («Ipla )~- ~«

—(a, lpla ~) (a I pla")~. ~ ~~"1 (2)

In these equations 8», e.g.', is a Kronecker
delta on the spins of the pth and pth orbits; in

J. C. Slater, Phys. Rev. 34, 1293 (1929}.
'This relation holds even if a„and ap correspond to

different central fields."J.C. Slater, Phys. Rev. 38, 1115 (1931).Reference 7;
p. 173.
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Eq. (1) the summations are over a11 occupied
orbits; throughout the paper we abbreviate the
scalar product of a complex vector C and its
complex conjugate C* to lC l.' (Ul o

l
U') is the

only type of nondiagonal matrix element that
we shall need, and we shall need it only in the
case where configuration interaction is allowed
for. In listing values of (Ul o'

l U) and of o we shall
omit an additive term which pertains only to the
neon-like core and is thus common to all spectral
terms, therefore canceling out when we take
differences to find shifts of lines.

We now need general formulas for the
one-electron matrix elements of momentum
(nlm~

l p l

n'l' mq'). We adopt the Condon and
Shortley" convention for the signs of the angle
functions, so that the usual formulas for angular
momentum operators acting on the angle func-
tions hold for all m~, this makes for convenience
in examining wave functions for angular momen-
tum properties in those cases where they have to
be written down explicitly. We next use the
formulas of Bethe" for the result of B/Bx, B/By,
and B/Bs on the product of the normalized angle
function and any function of the radius r,
realizing that the Bethe angle function Ys(l, m~)

and the Condon-Shortley angle function Yo(l, m&)

are connected by the relation Y& ——(—1) 'Yo.
We of course find the selection rules Al= ~i for
the matrix elements of any component of momen-

tum, Amg ——&1 for those of p. and p„and Am~ ——0
for those of p, . We also obtain the following
formulas, from which, because of the Hermitian
property of the matrix of p, all the nonvanishing
matrix elements of p may be found:

(n, l, mglp, ln', l I,m(~1)—
= a(i/2) Cg[(lcm& —1)(lcm())'

XF(n, l; n', l —1)

(n, l, m(lp, ln', l 1, m(~1)—
= (-', ) C&[(lcm& —1)(lcm&) )'

F(n, l; n', l —1) (3)
(n; l, m~lp, ln', l —1, m~)

~C((i2 mP) iF(n, l; n', l ——1),
where

C& = [(2l+1)(2l-1)]-l
"Reference 7, p. 52."H. A. Bethe, IIandbucb der Physik, Vol. 24, No. 1,

p. 558.

and.

F(n, , l; n', l —1) —= (li/2~) Jt R(nl) dR(n, l 1)—/dr
0

—[(I—1)/rgR(n, l —1) r'dr

R(nl) being the radial function for the orbit nl,
so normalized that

J
R'r'dr = 1.

0

Eqs. (3) lead at once to Eqs. (4), which are all

that we need for the case in which configuration
interaction plays no role:

l (n, l, m
l p l

n', I 1, mg) l—'
=CP(P —mP)F(n l; n', l 1)—

1
(n, l, m~

I p ln' l —1, m, ~1) l'
= (-', )CP(l am ( 1)(—1am() F'(n, l; n', l —1). (4)

Eqs. (4) agree with the expressions developed by
Bartlett and Gibbons" by a somewhat easier but
less straightforward method. We have outlined
the above derivation because we need Eqs. (3) as
well as Eqs. (4), when we come to treat perturbed
levels. At this point a change of units is useful;
one easily shows that:

F(n, , l; n', l —1) = (li/2s-ao) J(n, l; n', l —1)
= (2mRy) '*J(n, l; n', l —1), (5)

where
dR(n, l 1)—

J(n, l; n', l 1)—= ~ R(nl—)
dr

/ —1
R(n', l —1) r'dr

where ao is the Bohr radius, Ry the Rydberg
energy, and r is the radius expressed in units of
a&, because of this change of units R(r) in Eq.
(5) has a functional form different from R(r) in

Eq (3)

FORMULAS FOR THE SPECIFIC SHIFT FOR CASES
IN WHICH CONFIGURATION INTERACTION IS

NEGLIGIBLE

We proceed to calculate 0. in terms of the
integrals J(n, l; n', l —1) for those spectral terms

"J.H. Bartlett, Jr. and J. J. Gibbons, Jr. , Phys, Rev.
44, 538 {1933).There is an error in their formula for their
C {l,l —1), consisting of an interchange of subscripts.
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for which configuration interaction may be
neglected; for our present problem of magnesium
this means all terms arising from 3-quantum
orbits except (3s) (3d) 'D2 and (3p)' 'D~. We use
the Slater diagonal sum method and Eqs. (1), (4),
and (5), and we write the formulas without the
term common to all spectral terms.

For (3s)' '5 and 3s '5(MgII) the wave func-
tions are single determinants corresponding
respectively to the configurations 3s+ 3s and
3s~. (Superscript signs denote m, values and
subscripts where necessary denote m& values. )
The value of 0 for (3s)' 'S comes out double that
for 3s 'S, which is

—M ' p l(2p tlpl3s) I'=

—2(m/M)Ry J'(2p, 3s).

The configuration (3s).(3p) will serve to illustrate
the use of the diagonal sum method. Noting that
3s+ 3p&+ belongs only to the triplet, one has for
3 'P.

0 = —M 'C 2 I (2p~~ I pl 3s) I'+ Q I (3p, I pl ns)
I
']

n=l

= —2(m/M)Ryl J'(2p, 3s) +-', p J'(3p, ns) ]

One also notes that Zm, = Zm~ ——0 for each of
3s+3PO and 3s 3PO+, and that these relations
hold for no other choices of the rn, 's and m~'s;
thus each of these determinants belongs to the
singlet with 3IIq ——Mi. ——0 and to the triplet with
Mq='MI, =O. The diagonal sum rule then tells
us that the sum of the 0's for the singlet and the
triplet is given by evaluating the sum in Eq. (1)
for each of these determinants and adding the
results. This sum turns out. to be:

4(rn/M)Ry[J'(—2p, 3s)+-,'pJ'(3p, ns)].

