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A Field Theory of Elementary Particles
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Previous attempts at constructing a classical field theory of the electron are reviewed and
it is shown that hitherto it has not been possible to combine the two conditions: gauge-invari-
ance and freedom from singularities. It is pointed out that this can be done by the introduction
of new matter functions similar to the wave functions of quantum theory. A simple possibility
of. this type is considered and is found to lead to equations admitting electron-like solutions.
The electron turns out to have a negative mass (but perhaps this difficulty will disappear when
the equations are quantized). The theory, although classical, offers in principle a possibility
of accounting for the Sommerfeld fine-structure constant. There are also solutions correspond-
ing to excited states of the electron and to heavier particles, including particles with zero
charge.

S IS well known, the Maxwell equations of

~ ~

~

classical electrodynamics lead to the de-
scription of an elementary charged particle as a
singular point in the electromagnetic field. Such
a representation ("point-electron" ) is, of course,
unsatisfactory (1) because it makes the particle
have infinite self-energy, and (2) because the
presence of the singularity means that the field

equations are not valid at the point in question,
so that it is necessary to have equations of motion
for the charge in addition to the equations for
the field.

In order to overcome these difficulties, Mie'
proposed a modification of the Maxwell equa-
tions which would admit a solution for an electron
as a charge, free from singularities, occupying a
finite volume. However, there were serious ob-
jections to this theory and it was abandoned for
a time.

When quantum electrodynamics was de-
veloped, it was found that the equations of the
new theory, obtained by quantizing the classical
equations, failed to get rid of the difficulties of
the older theory in connection with the point-
electron. It was therefore natural to conclude
that one ought to try to remove these difficulties
from the classical theory before going over to the
quantum theory. This led Born and Infeld' to
propose a nonlinear system of equations of elec-
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trodynamics to replace the Maxwell equations
The new equations have a solution for the elec-
tron with the field everywhere finite and with
finite self-energy. However the field in this case
still contains a singularity and hence it is still
necessary to supplement the equations for the
field with equations of motion for the electron. '
EGorts at modifying this theory have been only
partially successful.

One must therefore conclude that the problem
of the existence of the electron in the classical
theory has not yet been satisfactorily solved. In
the present paper is described another attempt
at a solution to this problem.

I o THE EQUATIoN s oF MAxwELL
y M IE y

AND BQRN AND INFELD

The Maxwell equations can be written in
tensor notation

where the electromagnetic field tensor Ii&" is
derived from a potential vector y„.

F„,= (8y, /Bx„) —(8y„/Bx„)

and (;) denotes covariant differentiation.
Equations (1) can be obtained from a varia-

tional principle. If we define the Lagrangian

Lf FF~"/8&———

' J. Frenkel, Proc. Roy. Soc. Lond. A146, 933 (1934);
E. Feenberg, Phys. Rev. 47, 148 (1935).

94



F I ELD THEORY

then the condition

8~~Lq( g) ~—dr =0 (dr= dx,dx~dx3dx4) (4)

leads to the Maxwell equations, provided the
components of the potential are given infinitesi-
mal variations, arbitrary except for the restric-
tion that they vanish on the boundary of the
(four-dimensional) region of integration.

A characteristic of the Eqs. (1) and the
Lagrangian (3) is that they depend on the po-
tential y„only through the field tensor F„„and
not directly. This has the mell-known conse-
quence that a gauge-transformation, whereby the
potential q„ is replaced by

5 tL( —g)ldr=0, (6)

with X an arbitrary function of the coordinates,
does not change the function Lf or the form of
Eqs. (1), since the field tensor remains un-

changed. That is to say, the theory is gauge-
invariant.

For deriving other systems of equations in

place of those of Maxwell, the variational prin-
ciple provides a convenient starting point. Thus,
one can choose a scalar function of the field

variables, L, and by taking as the law for the field

this in itself is, of course; far from sufhcient to
determine the function.

If L is allowed to depend explicitly on the po-
tential q„ in addition to its dependence on F„„,
then in general L and hence the field equations
must change under a gauge-transformation (5).
However, it is believed that only the field F„„
has physical significance and not the potential,
so that the transformation (5), which does not
change the field, should not bring about any
essential changes in the predictions of the theory.

