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The magnitude of the spin doubling and the
origin of the bands remain to be found. The elec-
tronic splitting of the 'll state may be found from
the extrapolation to E=O of the differences
To(X) —T~(X). Theoretically this should give

ET~o(0) =A B+Bo—/A —0 —-p
where

1 Ao/(l+1)0=- = —2.34 cm—'
4 v(II, Z)

This gives A = —378.9 cm '. A better value of
A and of vp may be found. from the following
considerations. If T(J) = To+F(J) then

Q, = To'+ Fi'(J)—
{ To +Fg,"(J)],

F,= To'yF, '(J—1)—{ To"+F„"(J)],
vo=o {Qi—Fo.'(J)+Fi."J

+Fo Fg'—(J 1)+—Fgo"JI,
Qo= To'+Fo'(J) —

{ To"+Fo."(J)],
v, = Qo —Fo'(J)+ F„"(J).

From these relations A is found to be —378.6
cm ' and up = 3D659.1 cm '. The data are not suf-
6ciently accurate or complete to permit any
estimate of the system origin v..

The authors wish to express their appreciation
of the kindness of Professor F. A. Jenkins for his
suggestion of the problem and his help in carrying
out the research.

M A Y 1$, 1939. PHYSICAL REV I EW VOLUME 55

On the Magnetic Scattering of Neutrons

O. HALPERN AND M. H. JoHNsoN
New York University, University Heigkts, Rem York, EevfJ York

(Received December 3, 1938)

In this paper there is contained a full elaboration of two
previously published short notes on the subject of mag-
netic scattering of neutrons together with a comprehensive
treatment of certain sides of this problem which have al-
ready received some attention from other authors. After
presenting the state of the problem in the introduction and
discussing in detail our reasons for the choice of an inter-
action function between neutrons and electrons, and the
nonmagnetic interaction between neutrons and nuclei, the
various possible cases of coherent and incoherent scattering
and depolarization phenomena are treated. Later applica-
tions to the theory of ferromagnetic scattering are kept in
mind. The general expression for the cross section due to

magnetic interaction is obtained and applied to various
classes of phenomena (scattering by free, rigidly aligned,
and coupled magnetic ions). The influence of the elastic
form-factor is treated quantitatively with the aid of a
simple model for the current distribution in the ion.
Finally a series of performed or suggested experiments is

- discussed mainly from the point of view whether they will

permit theoretical inter pretatior. Arrangements are
described which will allow one to obtain a reliable value for
the neutron's magnetic moment and also give insight into
the magnetic constitution of the scatterer (ion or crystal)
which will exceed the knowledge obtainable from macro-
scopic magnetic experiments.

I. INTRDDUcTIoN

~ ~

~

~

~

~

OMETIME ago it was suggested' that a
magnetic moment of the neutron should

manifest itself in the scattering of slow neutrons
from paramagnetic substances. The magnetic
scattering should in some instances be several
times as great as the total nuclear scattering if, for
the neutron, a magnetic moment of two nuclear
magnetons is assumed. This magnetic scattering
could therefore be easily isolated by comparing

~ O. Halpern and M. H. Johnson, Phys. 'Rev. Sl, 992;
S~, 52 (&93t).

the scattering cross section of the same atoms in
different chemical combinations which show a
varying magnetic susceptibility. It could also be
separated. from nuclear scattering by studying
the angular distribution of the particles scattered
from a single parama, gnetic compound. This is
due to the fact that magnetic scattering is, under
practical conditions, strongly favored in the
forward direction, whereas the nuclear scattering
is isotropic. If the neutron moment is of the ord.er
of magnitude of a nuclear magneton the para-
magnetic scattering provides a direct and simple
method for its quantitative determination.
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Our suggestions were subsequent to a letter by
Bloch in which it was pointed out that the inter-
action between an assumed magnetic moment of
the neutron and that of a ferromagnetic ion
should produce observable effects. Bloch sup-
posed in his analysis that the scattering arose
from a magnetic dipole distribution within the
atom which was unaffected by the scattering
process. He confined his attention to the pro-
duction and detection of polarized neutron beams
which are produced by the interference between
nuclear and magnetic scattering in a saturated
ferromagnetic medium. The appearance of polari-

' zation phenomena should make it possible to
differentiate between nuclear and magnetic
scattering and thereby to.determine the magnetic
moment of the neutron. Later Schwinger3 gave a
more detailed mathematical treatment of Bloch's
idea. He, too, assumed that the scattering system
remained unchanged during the scattering process
and likewise limited himself to polarization effects
in ferromagnetic bodies.