By difference we obtain for 3 'P:

—2(m/M)RyLJ'(2p, 3s)+ ~~ I p J'(3p, ns)

—J'(3p, 3s) I ].
For (3s)(3d) the results for the singlet and the
triplet come out equal, perturbation by (3p)'

being left out of account. This result, which is
.2—(m/M)Ryl J'(2 p, 3s) +(-')J'(3d, 2p) ], we can

accept only for the triplet, which is unperturbed
by (3p)'. For (3p)-', with perturbation of the 'S
by (3s)'- 'S and of the 'D by (3s)(3d) 'D left out
of account, the same value is obtained for the 'P,
the 'S, and the 'D, vis.

—4/3(m/M)Ryg J'(3p, ns);
n=I

this result is acceptable for the P, since it is un-
perturbed. For (3p)(3d) the values of 0 are

—2(m/M)RyL-'p J'(3p, ns)+-'J'(3d, 2p)
n=l

+sJ'(3d, 3p)],

where for 'P 'P, 'D, 'D 'Il 'Il the values of g
are, respectively, —1/15, 1/15,
Since (3p)(3d) D is of odd parity, it is not per-
turbed by (3s)(3d) 'D, so that the above formula
may be considered acceptable for the 'D.

THE SPECIFIC SHIFT OF 3 D2

There is good evidence that the level (3s)(3d)
'D2 is rather strongly perturbed by the level
(3p)' 'D2. The singlet lies well below the triplet,
and the work of Bacher" indicates that the
exchange integral which should give the singlet-
triplet separation (if there were no perturbation)
has such a sign as to put the singlet above the
triplet. Furthermore, on computing the effect of
the level (3p)' 'D2 on (3s)(3d) 'D~, Bacher finds
that such a perturbation puts the singlet below
the triplet, in fact about 2200 cm ' below as com-
pared with the observed i550 cm '."

We must thus find a wave function for (3s) (3d)
'D that will allow for admixture of (3p)' 'D, and
calculate the corresponding specific shift. Such
a wave function may be written in the form:

(6)

where P~ and $2 are normalized wave functions
for (3s) (3d) "D and (3p)' 'D, respectively, that do
not take account of configuration interaction.
The quantity n is a coefficient that will have an
absolute value less than 1 for the perturbed
(3s) (3d) 'D and an absolute value greater than 1

"R.F. Bacher, Phys. Rev. 43, 264 (&933).
'5 R. F. Bacher, Phys. Rev. S6, 385 (&939).
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Hgg —E Hgp

II22 E (8)

the roots of which give the energies of the two
perturbed 'D's.

At this point we must decide on what radial
functions to use for 3s, 3p, and 3d. The only
available functions are those given by Bacher. '4

We write them below with slight corrections in
the normalizations and with the constant ex-
ponentials in the 3d function expressed numeri-
cally; also our R's are such that

j R'r'dr = 1.
0

The unit of length is the Bohr radius ao.

R(3s) = (2.8191) '( e'~'r"-—
+11.96e '""r—6.86e "'"")

(9)
R(3P) = (2.3526) '(e '""r'—10 43e ""r.)

R(3d) = —10 '(52 155e '.""r

+7.0691e '""r')

for the perturbed (3P)' 'D; the factor involving n
is prefixed for normalization. The usual diagonal-
izing process leads to the equations for n.

(~11 +)+~12&
Hm, + (Hmg —Z) n =0, (7)

where H~~, H22, II~~, and IIg~ are matrix elements
of IIo with respect to F1 and p2. The correspond-
ing secular equation is:

have II1~——F~+ (1/25)R. , and . the energy of
(3P)' 'P (which is unperturbed by (3s)(3d))
= Fm (5)—R,. F2 is a constant that does not con-
cern us, and R., one of Bacher's integrals, comes
out +29,940 cm ' with the above radial func-
tions; equating F& (-', )R—.to the observed energy
of (3P)' 'P vie —.3819cm ' we fin H2~ ——+3367
cm '. For E we use the observed value for
(3s) (3d) 'D vis —. 15,269 cm ' With these
values for ~11, II12, and &, Eq. (8) gives IH12I
=10,240 cm'. Direct calculation of H~2 with
the same choice of constant phases for 1P1 and &2

that we later use and the same choice of signs for
the radial functions as in Eqs. (9) leads to a
positive real value for H~2, thus H~2=+10, 240
cm ', so H2~ ——H~2, and o, comes out real. Eqs.
(7) now readily give n= —0.550. From Eq. (6)
we have:

o=(+lo +)=(1+~') 'LQ1l ol41)
+~'(6 oIA)+~(41loIA)+~(42lol41) j (1o)

Also, one easily verifies by applying the proper
angular momentum operators that:

.P1——2 l (U1—Ug)

where U~, U2, and U3 are the normalized deter-
minants corresponding, respectively, to 3s+3d2,
3s 3d2+, and 3P1+ 3P1 . From Eqs. (11), (1), and
(2) we obtain:

(41lol41)= —~ 'I. EI(2P-1lpl3s) I'
nt~

+z I
(3d1I pl2P 1) I'1 (12a)

Since these functions are admi. ttedly none too ac-
curate, we shall not use them in a straightforward
way to calculate a, but shall determine the
quantities involved as much as possible by the
use of experimental data. By the usual spectral
theory one has for the energy of .(3s)(3d) 'D,
which is unperturbed by (3P)', the expression
F~ ——,'Rb, and for H~~ the expression F~+-,'Rb,
where Ii ~ is a constant that does not concern us,
and Rb is one of Bacher's integrals, -', Rb being the
usual singlet-triplet exchange integral. Using
Rb = +10,190 cm ' as determined from the
above radial functions and the observed energy of
(3s)(3d) 'D= —13,715 cm ', the ionization limit
being taken as the zero, we obtain H~~= —9639
cm '. Again, from the Slater theory for P', we

