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cm ', several medium lines lying between 98
cm ' and 101.3 cm ', another group between
105 cm ' and 110 cm ', as well as the following
scattered strong and medium lines in the medium
wave number range: 157.50 cm ', 159.10 cm —',
163.57 cm—' 173.58 cm —' and 184.69 cm —'.

Neither were these lines to be explained as
being due to HgO impurities or to 2nd-order
spectral impurities, as they did not coincide with
the strongest H~O lines or 2nd-order lines in the
region. It was also quite improbable that they
were spurious lines as they were found time and
time again on different gratings and with differ-
ent optical paths.

It is possible that the HDO impurities were not
completely eliminated and thus were responsible
for these absorptions. If so, it should be possible
to eliminate them by a more complete drying
out of the absorption cell. Another possibility is
that certain of the allowed transitions whose
intensities could not be calculated by means of
the symmetric rotator matrix elements do, never-
theless, have measureable intensities and should
be considered. Finally, there is the possibility

that the whole assignment of theoretical transi-
tions has been incorrect. If this be true, then it
means that the effective moments of inertia
calculated in the analysis are greatly in error.
The assignment would have to be completely
reconsidered in order to account for these lines
at all. As has been previously stated, several
attempts were made during the analysis to find
alternative assignments which would account for
the experimental data, and none were found to
be nearly as satisfactory as the one developed
here.

Assuming the general correctness of the analy-
sis however, the next problem is to develop
rigorous methods of computirig the rotational
distortion of the asymmetric rotator so that the
effective moments of inertia may be recomputed
with precision from the energy levels obtained
from this research. The dimensions of the mole-
cule may then be well established.

One of the authors (N. F.) would like to ac-
knowledge support from a Rackham Predoctoral
Fellowship during 1937—38, the year in which
the experimental part of this work was done.
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Part I is an investigation of the fundamental question concerning the additivity of first-order
exchange and second-order van der Waals potentials. The method employed is a variational
one which allows both first- and second-order exchange efFects to be calculated simultaneously
with the second-order attractive terms. It is shown that the assumption of additivity is en-
tirely false for atomic hydrogen, but that it is almost legitimate for He. By extrapolation one
might conclude it to be quite safe for heavier structures. Part II is a redetermination of the
numerical values occurring in the attractive part of the potential, based on the use of oscillator
strengths (f values) which are adjusted to give the best value for the atomic polarizability of
He. It appears that the value of the dipole-dipole coefficient in the Slater-Kirkwood formula has
been too high. The final result for the van der Waals potential (Eq. (20)) seems on the whole to
be consistent with independent determinations of this quantity from empirical data.

"UMEROUS questions arising in the study
of the behavior of helium at- low tempera-

tures require for their treatment a fairly accurate
knowledge of the van der Kaals potential
between helium atoms.

Considerable attention has therefore been de-

voted' to attaining an empirical answer to the
' J. Lennard-Jones, Proc. Roy. Soc. 106, 463 (1924).
J. de Boer and A. Michels, Physica 5, 945 (1938); 6,

409 (1939).
3 J. O. Hirschfelder, R. B. Ewell and J. R, Roebuck, J.

Chem. Phys. 6, 205 (1938).
4 H. S. W. Massey and R. A. Buckingham, Proc. Roy.

Soc. 168, 378 (1938); 169, 205 (1938).
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problem at hand; i.e., curves for the van der
Waals potential in. He have been derived from
thermodynamic data. The present paper is the
converse to these attempts in as much as it
endeavors to deduce the potential in a more
a priori manner from the atomic structure of He.

Previous work on this problem' ' stands in
need of improvement principally in two respects.
The first concerns the common procedure of
adding exchange forces calculated by one method
to the asymptotic van der Waals forces calcu-
lated by quite a different method, This, if it is
legitimate at all, requires analytic justification.
Secondly, the accuracy of former calculations
of the coeFficients of the attractive terms in the
potential should be improved. In accordance with
these considerations, the present paper will con-
sist of two parts dealing with these two points.