In Mie's theory of the electron L depends
directly on q„, and the resulting lack. of gauge-
invariance is one of the chief defects of the
theory. A solution of Mie's equations for the
electron might be expected to change if the ex-
ternal potential were changed by a constant, al-
though from the physical point of view such a
change of potential appears to have no sig-
nificance. A further diAiculty in Mie's theory
is the lack of a criterion for the choice of the
Lagrangian L.

To satisfy the requirement of gauge-invariance,
Born and Infeld assume from the very beginning
that L depends only on the field tensor and not
explicitly on the potential. However, this too has
its difficulties, as can be seen from the following
discussion.

Let us assume that L is a function only of F„„.
Then Eq. (4) can be written in the form

where the potentials are varied as in the case of
(4), one obtains a set of equations. If the equa-
tions are written in the form

(4a)

where DI"" is an antisymmetric tensor defined by

F"" =4+s (7)

the vector sl", depending on the field variables,
can be considered as the charge-current density
vector, in the sense of the Lorentz electron
theory. If one can find a static spherically-
symmetric solution of Eqs. (7), free from singu-
larities, such that the charge is confined to a
small volume, the solution might be considered
as representing an electron at rest in the absence
of an external field.

The question arises as to what form one is to
choose for the function L. To agree with experi-
ment the function L in the case of weak fields
must go over into the Maxwell function Ly. But

It follows that

t9+p
t D&"8F ( g)idr=2 ~ D&"8— ( —g)~dr

~+v

after integrating by parts and discarding the
(vanishing) surface integral. For the integral (9)
to vanish with bq„arbitrary, one must have

(10)
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which represents the set of field equations and is
therefore equivalent to (7).

In view of the antisymmetry of DI'", one can
rewrite (10) in the form

that is, as the vanishing of an ordinary di-
vergence. In the case of a static spherically-
symmetric solution, expressed in polar coordi-
nates, this reduces to the single relationship:

d(r'D„)/dr =0, (12)

where D„ is the radial component of the three-
dimensional vector D = (D4' D42 D4'). The solu-
tion of (12) is

(13)D, = e/r',

where E„ is the radial component of the three-
dimensional electric field vector E=(F4i, F",
F4'). From this it is clear that e in (13) is the
charge of the electron and therefore cannot be
put equal to zero. Consequently D„ is infinite for
r=0. If D„ is a well-behaved function of E„, as
defined by Eq. (8), this makes F.„infinite for r =0
and one has a singular point. 4

To avoid this difficulty one can try choosing I.
such that D„as a function of E„becomes infinite
for some finite value Zo of the latter. In this case,
at the origin r =0 where D„becomes infinite, E„
takes on this value Eo, the limiting value of the
field, and thus remains finite. This is the situa-
tion in the theory of Born and Infeld. At first
sight it appears that the singularity has been
avoided, but a closer inspection shows that the
vector E has a discontinuity in direction at the
origin, which is therefore still a singular point. In
consequence the field equations do not com-
pletely determine the motion of th'e electron and
additional conditions have to be added.

4 For the preceding argument I am indebted to Professor
A. Einstein.

where e is a constant of integration. If I has been
chosen so that for weak fields the equations go
over into those of Maxwell, then by comparing
(8) and (3) one sees that for large values of r (13)
goes over into

Z, =e/r',

Hoffmann and Infeld' discuss this difficulty
and proceed to remedy it. In order to avoid the
discontinuity in E at the origin it is necessary to
make E„=O there; that is, one must choose a
Lagrangian such that Z„=O for D„=~. But this
also leads to a difficulty, for at large distances
from the origin both E„and D„must tend to
zero, and thus we have the situation that D„as a
function of E„must be double-valued: for E,=0,
D„=O and D„=~. This means that the La-
grangian I must be a double-valued function of
the field Ii„,. That is essentially the case with the
function proposed by Hoffmann and Infeld. One
can give it the appearance of single-valuedness
by writing it as a function of both E„„and D„„
but the tensor components D„„cannot be con-
sidered as independent physical variables since,
as we have seen from (13), they have singulari-
ties. In general, a theory with a double-valued
action function does not seem satisfactory; in
particular, the derivatives of the latter with
respect to the field will have a singularity on the
surface where the two values join. Incidentally,
Hoffmann and Infeld obtain for F.„an even fInc
tion of r in the static spherically-symmetric case,
and this might also be interpreted to mean that
there is a singularity at r=0 (in the higher
derivatives).