(13)

(42 I
o

I A) = —2~ 'E
I (3P1I p I

~s)
I

'
n=l

(41loIA) =(Alol41)*=2'~ '(»lpl3P1)
(3dml pl 3P1). (12c)

Eqs. (12a). and (12b), by the use of Eqs. (4) and
(5), and Eq. (12c), by the use of Eqs. (3) and (5),
can be expressed as:

g1I o I/1) = —2(m/M)Ryl J'(2P, 3s)

+ (2/5) J'(3d, 2P) j,
2

(P, I
o

I P,) = —4/3 (m/M) Ryg J'(3P, ns),
n=l

(41 I
o

I p2) +Q 2 I
o

I $1) = (8) (15) '*(m/3E) Ry

XJ(3P, 3s)J(3d, 3P).
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Equations (10) and (13) then give for the
perturbed 3 'D:

TABLE II. Uncorrected values of the J's, calculated from
radial functions.

n = —2 (m/M) Ry(1+ n') —'[J'(2p, 3s) nl;n', l —1 J'(n, l; n', l —1) J'2(n, l; n', l —1)

+(2/5) J'(3d, 2p) +(2/3)n'g J2(3p, ns)
n=1

—4(15) inJ(3p, 3s)J(3d, 3p)]. (14)

Ke now collect in Table I the formulas already
obtained for the specific shift; we here list the
formulas for the quantity k, where o'——2(m/iV)
XRyk. In the case of 3s'S(Mg II) we put a
prime on the 3s to indicate that it would be de-
sirable to use a dilferent R(3s) in this case in

computing J(2p, 3s). We also include 4 'S and
5 'S in the table for later purposes.

NUMERICAL CALCULATIONS

Suppose we have a line due to the transition A~8. Let
the total energy of state A. be EA, its electronic kinetic
energy TA, term value rA, the normal shift of an isotope
of mass M (as compared with a nucleus of infinite mass)

NA(M), the specific shift (as compared with that of M= ~ )
a.A(PI); also let NA(26) —NA(24) —=BNA and 0.A(26) —OA(24)
=—80.A. Now, using the definition of N and the virial the-
orem and putting the energy difference equal to the term
value diA'erence with reversed sign, we have:

NA(M) NB(~) = (m/~) (TA TB)
= (m/~) (PB —gA ) = (m/3f) (rA rB). (15)

Also, using 0 = —2(m/M)Ryk, we have

2p3s
3p1s
3p2$
3p3s
3d2p
3d3p
2p1$
2p2$

—0.2606
().3911—0.2911
0.2918
0.1148
0.4700—3.125—1.014

0.0679
0.1529
0.0848
0.0851
0.01319
0.2209

R(1s) =2(p,a) &e &~"

R(2s) =2(p'/3N2)&(e I "r—3A/pe I I"),
R(2p) =2(p,'c'/3) &e-I «r,

(20)

where a=3.21, pa=11.75, b=3.00, pb=10.96, 2cy=7.55,
and 2p, =7.31. Also A =(a+A)'/(1+a)4 and ¹=1—48A

/(1+ 6)4+3A2/O'. The parameter A is so chosen that R(2s)
is orthogonal to R(1s). The Bohr radius a0 is the unit of
length and the functions are so normalized that

Eqs. (15) and (16) give;

(Av)~ = o(NA —NB) = (1/26 —1/24) (1838) i(rA —rB)
= (rB—7A)/573, 460 cm i, (18)

(d v) —= b(o.A —0B) = —(1/26 —1/24) (1838) '2Ry(kA —kB)
=0.3827(kA —kB) cm '. (19)

To compute the k's we must compute the integrals
J(n, l; n', l —1); to do this we must have radial functions
for 1s, 2s, and 2p, besides those for 3s, 3p, and 3d given- in
Eqs. (9). Morse, Young, and Haurwitz" have obtained
such functions for Mg++ by a variational method; we

shall use their .functions, thus making the assumption
that the core functions are not appreciably aAected by the
presence of electrons in the 3f shell. They are:

o-A(M) —~B(M) = —2 (m/M) Ry(kA —kB).

Now, expressing both v's and 8's in cm ', we have:

{16)
R'r'dr = 1.

0

TABLE I. Formulas for the specific shifts in terms of the
intef, rais J (n, l; n', l —1).

TERM

3.2S(Mg D)
(Bs)»S

(»)(Sy)

(3s) (3d) sD

(Bs) (Bd) 1D

(By)"P

(By)(3d)

(Bs)(4s) sS
(Bs)(5.) 1S

k (IN a —=—2(m/M)Bylaw;)

Js(2p, 3s')
2J2(2p, Bs)

J2(2y, 3s)+(1/8) g Js(3p, ns)+gJ2(3p, Ss), where'=+1 for sP
n-1

and —1 for 1P.
J'(2pi Bs)+(2/5)J' (M| 2p)

2

(1+F2) 1 Js(2p, Bs)+(2/5) Js(Bd, 2y)+(2/3)as Z Js(Bp, ns)
n-1

—4 15 &J 8 Bs J Sd 8() (y, )(, p)
(2/8) [J'(Bp, 1s)+Js(Sp, 2s)]

2

1/3 Z J2(8p, ns)+(2/5) &(3d, 2p)+rf J2(3d, Bp),
n 1 where the values of q are given below~

Js(2p, 3s)+J2(2p, 4s)
J2(2p, Bs)+Js(2y, 5s)

P= —1/15, P=1/15, D=1/5, D= —1/5, 9'=—2/5, and F=2/5.