It is perhaps unfortunate that the most
interesting part of the potential in question, the
minimum, arises from an interplay of two types
of forces—exchange and dispersion forces—and
its determination, therefore, requires about equal
accuracy in our knowledge of both. This means
that the calculation may not be restricted to
the 1/R' term in the dispersion part, and that
the repulsive forces must be studied with con-
siderable care. It is usually assumed that the
potential energy in question may be written in
the form

ci c2
DE=Ac i'~ ————

R' R'

the higher terms of the series have been shown
to be negligible for He. '

I. SEcoND-ORDER ExcHANGE FQRcEs

The simple form of Eq. (1) is the result of the
following procedure. One adds the second-order
perturbation (—c~/R6 —cs/Rs) calculated with
atomic functions not satisfying the Pauli principle
to the erst-order perturbation (Ae "s) calculated
with functions satisfying the Pauli principle.
This is clearly inconsistent; for if it is necessary
to go to the second perturbation in connection
with the attractive terms this should also be

' J. C. Slater and J. G. Kirkwood, Phys. Rev. 3V, 682
(1931).' H. Margenau, Phys. Rev. 38, 747 (1931).

done with the others. Eisenschitz and London~
have calculated the complete second-order per-
turbation for atomic hydrogen. Their method,
however, is not easily applied to the Helium
problem, nor does it yield results which allow a
ready comparison with the terms of (1).We shall
use for the same purpose a more direct variational
method, the results of which are equivalent to
those of Eisenschitz and London for hydrogen.
The procedure will first be described in detail
for hydrogen, and afterwards the complications
appearing in the helium problem will be dealt
with.

Hydrogen

The variation function which yields the
attractive part of the van der Waals potential
may be written'

4 =(1+~D)4o,

where D is the operator H Eo (II b—eing the
total Hamiltonian of the system consisting of
two atoms, one at a, the other at b, and Eo
twice the energy of one isolated atom), $0 is the
function qr, (1)yq(2) (p being the atomic function
for the normal state), and X is a variation param-
eter With . the use of P we ftnd

)QHPdr =JfP(D+Zo) /dr =Dpg+2X(D') ap

+X'(D')oo+Zo I @dr, (2)

if we note the Hermitean character of D. The
subscripts 0 indicate, of course, matrix elements
computed with $0. The order of magnitude of
the di8'erent terms in (2) is important. If we
denote by U the perturbation function II—IIO,
we have Boo= U00, a quantity which is of appre-
ciable size only at distances of separation
R= ~a —b~ considerably smaller than that at
which the van der Waals minimum occurs.
Indeed when V is expanded in powers of 1/R,
as is customary, Uoo vanishes exactly. Further-
more it may be shown that (D')00=(V')00, but
we are not permitted to replace (D')oo by (V')00

~ R. Eisenschitz and F. London, Zeits. f. Physik 50, 491
(1930).

The present development is essentially an application
of the Hasse method, first applied to this problem in
reference 5.
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becauseof thenoncommutabilityof theoperators was used by Slater'0 in calculating the term
IIO Rnd V. In fact Ae &~ for He, it is given simply by

(D')oo=)"D&oDVodr=)I VfoDV4odr El =~~PDIIldr ~+dr,

= (V')oo+ t Vfo(Ho —Eo) Vi/hodr,

and the last integral may be transformed by
partial integrations' into

III' l'oi Vq '

2III ~ &axj

But, tllls quRIltlty nlRy be wl'lttell Rs —(I/2tlz) Zj
X{(P;V)'joo where I'; is the momentum oper-
ator, which indicates at. once that the order of
ITiagnltudc of the tcIITl 18 not thc sRITie Rs thRt
of (V')oo, but of Eo(V')oo. Vile see, therefore, that
even if X is small (it will be seen to be = I/Eo),
the term X'(Do)oo in (2) must be retained as
comParable ill size wltil X(D )oo.

On the other hand, the integral

Wllell lP 1S taken tO be (1 P)f—o, Po being defined
as before. P is understood to be the operator
which permutes electrons j. and 2. In expanded
form, Eq. (5) reads

Doo —(D&)oo

+00

on COITlpRI"ing the two va11Rt10n fUnctlons
which yieM, respectively, E1 and E2, it is dear
that the two separate procedures may be com-
bined and a better approximation to the van
der %'Rais forces obtained by using the variation
funCtlOQ

+=(I.+&,D)(I —P)y, .

It leads to the following integrals:

)"+'d~ = 2 {I —&oo+2&LDoo —(D&)«j

+&'L(D') oo —(D'&) oo1 I.
contains terms of descending orders of magni-
tude and may safely be approximated by g Here again, terms ln dlfkrent Powers of ~ form a
because D00 ——0. Hence we find rapidly descending sequence, and restriction to

the terms linear in x is proper.