Thus one must conclude that choosing I. to
depend only on F„„ashas been done in the more
recent papers, is unsatisfactory.

II. PRQPosED LAGRANGIAN

From the preceding it appears that, in a clas-
sical field theory of the type considered here, on
the one hand it is necessary for the Lagrangian
function to depend explicitly on the potentials to
avoid singularities, and on the other hand the
theory ought to be gauge-invariant. The question
arises as to how one can reconcile these two re-
quirements with each other. One w'ay of doing
this that suggests itself is to choose I an explicit
fu'nction of the potentials, but to introduce, in
addition to the potentials, new variables which
will make I. gauge-invariant.

A familiar example of this situation is the La-
grangian function from which the Schrodinger
wave equation is derived. In this case, the

~ Ho8'mann and Infeld, Phys. Rev. 51, 765 (1937).
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Lagrangian depends on the potential and on the
wave function. Under a gauge transformation
both the potential and the wave function trans-
form in such a way as to leave the Lagrangian
invariant.

In accordance with this point of view we take

light is equal to unity). Then the proper linear
combination for L is given by

I- = —X"X,*+~Vtf*, (18)

where 0. is a real constant of the dimensions
(length) '. The complete Lagrangian is then

L=Lf+L, (14) I.= F,F~"—/8~ X~X—„*+~'PP*, (19)
where I~ is given by Eq. (3) and describes the
electromagnetic field, while L is a function of
the potentials and of the new variables (main-
taining gauge-invariance) and can be considered
as describing matter.

The simplest nontrivial possibility is to intro-
duce as additional variable (in analogy to the
example mentioned) a scalar function P such
that when rp„ is transformed according to (5), P
is transformed to

If one takes, as the law for the field, Eq. (6)
where q„and P are varied independently, one ob-
tains the follow'ing system of differential equa-
tions

X" —»~. X"+~V =o, (20)

and

where (y', y', y', y') = (A~, A~, A3, y),

(F12& F23& F81' F14& F24& F34) (II3y II1& Ky +1& +2& +8) ~

$1—Psi A (15) tv. 4+s (21)

s~ = ', i»(4*-X" O'X"—) (22)

The connection with the usual notation is given
by

(&' &' &'. &') =(5 2» 2» P)
Xp = 81//Bxp —»gal»tP. so t at

where» is a (real) constant of the dimensions
(charge) '. From |f and p„one can form two
simple invariants suitable for use in the varia-
tional principle ipip* and XI'X„*,where

ds'= —dx~' —dx2' —dx3 +dX4'

with X2=$, X =8'y, X4=t

(the unit of time is chosen so tha. t the velocity of

'There are, of course, other invariants. If we accept
only terms of the second or lower order of differentiation
and bilinear in P and P* there remains F„,F""Pp~. Since
this is the product of two invariants already present, it was
considered as being of a more complicated type and was
discarded. It could be added with another arbitrary
constant.

One can take for L a linear combination of
these scalars with arbitrary numerical coeffi-
cients. One of the coefficients can be absorbed by
the function P, so that there is left only one arbi-
trary constant, The signs of the terms, however,
cannot be changed by any transformation of f
It is therefore necessary to consider all possible
combinations of signs of the two terms in I . It
turns out that of the four possibilities only one
combination allows "electron" solutions.

Let us restrict ourselves hereafter to the case
of special relativity and let us take the metric in
the form

i» ( aP a|f*)
I 0 ~ I+»'v'00*.