BA(26) —BA(24) = oNA+ oa A, v26 =EA(26) —EB(26),

etc. , from which

~v = v26 v24 ~(NA NB)+~(OA &B)~ (17)

However, our above R(3s) is not quite orthogonal to R(1s)
or to R(2s) nor R(3p) to R{2p). Since our fundamental

equations (1) and (2) for the matrix elements are true only
if the single electron functions form an orthonormal set,
we shall have to correct for this lack of orthogonality. We
denote values of J(n, l; n', l —1) calculated from Eq. (5)
with the use of Eqs. (9) and (20), and thus uncorrected for
this lack of orthogonality, by adding primes as super-

scripts. Some elementary integrations then lead to Table I I
for J'(n, l; n', l —1).

To make the corrections for lack of orthogonality, note
that we start from slmIm, functions in the form of deter-
minants; since the value of a determinant is not changed

by adding a constant times a given row to another row,
we may subtract from the 3p function enough of the 2p
to produce orthogonality of 3p to 2p and from the 3s
enough of the 1s and the 2s to produce orthogonality of
3s to is and 2s. Let us denote the corresponding normalized

orthogonalized radial functions by R (3p) and R (3s),
Then, using these latter functions, the others being

1' Morse, Young, and Haurwitz, Phys. Rev, 48, 948 (1935).
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TABLE III. Corrected values of the J's, calculated from
radial functions.

e, l; n', l —T

2p3$
3p1$
3p2$
3p3$
3d2p
3d3p

J(e, l; n', l —1)

—0.2772
0.4011—0.2812
0.2879
0.1148
0.4689

J2(~, l; ~', l —&)

0.0768
0.1609
0.0791
0.0829
0.01319
0.2199

J'(3p, 1s)+J'(3p, 2s) =0.2399

Using values of k from Table IV, observed
term values" r, and Eqs. (18) and (19), we ob-
tain Table V below, giving a comparison of
observed" and calculated total shifts and ob-
served and calculated specific shifts for all lines
arising from 3-quantum configurations for which
the shifts have been measured. The observed
specific shifts are obtained by subtracting the
normal shifts (as calculated from Eq. (18)) from
the observed total shifts. In regard to the line

' The term values are taken from Bacher and Goudsmit,
Atomic Energy States, except in the cases of (3p)''P and
(3p)(3d)'D, which are taken from Paschen, reference 5.
The center of gravity is used for triplet levels."In the column for observed shifts, M = Meissner,
F=Fisher, JE=Jackson and Kuhn, BS= Bacher and
Sawyer, the references being given in footnote 1.

unchanged, we shall have a right to apply the fundamental
analysis resulting in Table I. We find:

R(3p) = c&LR(3p)+ p1R(2p) $,
R(3s) = c2LR(3$) +p2R(1s) +p3R(2s) j,

where
c1=1.0001, c2 = 1.0002, p1= —0.00984,

p2 = —0.001531, and pg =0.02102.

The corrected J's are then easily expressed in terms of the
uncorrected J's (including those for )p 1s and 2p 2s, for
which reason we have inserted the values of the latter in
Table II). The corrected J's are given in Table III;
Tables I and III together give numerical values for the
k's, listed in Table IV. In Table IV the value of k in the
case (3s)(3d) 'D is given for several values of n. The value
a=0 corresponds to no interaction with (3p)' 'D and the
value n= —0.550 to the interaction that we have actually
found. It is seen that interaction increases the value of k.
Since, however, our solution of the interaction problem
may be somewhat in error, it is of interest also to know
what is the largest value that interaction can give to k.
This cannot be found by varying n arbitrarily and thus
finding the maximum k, since only values ~a~ ~1 cor-
respond to the term that we call (3s){3d) 'D. Furthermore
our analysis shows that n must be negative, and a simple
calculation shows that k increases monotonically as n
varies from 0 to —1; however, a value as large as 1 for
~n~ would undoubtedly be a good deal too large, since it
would give equal importance to both configurations.

TABLE IV. Values of k in 0- —= —2(m/M)Ry- k, calculated
from radial functions.

TERM

3 S(MgII)
(3s)' 'S
(3s) (3p) 'P
(3$)(3p)'P
{3s}(3d)'D
(3$}(3d)'D

0.0768
0.1537
0.1844
0.1292
0.0821
(1+n') ' 0.0821 —0.1394a

+0.1599a'
0.0821 (for a =0)
0.1591 (for n = —0.550)
0.1970 (for a = —1)

3 'P —3'D it is well to mention that Meissner
was able to resolve this line so as to obtain the
members corresponding to the triplet structure,
but was unable to obtain any further resolution;
the figure 0 is accordingly entered for (Av), b, for
this line. The high resolution which Meissner
was able to obtain, as indicated by his success
with the singlets and the small probable errors
which he gives, leads one to believe that it must
actually be zero at least to two decimal places.
The line 3 'S—S'I'~ is an intercombination line,
depending for its existence on departure from
LS coupling; there is thus some question as to
the applicability of the theory in this case, but
since intercombination lines in Mg are weak
compared to permitted lines, the departure from
LS coupling is probably small, so we include this
line also in our table. It may be noted also that
values of (Av). calculated from values of k ob-
tained by neglecting the core-valence J's, and
using only J(3p, 3s) and J(3d, 3p), disagree
markedly with the calculated values of (Dv), in
Table V. (In some cases they would lead to
better agreement, in others to worse. ) We may
therefore conclude that a two-electron model is
not permissible for calculating isotope shift in
magnesium; any agreement thus obtained with
experiment would be quite misleading.

A comparison of columns (5) and (6) of Table
V shows that for the five lines calculated the
calculated hv has the right order of magnitude
for all but the first and last lines, being too small
by a factor of about 2 for the first line and about
2—,'for the last line; it is interesting to note that
the calculated Av for 3 'P —3 'D, all members of
which are sharp, comes out much smaller than
the other Av's. A more severe test is obtained by
comparing columns (3) and (7) for the specific
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TABLE V. 2 comparison of observed shifts arith shifts calculated from radial nave functions.