&II&dr ) P&r =2) (D') oo+) '(D') oo+Eo (3)

Eo ——X'(D') oo. (4)

The Rpprox11Tlatlon thus Obtained 18 cqu1valcnt
to that of second-order perturbation theory.

Lct us now tUI'Q to thc 1epulslvc exchRnge
energy. In the Heitler-London method, which

9 Cf. for instance H. Margenau, Rev. Mod. . Phys. 11,
1, 25 (j.939}.

and th18 becomes

X'(D')oo+Eo ——X'(V')oo+Eo,

when it is minimized with respect to X. The
value of ) at the minimum, here denoted by X'

and given by —(D')oo/(D')oo, may be found from
other considerations. The attractive part of the
van der &Rais potential, which will henceforth
be denoted by E2, is seen to be

)"O'Dad r = 2 {Doo—(DP) oo

+2&L(D')oo —(D'&)ooj+&'( ) I (g)

The term in X' is comparable in size with the one
preceding it. In minimizing J'+D%'dr/ J'O'IEr with
respect to ), wh1ch 18 thc next step to bc taken,
one can easily convince hiInself that the term
plop01t10QR1 to X 1Q thc denominator has vely
little CR'ect upon the value of the minimum,

Beyond this we shall assume in order to simplify
the analysis, that the value of X which minimizes

(8) is nearly the same as the one which mini-
mizes (3). As before, we get for this value of ),
an expression identical with (8), but with the
term in ) 2 missing and the numerical coef6cient
of the pl eccdlng one 1educed to Unity. Con"

'0 J. C. Slater, Phys. Rev. 32, 349 I,'1928}.
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sequently that $0 and Pgo satisfy the equations

[E~.—s'(ni '+&u ')4 =E 4

[El ' s (f 1 +n'2 )P4 0

Eater'0

J34D%'dr 4'dr

Doo —(DP)oo+&'[(D )OQ (D P)ooj

+2&,[D (DP) ~
one sees immediately that

This expression represents the van der Waals
energy we are seeking. When it is compared with

(6) and (4) it is at once seen to reduce to

R+ (1—Poo) '[E~—X'(D'P) oo]
(9)

1+2KB,

alld
D4'0 —s2(y12 1+.R—1 $z

—1 g2 1)$0

DPQO 8 (r12 +R Sl b2 )PQO.

Consequently

(D2P)00= DWODP4'odr= e4 (rq2 '+R ~

and p =R/no

At p = 7, 8 =0.022 so that 1—Ppp may be safely
replaced by 1. At larger distances the error is
even smaller, and smaller distances are not of
interest in connection with the present problem.
We may say, therefore, that as long as the over-
lap integral P is small compared to unity, the
van der Waals energy is composed additively of
3 terms:

AE =Eg+E2 V(D'P) 00, (1—0)

the last of which will now be calculated.
As to notation, we specify that r» shall be

the distance between electrons 1 and 2, and
that a2, for instance, shall be the distance be-
tween nucleus a and electron 2. On writing down
the Hamiltonian operator H and also recalling

Of course our result shows clearly that one may
not, in general, add Z~ and Z~ and expect to get
a good approximation to the van der Waals
energy. Let us look at the magnitude of the
various quantities in (9). For a.tomic hydrogen
the minimum comes at 8= 7ap, ap being the erst
Bohr radius. (Cf. Eisenschitz and London or
reference 9.) At this distance, Eq and —Em are
about 2 millivolts. X'=1/Eo (cf. below). There-
fore the quantity 2X'8& is less than 0.001 and
may be neglected against 1 for our purposes.
A further simplification arises on decomposing
Ppp. We have

Poo= I 4'OPpod&= ~F (1)A(2)V' (2)A(1)dr=~

where

5=)l y. v dr) e(1+——p+ p'/3)

f 1 +2 ')(rim +R &| b—
m )po—P&od&

The integrals here encountered are all listed in
the appendix to the paper by Eisenschitz and
London. " When the results are collected, the
expression reads

e4 f' S 13 24
(D'P)oo= —& "I + pa' E.4p 10 5

53 2 4 4
+ p'+ p—' p-' ——p' I——

1S 3 81 27

(+2e I'8
I

1——I(1—C—log p)
pj

12
+—1+—(C+log p)

p 5
(11)