2 ( at at ) (23)

Equation (20) written in terms of f has prac-
tically the same form as the Gordon-Klein rela-
tivistic wave equation in quantum mechanics. An
essential difference, however, is that in the
Gordon-Klein equation the potentials which
occur are those of the "outer" field, i.e., they do
not include the field due to the charge and current
determined by P, whereas in the present equation
the potentials include the latter field as well. The
result is that here the system of Eqs. (20) and
(21) is nonlinear in P, which therefore may not be
normalized arbitrarily as is done in wave mechan-
ics. Furthermore the constants occurring in (20)
will have values different from the corresponding
ones in the Gordon-Klein equation.

The constants e and r in the present case are
dimensional constants and hence their values can-
not be predicted from the theory since these
depend on the system of units used. They must
be chosen so as to agree with experiment, that is,
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dP&/dt = 0. (32)

give the correct values for the charge and mass of (where the integral is taken over all three-space),
the electron. One can predict in advance their such that
orders of magnitude:

1/e, o 1/rt =»rtc'/e', The energy is given by
where e, m, and a are the charge, mass and
"radius" of the electron, respectively.

From the Lagrangian L one can calculate the
energy-impulse density tensor T„„by mean
the relation

W=P4= t T44dv = I Teedw. (33)

Tev = ~+/~gev 2gp "~'
One finds

T"= (T")»+(T")-
where

(T„„)»——(g„„F,pF ~ 2F„F„—)/16rr,

(34)T~4dv = — T""df,
dt v 8(25)

where df is a surface element and the index tt

denotes the component in the direction of the
outward normal to the surface. One can apply
this to the case of a solution corresponding to a
particle moving slowly in a weak, slowly-varying,
external field. One takes the surface S in the form
of a sphere with center at the particle and radius
large compared to the particle radius, so that on
the surface one can neglect (T&")„and take (T&")»

corresponding to the external field + the electro-
magnetic field of the particle (considered as a
point charge). One can then show that (34) gives
the equations of motion of the particle corre-
sponding to the action of the Lorentz force.

(26)

(T„) =2[g,.(X X-*—aVlt*)

—x,x.*—x,*x.j (27)

The energy density is given by T44. From (26)
and (27) one finds, using the values of the metric-
tensor components in (17), that

1
(T44)»=

167f-
(28)

(29)(T44) = —l(ZX.X *+aVlt*),

from which it follows that

s of
If one integrates (30) over a finite three-dimen-

sional volume V bounded by a surface S one gets

(T44)»w~ 0, (Te4) 0, — III. SPHERICALLY-SYMMETRIC CASE

We now investigate the spherically-symmetric
static solution of the field equations. A static
solution means one in which the electromagnetic
field, and hence the charge distribution, does not
change with time. For this it is sufficient for P
to be of the form:

so that the sign of T44 is not definite. It appears
that this is closely connected with the existence of
discrete charges. Thus, one can reverse the sign
of L and in that way make T44 positive definite,
but one then finds that there are no electron-like
solutions of the resulting field equations. We shall

have occasion later on to return to this question.
The tensor T„„,on the basis of the field equa-

tions, satisfies the divergence equation

(35)

flT~"/fix =0

From this it follows that if there exists a solution,
for which the energy is localized in a finite volume

(or tends rapidly enough to zero at infinity), then
one can define an energy-impulse vector~

(36a)si ——sm ——se ——0 s4 ——p(r),

where r is the distance from the origin of co-
ordinates. One can also take

where e is a function of (x, y, s) and tt an arbi-

(30) trary constant. Furthermore, from the condition
of spherical symmetry it follows that

pi= y&= p&=0 q4=@(r) (36b)

" Cf. H. Weyl, Rauut, Zee't Materie (Berlin, 1923), p. 204. and, on the basis of (36a), one can assume 8 to
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For the energy density one findsbe real, without loss of generality. One then has
that

1 add'i' (de) '
1&2(@++)2tl2 1) i

1&2g2
8x 4dr)

'
&dr)

P = ~'(4 +P) 8' (37)

With these simplifications the field equations
(20) and (21) take on the form

V'8+ Le'(4 +p) ' —a']0 =0,

'i7'@+ 4' e2(@+Ii) 8' =0

The total energy is then given by

8'= 4m T44r'dr.
0The boundary conditions for a particle solution

are
r=0: d8/dr=de/dr=0,

Integrating by parts and making use of the field
(40a) equations, one obtains

r~ ~: 8—+0, @ const /r . . (40b)

The conditions (40a) are necessary in order that
there be no discontinuities in the gradients of 8
and p at the origin.