LINE
")gCALC
CM I

( ")N
CM

(b.v) ops
CM

&~v)&OIIS
CM-I

3 'P —3s 'S(MgI I)

3 lSP —3 'Pl
3 'Sp —3 'Pl
3 'P —3 'D

3 lPl 3 lD2

3 'P —(3p)' 'P

(3p)"P—(3p) (3d} 'D

3 'D —(3p) {3d) 'D

3 'P —O'S

3 'Pl —5 'Sp

2852
4571
3829 to
3838
8807

2778 to
2784
3890 to
3900
2810 to
2812
5167 to
5184
s711

—0.0200

—0.0094
0.0118—0.0392

—0.0180 (n =0}
o.o114 ( = —o.ss)
0.0236 (0.= —1)

0.0464 0.0264

0.0611
0.0382
0.0455

0.0517.
0.0499
0.0063

o.os6(M)
o.o66(F)
o.o33(JK)
0.083(BS)
0(M)

0.01980

0.0627

0.0448

0.0620

0.0337

0.0305

-0(M)

0.0543(M)

0.0018 (n =0)
0.0312 (n = —0.55) 0.0831(M)
0.0434 {a= —1)

0.01.0
o.oos(F)—0.028(JK)
0.045—0.045

0.0633

—0.0337

0.0238

shifts alone. Even then, however, the sign comes
out correct for all the lines but the first, provided
that we accept the Jackson-Kuhn value for
3 '$0 —3 'P», and we shall see that there is evi-
dence for their value rather than Fisher's. In the
case of the first "line" 3 ~$(Mg II)~3 'P, for
which the sign of the specific shift comes out
wrong, we may attribute at least part of the
discrepancy to the error made in using the same
radial function for the 3s' of 3s '$(Mg II) as
for the 3s in (3s)(3p). In the case of the line
3 'Pg —3 'D2, it is seen that perturbation of
(3s)(3d) by (3p)' must be taken into account to
get the correct sign for the specific shift, but that
greater accuracy in the solution of the inter-
action problem cannot lead to a good numerical
agreement, i.e., with the radial functions above
used.

ANOTHER TEST OF THE THEORY

The test of the theory just given depends on
the use of explicit radial functions, which are
probably not very accurate. There is another
method of testing the theory which does not
depend on such explicit use of radial functions.
We may calculate what values of the J"s are
necessary to give the observed shifts and then
test the reasonableness of the J's by finding
what f values they give.

Let us introduce the abbreviations J'(2p, 3s')
bo J'(2p, 3—s) —= b~, J'(3p, 1s)+J'(3p, 2s) = b2,

—
J'(3p, 3s):b3, J'(3d, 2p) =b—4, J'(3d, 3p) =b—q, —

J'(2p, 4s) = b6, J'(2p—, Ss) =b~, and —let us denote
the specific shifts of the lines 3 'P 3s '$(Mg II—),
3 'So —3 «PI 3 ~50 —3 P i 3 P —3 'D 3 'Pz —3 ~D2

3 'P —(3p)' 'P, (3p)' 'P (3p) (3d) —'D, 3 'D
—(3p)(3d) 'D, 3 'P O'S, and 3 —'Pz —5 'So by

sop spy $2 $3 $4 $5 sg $7 $8 and s9, respectively. (Of
these s&, s6, and s& are not yet known, but as we
wish to predict them we include equations for
them also). Then, putting 0.3827 =—y for short, we
find from Eq. (19) and Table I:

bp —by —(3)b2+ ( )b3=3p/sp, (21.0)

b, +( )3b, --( )3b, = s, /y, (21.1)

—b&+ (-', )b,+ (-', )b~ ——s,/y, (21.2)

—(-', )b, —(-', )b~+ ($)b4= $$/y, (21.3)

(I+~') 'Lb~+(-')b4+(-')~'b2 —( )( 5) '

(b3b~)' I
—b~ —(3)b2+(-', )b3=$4/'y, (21.4)

bg+ (3)b2 (3)ha
——sg/&, (21.5)

—(-')b2+ (-') b4 —(5)» =$~/v (21 6)

—b,+ (-;)b, —(-;)b, =s,/~, (21.7)

—(-', )bm —(3)bg+b6 $8/&, (21.8——)
—(-', )b2+ ( ', )b3+b~ =s~/y. (-21.9)

We evaluate b&, b2, b~, b&, bs from Eqs. (21.0) to
(21.4). Eqs. (21.1) and (21.2) at once give
b& ,'(s~ s,)/y——=—p28—6, provide. d the Jackson-
Kuhn value is used for s~. To go further we have
to make an assumption about bo, if we assume as
before that R(3s') =R(3s), then bo

——bq, and we
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can evaluate the rest of the b's E. qs. (21.0) and
(21.1) then give bs= —(se+st)/y. The Jackson-
Kuhn value for s~ then gives b~= 0.047, while the
Fisher value gives —0.039. Since the b's must all
be positive, this fact appears to be against the
Fisher value, unless one is willing to admit-that
nuclear motion is not the only factor producing
shift in the resonance line 3 'Sp —3 PI. It is true,
of course, if one takes into account that b0 may
differ somewhat from bI., that the value of bI

deduced from Fisher's s& might conceivably be
increased from —0.039 to a positive value. But
there is other evidence against Fisher's value,
independent of any assumption about b0. If one
subtracts Eq. (21.8) from Eq. (21.9) and Eq.
(21.1) from Eq. (21.2), one obtains:

(ss —ss)/'Y = (s)bs+br s-
(ss —st)/y= (s)bs.