4 ( 2 1 1
+ ~ ~E&( p)I p+p+

3 9 9 27

(2486' 4 8 4 20 16
E;( 2p)I — ————+—p+ "—"+—p'

I

& Sp' p 3 3 27 81

126" p 2~-
+Ei( 4p) +e&b—'I 2—

- Sp' E p)-
8'=e&(1-p+ p'/3); C=O.S77

It now becomes. necessary to evaluate 'A. It is
well known from the work of London that

Eu = —( &')oo/P I
EO

I

where p is a number, usually not far from unity,
~» The last integral in their list contains an error (pre-

sumably typographical). It should read: 2e ~QS. Their
S is our 6'.
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To illustrate the significance of the correction
term we assemble the constituents of e for p = 7,
i.e. , near the v.d.W.-minimum in hydrogen:

E1 Es -X(D~P) oo B,E
2.2 —1.95 —0.98 —0.73 millivolts

E2 here includes, as it should, the dipole-quadru-
pole and quadrupole-quadrupole contributions.
The result agrees with that of reference 7, which
was obtained by second-order perturbation
theory. The second-order exchange term is
indeed larger than the depth of the minimum

itself, and its omission would falsify the total
result completely.

For purposes of rough calculations it is con-
venient to have a simpler function by means of
which (O'P) 00 can be approximated. It was found

that
(O2P) 00

——' —(e4/a, ')4 20e 13."pp (12)

within an accuracy of 5 percent for values of p

between 6 and 10.

Helium

The energy 8& has been calculated by Slater'
with the use of a nonanalytic wave function
which describes the atomic properties of He very
well, a function which is undoubtedly superior

by far to the one we shall employ in the calcula-

tion of the second-order exchange effect. To
carry through the integrations conveniently

which depends on the position of the "centroid"
of excited energy states. For hydrogen, p=0.92.
But according to Eq. (4),

Z2 ——X'(D2) 0p ——X'( V2) po.

Hence

hydrogenic wave functions with suitable screen-
ing constants will be chosen in this work. This
has the further advantage that the calculations
yield expressions similar to those which have
already been evaluated for hydrogen.

Let q, stand for the wave function of a single
electron. Screening may be taken account of by
a change in the "equivalent Bohr radius" a: the
exponent in the wave function is (Z s)(r/ ao—)
=r/a; this makes a =ap/1. 688 for He. Thus all

integrals will be the same as for H except for
this change in a. The usual v.d.W.-energy E2
corresponds to the function

P= (1+AD)$0
with

40= 0.(1)8.(2) 0 p(3) 0 0(4).

On the other hand, E,j. corresponds to

(1+P13P24 P24 Plp)foi

where I';; is the operator interchanging the argu-
ments of the ith and jth electrons in the function
on which it acts. Explicitly,

P2 =X'(D2)00 as before, and

&1= (1—&2) 2LD00 —(OP18) oo

(DP24) 00+ (OP 13P24)00].

We propose to use the function

(1+l1D)(1+P13P24 P24 P18)4'0

assuming again that the minimizing value of X

for -this function is not affected by the addition
of the exchange operators. The minimum value

of the expression J'O'D%'dr/ J'+2dr with this
function is

(1—82)—'{IDoo —(DP13)00 (DP24)00+(DP13P24)00]+l1 L(o )00 (o P13)00 (D P24)00+(o P13P24)00]I

1+2K'(1—41') 2LD00 —(DP13)00 (DP24) 00+ (DP18P24) 00)

81+Z2 X L(D P13)00+ (D P24)00 (D P18P24)poj.

In the last step we have again neglected 8'

and 2X'E& against unity, an approximation which

is entirely safe in the neighborhood of the v.d.W.-

minimum and beyond, It is now necessary to
compute three correction terms.

We have

H=Z2;„+e2( —2a1 ' —2ap '+r12 ' —2bp '
—2b4 +f34 —2 by —262 —2Q 3 —20 4

+r13 +r14 +r28 +r24 +4+ )
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whereas Pp satisfies the equation

[E1,;,+es( —2441 ' —2433 '+y13 ' —2bs '

2—b4 '+ys4 ')$40=EQ&0

Therefore Df0 = (II—Ep) $0
——Ugp

where

U=ps( —2b1 1 —2bs —2433 —2414 +y13

+y 1+y 1+y 1+4+ 1)

(U is not symmetrical with respect to an inter-
change of electrons, as is D.) The integral

(D P13)QQ
— I DQQDP»hodr = U&QP13( U&p)dT

(UP13 U) (0'QP134'o) dr.