As pointed out in Section IU the physical basis
of Bloch's ideas must be enlarged to include
changes produced in the scattering system by the
scattering process. Since the occurrence of such
changes is the rule rather than the exception,
results based on stricter assumptions have to be
considerably modified. Especially in the case of
scattering by a ferromagnetic material several
new features appear which greatly increase the

difhculty of determining the magnetic moment of
the neutron from polarization experiments alone.
Such uncertainties which are due to our ignorance
of the exact state of the medium do not enter to
any large degree into certain cases of para-
magnetic scattering.

We intend to present in this paper a compre-
hensive treatment of the magnetic scattering of
neutrons. The various phenomena are analyzed
both in their dependence on the magnetic
properties of the neutron and on the character-
istics of the scatterer. The subject has been
divided as follows: In Section II the possible
forms of interaction between a neutron and an
atomic electron are studied and their essential
equivalence for low energy neutrons is demon-
strated. In Section III we review the scattering

' F. Bloch, Phys. Rev. 50, 259 (1936).' J. Schwinger, Phys. Rev. 51, 544 (1937).

of slow neutrons by nuclei whose spins are free;
special emphasis is put on questions of coherence
in preparation for the discussion of simultaneous
nuclear and magnetic scattering. Section IV
contains the deduction of a general formula
describing the wave which is magnetically
scattered from an isolated atom. The result is
applied in Section V to the case of an isolated
paramagnetic ion, in Section VI to the case of a
ferromagnetic medium which is treated under the
assumption that the spin of each ion is rigidly
aligned along the magnetic axis of the micro-
crystals. Some other assumptions are also brieHy
discussed. Section VII deals with the nature of
atomic form factors. Section VIII is devoted to a
discussion of coupled scattering systems which
are treated as a many-body problem. Here we
also consider the inHuence of external forces
acting on the nuclear spin and the modifications
in the scattering of para- and ferromagnetic
materials due to the forces between the spin
vectors of the ions. The final section, IX, treats
various experimental arrangements connected
with the subject.

We begin with a few general remarks which
will aid in fixing a suitable nomenclature. Let the
beam of incident neutrons be represented by the
wave function

f;„=(2~Mp/kk)** exp (pk r) y,Cg. (1.0)

Here k=2mP/k is the propagation vector, r„ the
position vector and P the momentum vector of
the incident neutron with a mass 3fo. y, describes
the neutron spin state and C~ is the complete
wave function for the initial state of the scat-
tering system. We shall use the notation (quan-
tity), „ to denote integration and summation of
the quantity in parenthesis over all coordinates
of the scattering system. For example, the
density, I, of incident neutrons is given by

I; = (P;„*P;„),„=(2m.Mp/kk)
~
x,

~

'. (1.01)

Denoting by F the differential operator
(k/4m Mpp) grad„we have correspondingly for the
Hux of the incident neutrons

F;„=Q;„*FP;„P;„FP;„*)=k/k
I

x—, I
. (1.02)

Summation over the neutrons spin coordinate
shall be denoted by P„; . Furthermore, by use of
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normalized spin functions, P„;„~x,
~

' = 1, we
have P.~;„F;„=k/k; this means that the incident
flux is also normalized to unity. Correspondingly
we have for the flux of the scattered wave

F-= (4".*F6.—A.FA.*). . (1.03)

The differential cross section dC for scattering
into the solid angle subtended by the element of
area dA which is perpendicular to F„is given by

Total scattering cross sections are obtained from
(1.1) by summing over the neutron spin coordi-
nate and integrating over all scattering angles.

In considering inelastic scattering the neutron
density will be used in preference to the flux.
This is done in consideration of the fact that all
detectors of slow neutrons have cross sections
which are inversely proportional to the velocity
of the neutrons. The activity of a given detector
depends, therefore, apart from geometrical fac-
tors, only on the volume density of the neutrons
and not directly on the flux. This distinction
becomes irrelevant for purely elastic scattering.

If the scattering system consists of two inde-
pendent parts a arid b and if multiple scattering
can be neglected, the whole scattered wave

A. = 4.+A
can be subdivided by writing

F„=F~+Fb+ F~b+Fb~ (1 11)

with the simple abbreviations,

Fa= (4a*F4a PaFPa*)sv, —

Fa= (4a*Fya —4aFA*)...
= (4 '*F4 ' —4 'F0 ")

Fa.= (O'*F4.' —4.'F4 a'*)-.