It is convenient to introduce dimensionless
variables by means of the substitution

8= Oy/e(4s) &, 4+p = irs/e, r =x/0 (41.)

where

and

TV= —o.m,/2 e',

p 2Q 2x2dx
0

IV. ELEcTRQN SQLUTIQN

(49)

(50a)

(50b)

The equations then become

d'(xy)/dx' =x(1—s') y,
d'(xs) /dx' = —xy's.

If one makes a further change of variables

(42)
(43)

The field equations, in the form (44) and (45),
for example, can be integrated starting from
x=0. If one takes q(0) = I'(0) =0, the solution is
determined by the parameters

xy=q, xs= f (4») g'(0) =y(0) =a, I'(0) =s(0) =b. (51)

one gets for the equations

(44)

where

pr2dr =~
0

Of. = $2zx2dx.
0

(47)

(48)

where primes denote d'ifferentiation with respect
to x. The boundary conditions now become

s(0) =f(0) =~(")=o, (46a)

(f/x)- = ~i /~(= p) — (46b)

But since ii is not known, (46b) is really not a
condition but an equation which determines p
(or p) after a solution has been found.

If one has obtained a solution of the field
equations, corresponding to a particle, the charge
of the latter e is connected with the constant e

by the relation

s a/x+P, I'~ a+Px. (52)

This mea. ns that, if the value of P is not pre-
scribed, the parameters a and b of (51) have to
be chosen so as to satisfy the boundary condi-
tions at infinity for only one function, q. In gen-
eral this can be done by choosing one of the
parameters arbitrarily and then suitably deter-
mining the other.

In order for the solution to have the proper be-
havior at infinity one must choose suitable
values for these parameters. It is seen from Eq.
(44) that, for a solution representing a particle,
g must fall off exponentially at large distances.
This will be the case if s &1 at infinity, i.e. , if
P'(1. It can be easily shown that to obtain a
solution of this type it is necessary to have b') 1.
In the region where s') 1, g will have an oscilla-
tory behavior.

If one has found a solution for which q has the
proper behavior at infinity, then it follows from
Eq. (45) that s or f will also behave properly at
large distances and one has there
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The simplest solution is one for which both 8

and p are without nodes in the finite part of
space. It is reasonable to expect that this might
describe the simplest known charged particle, the
electron (or, if one changes the signs of @ and p,
the positron). Hence this solution was investi-
gated in some detail by means of numerical
integration.

As has been pointed out, one can obtain solu-
tions of this type for a finite range of values of
one of the parameters a and b if one determines
the other accordingly. In other words there exists
a one-parameter family of solutions of the node-
less type. For fixed values of the constants e and
a these solutions differ from one another with
respect to charge and energy. The question then
arises: if this type of solution describes an elec-
tron, how is one to account for the fact that all
ordinary electrons have the same charge and
mass? To be sure, the charge and mass of a single
isolated particle are conserved; but if several
particles interact what is to prevent one of them
from acquiring part of the charge and mass of
another?

A possible explanation appears to be that, of
the family of solutions, there is one solution for
which the energy is a minimum; and that this
represents the normal state of the isolated elec-
tron. Calculations were therefore carried out to
determine w'hether there exists a minimum for the
energy. Several values of a were taken and in each
case b was determined by trial so as to give a solu-
tion of the desired type. For each solution the
quantity re was calculated according to (50a). It
was found that m has a maximum. The position of
the latter has not been determined very accu-
rately but is in the neighborhood of @=1.6
(b=2.19, ex=1.91, /=0. 015), where it has the
value 2.83.