The next integral is equal to this; for Pp is
symmetrical with respect to the transpositions
(1, 2) and (3, 4), so that

from the nucleus is very much smaller than that
one shall be far away and one near it. Thus,
when two helium atoms interact, at distances
several times the atomic diameter, exchange
will effectively take place only between two
electrons at one time. The other two will be
near their nuclei, so that the interaction is
essentially hydrogenic. When one is interested
in the forces at smaller distances of separation,
this argument may not be used.

Mathematically, the result comes about in
this way. When

(O'P»)«= "U(P»U) 0.(1)0»(1)0.'(2)

x 0 -(3)A(3) 0»'(4) dr

is expanded, it contains, besides the integrals
occurring in the foregoing section, a considerable
number which do not represent pure exchange
but involve direct parts as well. Examples are:

~ 0.'(1)0.(2) pb(2)
dr

(D P24)00 QQD P344'pdr

=
)~P13P34 I PQD P34$0}dr =~)PQD P13fpd r.

Finally, in the approximation in which P is
neglected against unity, the integral (OsP13P34)00
may be disregarded. This can be seen roughly
as follov s.

The factor (PQP13P34$0) aPPearing in the
integrand would, if integrated alone, yield 84,

while the (00)-element of the single permutation
PI3 is 82. Though this does not prove the small-
ness of all integrals appearing in (OsP13P34)00~ it
is a hint which is verified on calculating this
quantity in detail.

We may say, then, that

~=' E1+Es 2),'(O'P13) op
—(13)

and we shall now show that the integral of the
correction term is reasonably well approximated
by the quantity (DsP)00 already computed for
hydrogen.

This can be seen on physical grounds. When
the helium atom is in its normal state, the
chance that both of its electrons be far away

and

t 40.'(1)0 .(2)0 b(2)0 .(3)9.(3)
cft.

f13~23

The leading term in these integrals is obtained
by treating q,2 as strongly concentrated about
the nucleus 43 (8-function). In the complete
integral this term is multiplied by an expression
of the form [1+e ' (polynomial)]. This will here
be taken as 1; the error thus introduced is hardly
greater than 5 percent at values of p in which
we are interested here (e &=10 4). If this pro-
cedure is adopted, these two integrals reduce to

a11d

1 f 0.(1)pb(1)
dr1

R bI

t
0.(1)0 b(1)0.(2)0.(2)

dr
C2'f I2

When similar approximations are carried out on
all integrals of this type, (O'P»)pp for helium
collapses to (O'P)« for hydrogen (though Ds
contains many more and quite different terms in
the former case than in the latter).

X' will be determined as before; p is very
nearly 1, so that X'= —1/2E„, where E; is the
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first ionizing potential of He. For (D'P)pp we
may take the approximate expression (12). Now
the minimum of the v.d.W. Potential in helium
occurs at about 8=5.5a0=9.3a, that is, the
equivalent p(=R/a) for He is much greater
than that for II(=R/ap), although the minimum
actually occurs at a smaller distance of separa-
tion in He.

On inserting these values, we have

—2X"(D'P) 00
———(e /P-;a') .4.20e ""&

= —350e ""&volts,

which, for p=9.3, has the value —5.9&(10 ' ev.
Again we list the constituent parts of AE at the
minimum (A=2.9A). The conclusion is that the

II. ATTRACTIVE FORCES

Several calculations of these terms, using
widely different methods, have been made;" the
results are not as consistent, however, as might
be desired. The most important quantity is c~,

the coefficient of the dipole term; the main part
of the subsequent considerations will deal with
its evaluation.

Survey of previous results for the coeScient c&

There are two general methods for calculating
c~. The first is based upon the use of London's
formula

3 pe'Ii'q '

2L m)

0.72

B2
—1.75

—2X(D2P) 00

—0.06 —1.09 e. millivolts

second-order exchange effect for He is almost
negligible, a fact which is perhaps surprising in
view of the large role it plays in H. It explains
why the simpler theories have had some measure
of success in connection with the helium problem.