(1.111)

(1.112)

(1.113)

(1.114)

4"=4.', +4.'
4a= ga'+Pa'

In P,' and Pa' the scattering system has remained
in its initial state while in P, one of the parts has
been changed by the scattering process. Obvi-
ously expr'essions like (P *Fga'),„vanish because
of the orthogonality of the wave functions for the
two different states of the scatterer. Substitution
into (1.03) gives

The first two terms of (1.11) give the flux pro-
duced by each part of the system in the absence
of the other part whereas the last two terms
describe the interference between the waves
scattered by the two parts. The interference
terms (1.113) and (1.114) contain only the wave
functions P" which describe an unchanged state
of the scatterer. Already at this point we want to
emphasize that the amplitudes enter linearly into
(1.113) and (1.114). As a consequence, in many
cases in which a parameter describing the state of
the scattering system is unknown, the interfer-
ence terms vanish on averaging over the parame-
ter while the terms in (1.111)and (1.112) which
involve the squares of the amplitudes do not
disappear.

These remarks are easily extended to a scat-
tering system composed of many particles.

II. THE HAMILTQNIAN FoR THE

MAGNETIC INTERACTION

The choice of a proper Hamiltonian repre-
senting the magnetic interaction between neutron
and electron cannot be made unambiguously
since we do not yet possess a satisfactory theory
of the structure of the neutron. The question has
been the subject of considerable discussion and
disagreement. ' We present in this paragraph our
view on the subject which will determine the
choice of the Hamiltonian.

By the statement that the neutron carries a
magnetic moment we mean to describe the fact
that it produces in its neighborhood a field
analogous to that of a classical magnetic dipole
which owes its existence to a stationary current
distribution. Fields that do not satisfy the relation

div H = 0 (2.0)

may be present inside of the neutron; however,
we refuse to recognize them as magnetic fields
and prefer to designate them as some sort of spin
dependent, short range forces. We know nothing
about their existence, which could be detected
only experimentally.

The rather trivial remark may be added that
real singularities (discontinuities) which cannot
be approximated by continuous functions suAi-

ciently well for all physical purposes cannot
claim any place in a physical theory.

4 F. Bloch, Phys. Rev. 51, 994 (1937).
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We Anally recall the definition of a stationary
magnetic moment m in classical physics as given

by the relation

i=c curl m. (2.01)

curl H =47ri/c, (2.02)

it follows that m and H/44r have the same curl.
Therefore a scalar function g exists such that

H=4~m+grad P. (2.03)

The classical interaction energy can now be
written in one of the following equivalent forms

As the divergence of m is still arbitrary, we can
impose another condition on m. This condition is
usually chosen to make m disappear in a domain
free of current. Since

meaningless. It wilt appear that we thereby do not

lose any physical possibilities
The terms in the various forms for the inter-

action energy are determined by the Dirac
equation so far as the electron is concerned. The
external field of the neutron is given through

—p I- (r —r.)
H„(r) = +3(r—r„), (2.30)

f

r —r„I'
f
r —r„['

where y = J'm dr is the neutron's magnetic
moment. Obviously this expression cannot be
continued up to the origin; it would lead to an
indeterminate value for the interaction energy of
the form 0 log 0. The forms (2.10) and (2.11) do
not give us any hint as to the evaluation of the
interaction integral over the interior of the
neutron, but. as soon as we decide to describe the
neutron in the well-known way by a wave
equation of the type

W4= (1/44r)J H„H,dr,

W2 —— tH mdr,

(2.10)
V'+y s H —8 /=0, (2.40)

8m'~Mo 2m. Moc

(2.11)
we are relieved of all dif6culties. For we now have
for m„ the expression

W4 —— tH, m„dr.~
~ (2.12) m =y(eb/24rM4C)PS/, (2.50)

These forms follow from each other since

r
H

grad&dr=~I
div(&H)dr=0. (2.13)

J

Two other forms can be obtained by introducing
the vector potential A and making use of the
well-known relation

H m=m curl A=A curl m+div (AXm). (2.14)

Thus we obtain

W4 ——(1/c)Jt A„ i.dr, (2.20)

W, = (1/c)~I A, .i„dr (2.21)

In (2.20) and (2.21) we have dropped the term
containing the surface integral which we are
always entitled to do if, as mentioned before, we

look upon real singularities, etc. , as physically

which, just as m, in virtue of the Dirac equation,
is not only everywhere regular but for neutrons of
sufficiently large wave-length nowhere very
large. Quantitatively speaking the integral over
the interior of the neutron

I P*sPdr

can be seen to go to zero for' small neutron radius.
This determines the previously undetermined
form of W and allows us to use any of the
expressions (2.10)—(2.12), (2.20), (2.21) according
to our convenience.