Now very probably" J'(2p,
'

5s) (J'(2p, 4s), so
that b7&b6, thus we must have. s9 —ss&s2 —s~.
Now s9 —s8 ——0.058 cm ', while s2 —s~ =0.040
cm ' with Fisher's s~ and 0.073 cm ', with the
Jackson-Kuhn st. We again reach the conclusion
that if Fisher's value for the shift of the resonance
line is correct, then such a shift cannot be due to
nuclear motion alone. Since other evidence in

Mg I points against such a conclusion, we prefer
to decide tentatively in this paper for the
Jackson-Kuhn value for st. We can also see that
Eqs. (21.1) to (21.4) are not compatible if n=0:
if we put n =0 in Eq. (21.4) and subtract it from
Eq. (21.3), we obtain ('-, )bs ——(ss —ss)/y, while by
subtracting Eq. (21.1) from Eq. (21.2) we ob-
tained (-', )bs ——(ss —sr)/y. Thus u=0 would re-
quire that s4+s& =. s3+s&,Table V gives s3+s& ——0
and s4+st ——0.035 cm ' with the Jackson-Kuhn
value for s~, and 0.068 cm ' with the Fisher
value. Thus the observed shifts point directly to
the interaction of (3s)(3d) 'D with (3p)' 'D as
being very important. We now readily finish
solving Eqs. (21.0) to (21.4), using n= —0.550,
obtaining Table VI for the values of J'(nl; n', l 1)—
necessary to account for the observed shifts. The
magnitude of the core-valence J"s again shows

"See Eq. (26) below; although
~
s(2p) —s(5s) ( ) I s(2p)—s(4s) ~, f values fall off so rapidly that if(2~5s)

~

&(
~
f(2~4s) ~, so that J'(2p, 5s) &J'(2p, 4s). Considera-

tions of overlapping of 2p with .4s or with Ss also lead to
the conclusion that r (2p, 5s)((r'(2p, 4s), so that J (2p, 5s)
&J'(2p, 4s). (See Eq. (22) below. )

r(n, l; n'l') —=)t R(nl)R(n'l')r'dr,
0

the unit of length being ae and where e(nl) is the
energy of the electron in the orbit nl, expressed
in Rydberg units. This assumption of the same
central field for each electron was made by
Slater' in his paper on complex spectra and is
approximately borne out by Hartree's calcula-
tions. The various electrons according to the
Hartree method move in only slightly diR'erent

fields; our c's are thus essentially the energies
which would be given by the Hartree method.
We may thus look on e(nl) as the energy which
would be required to remove the nl electron from
the atom, if exchange were not operative. If the
above assumption as to central fields were not
made, Eq. (22) would have to contain an additive
term proportional to

II LV„'~(r) —U„, ~ t(r)]R(nl)R(n'l —1)r'dr;
n

we may regard Hartree's calculations as showing
the unimportance of this term. However, this
assumption about central fields is used only in
this section in judging the reasonableness of the
J"sand is not used in the previous direct calcula-

TABLE VI. Values of the J"s calculated from observed shifts,
assuming R(3s') =R(3s) and the Jackson-E'uhn

value for the resonance line.

2p3$
3p1s
3p2s
3p3s
3d2p
3d3p

z(nt; I', I —i)

0.535

0.351

. J2(~t ~', i —~)

0.047
J2(3p, 1s)+J2(3p, 2s) =p.2p8

0.286
0.118
0.123

that a two-electron model would not be per-
missible.

Up to this point we have made no assumption
whatever as to whether the various electrons
move in different central fields or all move in the
same central field. If we now assume that they
all move in the same central field with potential
energy V(r), we have (Appendix I):
J(n, l; n', l —1) = (-', ) Le (n', l —1) e(—nl) ]

Xr(nl; n', l —1), (22)
where
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tions with wave functions or in the section where
we predict shifts for other lines.

Now, using atomic pnits, with l'=1+1, we
have 2'

f(nl~n'P) —= (1/3)(2l'+1) '[e(nl) —e(n'I')]

XZE I
(nlrn& Ir I

n'I'rn&')
I

' (23)

= (1/3)(2l'+1) ' max (t, I')

X [e(nl) —e(n'I')]r'(nl; n'I') (.24)

Thus

f(nl —+n', I —1) = (1/3) l(2l —1)

X [e(nl) —e(n', l —1)]r'(nl; n', I —1). (25)

Comparison of Eqs. (25) and (22) leads to the
relation:

f(nl +n', I——1) = (4/3) [e(nl) —e (n', I —1)]
Xl(21 —1) 'J'(nl; n', I —1). (26)

The e's can be estimated for is, 2s, and 2p from
x-ray data, and for 3s, 3p, and 3d from term
values in Mg I and Mg II; the details are given
in Appendix II. The results are e(1s) = —96.0,
e(2s) = —4.58, e(2p) = —3.65, e(3s) = —0.764,
e(3p) = —0.299, e(3d) = —0.106. Using these
values for the e's, the J"s in Table UI, and Eq.
(26), we obtain Table VII for the f values.

Note that the (3, 3) f values are of the same
order of magnitude and are large compared to
the (3, 2) f values, which are all of the same
order, being in turn large compared to the (3, 1)
f value. These relative values are to be expected
and help to show the reasonableness of the f's
For an actual comparison with experimental data
we must remember that these f values are for
the system of one electron moving in the effective
Hartree field of the rest of the Mg atom, and as
such could not be directly compared with fvalues
in Mg I, even if the latter were known. They may,
however, be compared for order of magnitude
with f values in Na I. In Na I, theoretical calcu-
lations by Trumpy" and by Prokofjew" give
0.98 for f(3p~3s), while various experiments"
give values ranging from 0.97 to 1.16; according

"H. A. Bethe, IIaridbuch der Physik, Vol. 24, No. 1,
p. 435 ~

"Cf.S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 499
(1932) for a tabulation of f values with references.