It is probably safe to add a remark about the
magnitude of this effect in the heavier rare gases
without further calculation. A detailed investiga-
tion would be complicated by the fact that the
electrons involved are no longer 1s-electrons.
Nevertheless, if the exponential part of the
wave function is the decisive feature, the effect
is determined by the magnitude of (D'P)op for
the equivalent value of p at the v.d.W. minimum,
and this equivalent value of p depends on the
screening constant for the outer electrons
through a. If we take Slater's screening constants
and identify the distance of the v.d.W. minimum
with the kinetic theory diameter, the values of p
turn out quite large; for Ne and Ar, e.g. , they
are about 18. At these distances the exponential
(12) is entirely insignificant even after multiplica-
tion by the factor 8, the number of electrons in
the outer shell. We conclude, therefore, that for
heavier atoms the second-order exchange effect is
negligible.

Slater's expression for the first-order exchange
potential in He is not likely to be much in error;
at any rate it would be very difficult to improve
it. Hence we turn our attention now to the
attractive terms in Eq. (1).

c~ = 1.20&10 "erg cm' (a)

Herzfeld and Wolf" suggest a slightly different
one-term dispersion formula, and also one con-
taining two f 's Both, if us. ed in calcula, ting
(2), lead to

c~ ——1.28)(10 "erg cm' (b)

The inaccuracy of results (a) and (b) arises

~ See references 5, 6, 9; prior to these F. London's well-
known papers; more recently R. A. Buckingham, Proc.
Roy. Soc. 100, 94 (1937); C. H. Page, Phys. Rev. 53, 426
(1938).' C. and M. Cuthbertson, Proc. Roy. Soc. 84,, 13 (1910).

"K.F. Herzfeld and K. L. Wolf, Ann. d. Physik I4j
76, 567 (1925).

wherein the fo; are the spectroscopic oscillator
strengths pertaining to transitions to the ground
state. They may be taken from empirical dis-
persion formulas. Now it happens that the re-
fractive index of He is given with very good
approximation by a formula in which only one f
appears, " at least in the relatively small range
to which observations are confined. In that case
(2) is equivalent to

c= ——6 cx2,1—

where 6 is the energy difference between ground
state and mean excited state, and of, the static
polarizability. Using Cuthbertson's 6, Eq. (3)
gives
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principally from the circumstance that the mean

f value to be inserted in the dispersion formula
is not identical with the proper mean for Eq.
(14). These results can only be improved by
taking detailed account of the variation off with

frequency, both in the discrete and in the con-
tinuous spectrum.

The second method for determining c~ is the
variational one, in which fp is approximated in a
suitable manner and the perturbing van der
Waals energy is computed. In the hands of
Slater and Kirkwood' it has yielded

may be written

fo;fo, fp„(dfo, /do)do
c,=A P — —+2+

'~ v'v~(v'+v~) ' »,(1+p)(1+v*+o)

(dfy/dog) (dfo/doo)doydop

J+ l (16)
~)p (~+pi)(1+op)(2+o&+po)

use being made of the following abbreviations:

3 pe'A'q ' 1 Z;
v, =1——, o=

2l nzi

cI=1.49X10 "erg cm'

whereas Buckingham" computes

(c) E without subscript refers to the continuous
spectrum. In evaluating (16) it is convenient to
introduce the auxiliary function

cz = 1.62 X10 "erg cm' (d)

The error in these results is difficult to estimate;
but it is to be noted that they may not be
interpreted as upper limits to the true value
of c&. This simply follows from the fact that the
perturbation energy is calculated as the difference
between the perturbed energy 8 and Zpp, the
latter being only approximate because Pp is not
exact. A survey of cases other than helium indi-
cates that the variational method generally gives
values of c& considerably greater than would be
obtained from any empirical dispersion formula.
One is therefore inclined to believe that its
tendency is to overshoot the mark.

"H. Margenau, Phys. Rev. 3'F, 1425 {1931)."J.E. %heeler, Phys. Rev. 43, 258 {1933).

Recalculation of c~

It is possible to make a calculation which is
based upon Eq. (14), taking adequate account
of the variation of the f values with frequency.
The method to be employed has already been
used for this purpose, "but with a rather uncer-
tain choice of f's (It yielded . c& ——1.44&&10 ".)
Meanwhile, f values for He have been calculated
by Wheeler. " They will here be used as basis
for computation, later to be corrected for em-
pirical reasons.