From (49) it follows that the mass of such an
electron is negative. This accounts for the stability
of the electron (since energy would have to be
added to it in order to explode it), but unfortu-
nately it is in disagreement with our knowledge
about the electron. However, it must be borne in
mind that one is dealing here with a classical
theory. Before comparing with experiment, one
must find the quantum generalization. This
should be of such a form that the equations will

agree with the Dirac equations for the electron in

the approximation in which one neglects the finite
radius of the electron and considers it as a point
charge. Now the Dirac equations give essentially
the same solutions (with a different numbering)
for a negative as for a positive mass. If one con-
siders states corresponding to positive energy,
the Dirac electron with negative mass is indis-
tinguishable in its behavior from one with its
mass positive. It may therefore be that in the
quantum generalization of the present equations
the difficulty with the sign of the mass will

disappear.
In the neighborhood of e = 1.6 it is found that

P, as given by (46b) passes through zero. It may
be that the minimum of the energy is located at
the point where P =0. If this is not the case, there
arises an interesting possibility. In this case the
electron has both energy and frequency, and
one can define for the ratio a constant

li'=
f

TV/v f. (53)

If one makes use of Eqs. (35), (46b), (47), (49)
and (50a) and takes the customary unit for time,
this relation can be written in the form

n'= 27re'/—li'c=
f
2n'P/(nP+y) f.

Calculations of n' were attempted, but it was
difficult to obtain any great accuracy. It was
found that o.'~0.04, It may be that it has the
value 1/137 of the Sommerfeld fine-structure
constant. Should this turn out to be the case, it
would mean that there is a much closer relation-
ship between the quantum theory and the clas-
sical theory than has hitherto been supposed.
Even in the classical theory there would be asso-
ciated with a moving electron something like a
de Broglie wave.

It is to be noted that the electron here is simi-

lar in its structure to the "wave packet" electron
considered during the early period of quantum
mechanics. However one 'would expect that the
mutual interaction between various parts of the
electron considered here prevents it from spread-
ing in the course of time (as occurs in wave
mechanics) at least in the case of weak fields. To
be sure, in strong fields the present electron will

How apart. Thus one sees that even a classical
theory can explain why electrons, as particles,
cannot be nuclear constituents.
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V. OTHER SoLUTIQNs

Besides the simple solution already considered
there are also more complicated solutions. Among
these are solutions for which 0 is of the same form
as in the previous case whereas s has a number of
nodes. Such solutions correspond to particles in
which the charge distribution consists of con-
centric layers alternating in sign. One would ex-
pect that a particle of this type, compared with
the simple particle considered in the previous
section having the same charge, will have a con-
siderably greater mass, since the quantity p,
which essentially determines the energy, depends
on s' and thus adds for the various layers, whereas
their charges tend to cancel each other. It may be
that such solutions are associated with heavy
particles. In this connection it is worth pointing
out that among these solutions there will also be
some for which the net charge of the particle
vanishes.

Then there are also solutions for which 8 has
nodes. It may be that these correspond to in-
ternal excited states of elementary particles
(heavy electrons?).

VI. CDNGLUsIQNs

In the present paper is suggested a possibility
for a classical theory of elementary particles. It

has a shortcoming in that it leads to a negative
mass for the electron. However it may be that
this difficulty will be removed in the process of
going over from the classical to the quantum
theory. At any rate one has here for the first time
a theory leading to equations which are gauge-
invariant and at the same time give solutions
which are free from singularities, in fact, which
are analytic functions.

There appears to be a possibility of deriving
the Sommerfeld fine-structure constant from the
theory considered here in spite of the fact that it
is a classical theory. Should this turn out to be
an actuality, it would have an important bearing
on the problem of the foundations of the quantum
theory. If it is found that the numerical value
obtained for the constant is not correct, it does
not necessarily mean that the general idea con-
sidered here must be abandoned. The particular
Lagrangian (19), which was used to derive the
field equations, is only on" the simplest —of a
number of possibilities. Perhaps some other one
should have been chosen.

In conclusion, the writer wishes to express his
deep indebtedness to Professor A. Einstein for
many interesting discussions on the subject of
field theories. He would also like to thank Mr. M.
Feingold for assistance with the numerical
calculations.