TABLE VII.f values calculated from J"s that give the
observed shifts.

ril„n', l —j.

2p3$
3p1$
3p2s
3d2p
3p3$
3d3p

f(nl —in', l —1)

—0.022
&0.0029
&0.065

0.0296
0.820
0.566

to the Kuhn-Reiche sum rule we should expect a
value less than 1. For f(3d~3p) calculations by
Prokofjew'" give 0.832 and for f(2P~3s) calcu-
lations by Sugiura" give —0.043. These theoret-
ical calculations are all based on radial functions
obtained by numerical integration, the field being
chosen with the aid of a W. K. B. modified Bohr
quantum condition so as to reproduce observed
term values; as such they are probably quite re-
liable. We see that our f values are of the correct
order of magnitude, with f(3p~3s) and f(3d~3p)
both 1, with f(3p~3s) )f(3d~3p) as.in Na I,
and with f(2p~3s) about half that for Na I; the
parallelism with Na f values is remarkable. Thus
we have a confirmation of the reasonableness of
the J"s and the consequent likelihood of the
essential correctness of the theory.

PREDICTIONS OF THE SHIFTS OF OTHER LINES

Equations (21) are capable of yielding still
other interesting results. Comparison of Eqs.
(21.5) and (21.1) gives s5 =si as a requirement of
the theory; this result is independent of any
assumption as to the relative magnitudes of bo

and b~. In words, if the shifts in Mg are due to
nuclear motion alone, then the specific shifts of
the resonance line 3 'So —3 'P~ and of any member
of 3 'P (3p)' 'P must be equ—al. Also, if one tries
to solve Eqs. (21.1), (21.2), (21.3), (21.6), and
(21.7) for bi, b2, b3, b4, b5, one finds that the
determinant of the coefficients of the b's van-
ishes, so that these equations are not indepen-
dent; one readily finds that s7+s3=s6+s&. Thus,
nuclear motion alone being effective, the sum of
the specific shifts of the lines 3 'D (3p)(3d) 'D—
and 3 'E —3 'D must equal the sum of the
specific shifts of the lines (3p)' 'P —(3p)(3d) 'D

~2 Y. Sugiura, Phil. Mag. 4, 495 (1927). This f value
corresponds to a line forbidden by the Pauli principle, but
was calculated by Sugiura for a check of his f values by the
Kuhn-Reich sum rule.
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and 3 'So —3 'Pi. Suppose now that one tries to
solve Eqs. (21.1), (21.2), (21.3), (21.4), and
(21.6) for b» b» bs, b4, bs, one readily solves for
b3 and b5 and for b4 and b2 in terms of bi. One
then inserts these values of b2, bs, b4, b5 into Eq.
(21.4) to solve for b» but bt at once cancels out,
leaving the general relation:

(1+tt') (s4 —ss) + st ——ss —2u/(ss —st)'
+2(ss —»)(» —ss) 3'. (27 3)

The other relations are:

$5 = $17

SI+$3=$6+Si. (27.2)

Thus of the seven equations (21.1) to (21.7) only
four are independent. The relations (27) are
independent of any assumption as to the relative
magnitude of bs and bt, they do depend on: (1)
having the same radial function for a given
3-quantum orbit in all configurations involving
two 3-quantum electrons, (2) having I.Scoupling,
(3) having the perturbation of (3s)(3d) by (3P)'
as the only important perturbation. Eq. (27.3)
is an equation quadratic in the specific shifts of
all the lines 3'$0 —3 Pi 3 So—3 Px& 33P
—3 'D 3 'Pt —3 'Dst and (3p)' 'P (3p)(3d) 'D. —
Using the Jackson-Kuhn value for st and the
value ts= —0.550, we obtain from Eqs. (27):
$5 ———0.028 cm ', $6= —0.018 cm ', and s~
= —0.001 cm '. The corresponding normal shifts
are 0.063 cm ', 0.045 cm ', and 0.062 cm ' re-
spectively, leading to total shifts of 0.035 cm ',
0.027 cm ', 0.061 cm ' for any member of the
sets of lines h2778 to 2784 =3 'P (3P)' 'P, —
h3890 to 3900=(3p)' 'P (3p)(3d) 'D, and ) 2—810
to 2812=3 'D (3p)(3d) 'D, r—espectively. It ap-
pears that measurement of the shifts of these
lines would afford the best quantitative test of
the idea that nuclear motion is alone responsible
for fine structure in magnesium.

The author wishes to express his gratitude to
Professor Breit for the original suggestion of this
problem and for valuable advice during the
investigation.

APPENDIX I
To show that

we resort to the following argument. With a0 as the unit
of length and the Rydberg constant as the unit of energy,
with S(nl) —=rR(nl), and with the superscript primes
denoting differentiation with respect to r, we have:

S"(nl)+I (nl) —V—/(l+1) Ir21S(nl) =0 (I)
S"(n'l') + t e(n'l') —V—l'(l'+ 1)ir' jS(n'l') =0. (II)

Multiply (I) by rS(n'l'), (II) by rS(nl), take the difference,
express S(1'l')S"{el)—S"(n'l')S(nl) as (d/dr) t S(n'l')S'(nl)
—S'(n'l')S(nl)$, integrate from r =0 to r = ~, put

f S(n l )S (nl)dr = f-S(nl)S (n l )dr,

and then replace the S's by the R's. The result is:

dR(n'l') CO

2 R{nl) r'dr = P e(n'l') —c(nl) 7 R(nl) R(n'l') r'dr
0 dr 0

+[1(i+I)—l'(l'+1) —2]f R(nl)R(n'l')rdr (III).

If now in (III) we put L'=l —1, we at once obtain the
desired relation.