We denote the f values relating to the discrete
spectrum by fo;, for the continuous spectrum
they are available as dfos/dK In accordance with
this division of the frequency range Eq. (14)

(df/do)dp
G(n) —=

~ p (1+o) (n+ o)
(17)

which can be computed for a sufficient range of
0.'s by numerical integrations. In terms of it,
we now have

fo;fo; fo,G(1+v;)
cg ——A Q- +2g ——

'~ v;v;(v;+v;) f v;

" (df/do)G(2+ p)dc

+j
In calculating the first sum, only the v's corre-
sponding to the first four lines of the principal
series need be considered; the remainder may be
treated as a single transition near the series
limit (vp ——0.99). The integration has been carried
out numerically, since it seems difficult to
approximate 6 by simple functions. The three
terms in brackets yield, respectively, 0.126,
0.358, and 0.271. The coefficient A has the value
—1.97X10 6o. hence

cs = 1 49 X 10 erg cm'

in exact agreement with the result of Slater and
Kirkwood (Eq. (c)).

The present method is of course exact as far
as the coefficient cI is concerned errors are due
only to the use of inaccurate f values, and these
may be estimated and corrected. We subject
the f 's to two requirements: they shall satisfy the
sum rule

Zfo;=2,
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and they shall yield the correct polarizability

e'A' Oi

m (Eo—E)'

In terms of our present convention, and with
the use of the function (1'I), this reads

CQNcLUsIoN

As to the coefticient cq of Eq. (1), there are
several detailed calculations which agree quite
well. In particular, they lead to almost the same
ratio cm/cq, and this turns out to be 2.2X 10"cm'.
Thus we take c~ to be 3.0X10 "erg cm'.

Summarizing the present results we obtain:

e k Os

(19) y (pe—4.60m g60e—5.33m

Wheeler's f values already satisfy Eq. (18).
They give for the bracketed expression in (19)
the value I 0.532+0.621}, and thus for n'.

2.11X 10 '5 cm'. Experimentally, 0. may be
obtained from measurements of the dielectric
constant of He at radiofrequencies'" and from
extrapolation on the refractive index. " The
former lead to the value 2.1X10 " cm'. How-
ever, the experimental di.fficulties attending these
measurements are such as to make this value less
certain than that deduced from Cuthbertson's
observations on the refraction of visib1e light.
From these, Born and Heisenberg" have found
&x=2.02X10 "cm'.

Assuming this to be correct, we conclude that
Wheeler's f values are slightly in error. In cor-
recting them, we assume the trend of df/d~ to be
unaltered, but redistribute the relative weights
of the discrete and the continuous spectrum in

such a way that both Eq. (18) and Eq. (19) are
satis6ed for n = 2.02 X 10 " cm'. Thus if f'

denotes the corrected oscillator strength, we put

fp, =(1—a)fp; 'and df /de = (1+b)(df/de).

It is found that a =0.134, 6 =0.036. This cor-
rection seems quite compatible with the accuracy
of Wheeler's calculation. If now we use the
corrected f's in Eq. (14), the result is

c& = 1 39X 10 erg crn

A change in the value of n produces about
twice as great a relative change in c~ in the same
direction.

1.39 3.0
10 "erg (20)

R' R'

as the formula which appears best in the face of
present evidence. Here R is measured in A.U.
The repulsive term is taken from Slater without
recalculation. As already pointed out, the second
term is a small correction; its form is valid in
the region of the minimum and down to about
2A. For purposes of using the formula in calcula-
tions it may well be taken care of by increasing
the dipole-quadrupole coefficient from 3.0 to 3.7.
The minimum of hB comes at R=2.8A and has
a value of —18-X10 "erg.

The formula most frequently used in applica-
tions is Slater and Kirkwood's, which neglects
the quadrupole term but has —1.49 for the
coefficient of the dipole term. It seems that the
reason for its approximate validity lies in the
compensating effect of these two features. Recent
calculations of Gropper" on the second virial
coefficient of He indicate that the correct poten-
tial must lie between the Slater-Kirkwood
potential and that obtained by the present
author on adding the quadrupole term to the
latter. The same result is reached by de Boer and
Michels' who actually deduce a potential which
best fits experimental data. The potential given
here (Eq. (20)) does have the property of being
intermediate between the two. Dr. de Boer has
kindly pointed out, " however, that this ex-
pression does not give quite as good a 6t with
the experimental data of Keesom and Kraak" as
the one derived by him from an analysis of
thermodynamic data.
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