APPENDIX II: ESTIMATES OF THE S

To estimate the c's for 1s, 2s, and 2p we take —e as
corresponding, respectively, to the term values of the
x-ray absorption limits E', Lz, and a mean of LII and LIII,
without making corrections to "reduced" term values,
these corrections being small. From Ase" we have the
K-absorption limit at 9.496A and from Skinner and
Johnston" we have the Lz limit at 62.0 volts and the LII
and LIII limits at 49.5 and 49.2 volts. We obtain e(1s) =
—96.0, e(2s) =. —4.58, and e(2p) = —3.65.

For the 3-quantum orbits the e's can be estimated from
term values in Mg I and Mg II. E.g. for the 3d, the value
of e(3d) as determined from the configuration (3s)(3d),
which is the only configuration in our problem involving
3d, must correspond to a mean of the singlet and triplet
term values; the mean must be taken in order to avoid
the effect of exchange, since these e's are supposed to be
Hartree energies. Also, for the singlet, in order. to avoid the
effect of perturbation by (3p)', one should use the value
before deduced, vis. 9639 cm ', corresponding to no per-
turbation by (3p)'. On averaging this with the triplet
term value, one obtains —e(3d) =11,677 cm 1=0.106 Ry.

For the 3p, the singlet-triplet mean for (3s)(3p) gives
33,201 cm'. One can also obtain a value from the (3p)2 'D,
which if unperturbed by (3s) (3d) we saw before would have
a term value of —3367 cm~; we wish to include the effect
of this configuration because it occurs in our perturbed
(3s)(3d) 'D. By adding —3367 cm ' to 121, 267 cm I, the
term value of 3s ~S of Mg. I I, one obtains the work required
to strip the atom to the neon-like core; then on subtracting
from this the term value 85, 537 cm I of 3p'P in Mg II,
one obtains the network to remove a 3p electron from

"See M. Siegbahn, Spektroskopie der Roentgenstrahlen,
second edition (Springer, 1931), p. 265.

H. W. B. Skinner and J. E. Johnston, Proc. Roy. Soc.
A161, 420 (1937).

dR(n', l —1) (/ —1)
R{nl) .

' — R(n, ', l —1) r2dr
dr r

', [s(n', I 1)-—s(nl) ]f R(nl)R(n', l 1)r—'dr, —
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(3p)~'D, leaving another 3p electron behind; this pro-
cedure gives 32,363 cm '. The mean of these values from

(3s)(3P) and (3P)~ gives —c(3P) =32,782 cm '=0.299 Ry.
For the 3s, the configurations (3s)' and 3s give at once

61,672 cm ~ and 121,267 cm ', respectively, there being
no exchange correction to be made in these cases. For
(3s)(3P) we add the singlet-triplet mean 33,201 cm ' to
121,267 cm ' to find the work to strip down to the core,
and subtract from this the term value 85,537 cm ' of

3p 'P in Mg II, to find the net work required to remove
the 3s, leaving behind the 3p; this gives 68,931 cm '. A
similar procedure for (3s)(3d), with the use of the above
11,677 cm ' for the singlet-triplet mean term value, leads
to 83,167 cm ~. The deviation of the value computed from
the configuration 3s (alone) from the other three values
illustrates the error probably made in putting R(3s')
=R(3s). However, a mean of the four values gives
—c(3s) =83,759 cm ' =0.764Ry.
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The Dielectric Constants of Ammonia, Nitrogen, and Carbon Dioxide at Ultra-High
Frequency

GERALD W. FOX AND ALDEN H. RYAN

Physics L,aboratory, Iowa State College, Arses, Iona
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The heterodyne beat method has been used to determine the dielectric constants of nitrogen,
carbon dioxide, and ammonia at a frequency of 56 megacycles in the temperature range of 22'C
to 45'C. The method proved to be entirely satisfactory showing that the techniques customarily
applied in making measurements at the lower frequencies are applicable in the ultra-high

frequencies as well. The dielectric constants of nitrogen and ammonia at 56 megacycles agree
with, the values found at low frequencies. In the case of carbon dioxide, an anomaly was observed,
the value of the constant rising from its normal value to a maximum at about 39'C and then
decreasing. This variation is briefly discussed.

INTRODUCTION

~

~

~

~

~ ~

~

~

ITH the growing use of the ultra-high fre-
quencies in applied physics, redetermina-

tion of the dieIectric constants of gases appears
desirable at these frequencies. The purpose of the
present investigation was twofold: (i) To de-

termine whether the heterodyne beat method
could be used successfully at frequencies up to
56 megacycles per second. (2) To determine the
dielectric constant of three typical gases (nitro-

gen, ammonia, and carbon dioxide) at a fre-

quency around 56 mc, as a preliminary to future
work at still higher frequencies.

EXPERIMENTAL M ETHOD

In the heterodyne method, two oscillators are
used, one of fixed frequency, and one whose

frequency depends in part on a condenser to
which the material under study can be admitted.
As this capacity is altered, the frequency of the
circuit of which it is a part changes and this shift

* Now Westinghouse Research Fellow, East Pittsburgh,
Pennsylvania.

appears as a change in the beat note between the
two oscillators.

Hector and Schultz' pointed out the experi-
mental difficulties of this method. These are:
to maintain the frequency stability of the fixed

oscillator; to prevent synchronization of the two
oscillators when the beat frequency approaches
zero; and to prevent changes in the frequency of
the variable oscillator, except as produced by
admitting the material to the condenser.

In the present apparatus, the first difficulty
was reduced by using a crystal-controlled oscilla-

tor, operating on a frequency of 14.18 mc. A

second stage quadrupled this to 56.76 mc. The
crystal was a Bliley BS low drift crystal, and for
further stability, it was enclosed in a crystal oven.

.The second difficulty was eliminated by
thoroughly shielding both oscillators and their
batteries, and by coupling the oscillators very
weakly to the detector by radiation. The use of
high frequency reduced synchronization, since
the beat frequency change was much larger than

' L. G. Hector and H. L. Schultz, Physics '?, 133—136
(1936).