It will be realized from the preceding discussion
that we cannot a priori exclude the possibility of
short range forces of the type

f(re re& S roe& 44ee)

or of such a current distribution inside the
neutron that the integration over the interior
gives a considerable contribution to the whole
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interaction energy while the outside field is still
determined by (2.30). To the first possibility we
have to remark that there does not yet exist any
evidence for such forces; as to the second, that it
will only occur if the interaction between neutron
and electron cannot be described by a Hamil-
tonian in a two-body problem. For this certainly
possible complication we also lack at present any
physical evidence. We shall therefore proceed
with the most convenient classical analog given
by (2.10).

III. SCATTERING BY INDEPENDENT NUCLEI

We discuss in this paragraph the scattering of
slow neutrons by independent nuclei and place
special emphasis upon questions of coherence and
polarization. Though quite a few of our results
can probably be found in the literature it still
seems advisable to offer a comprehensive dis-
cussion which will be of great help in the treat-
ment of simultaneous scattering due to nuclear
and magnetic forces.

As far as coherence and interference questions
are concerned the neutron scattering differs from
the analogous x-ray scattering by a wide varia-
bility in the intensity of the pattern. The
amplitude of the scattered wave varies from one
nucleus to another not only as to magnitude but
also, unlike most cases of x-ray scattering, may
change sign. The points in an interference
pattern may show striking difference in intensity
depending upon the phase of the waves scattered
by the different nuclei. For essentially the same
reason the spin degeneracy of nuclear states may
cause a much larger diminution of coherence
than atomic degeneracies in optical cases do.

In the case of slow neutron scattering only the
s wave has to be considered; we can also exclude
inelastic collisions since the energy is always too
small to excite higher nuclear states. We denote
the nuclear spin by i and the eigenvalues of its
component along some arbitrary axis by m;; the
corresponding wave functions shall be Qm;. Let
m, denote the eigenvalues of the neutron's spin
projection along the same axis. Since we are
dealing with s waves, the total spin alone must be
conserved in the collision. If the scattering is
described by an intermediate state of the system
neutron plus nucleus then the magnitude of its

(2~Mop & e'""
(aoeo&—' »+a ~ 4-' )&au& r

To analyze the initial state into functi. ons with
definite total angular momentum it is convenient
to use two operators go and g~ defined as follows:

n p4' »= 4" »--
i»p4"+» = o

»»14'i+» = 4'i+»~»

n»4'-» = o.

(3.11)

(3.12)

(3.13)

(3.14)

From these definitions we now have

'VpXsflK = & 4'i p—»»

»»1X~Qii Cl»t i+»~

(3.15)

(3.16)

and for the scattered wave

)2iiMpq ' e""
(ap»»p+a»»»») X,Q~. (3.2)Eu)

Operators satisfying (3.11) to (3.14) are easily
found to be given by

»»p= (2i+1) '(i —2i s),

»»»
——(2i+1) '(i+1+2i s).

We shall hereafter use the abbreviation

(3.21)

(3.22)

'9 =~o5o++igi.

total angular momentum, K, must be equal to
~ ] 1z+-, or z ——,.

The incident wave can always be analyzed into
wave functions corresponding to total angular
momenta i+-', and i—~. The probability ampli-
tudes of the scattered wave with the above total
angular moments shall be denoted by a& and ao,
respectively. Except in the simplest cases we lack
complete knowledge even as to the relative sign
of a& and ao. Both probability amplitudes are
independent of the actual sub level mI, since no
distinguished axis has entered into our problem.
Denoting the two wave functions of the incident
wave by P;+» and P; » we have for the complete
wave the expression

XsQN =C p4'i »+ C14'i+» (3.0)

with arbitrary complex constants. The scattered
wave can then be written in the form
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If several isotopes are present, our knowledge
of the scattering nucleus is described by a wave
function which corresponds to the simultaneous
presence of all the isotopes weighted in the ratio
of their abundance. If QNP describes the spin
state of the Pth isotope the total spin wave
function is given by

Through g the vector i enters into (3.30); the
amount of coherent scattering therefore depends
upon the nuclear spin state through the matrix
element (N I

i
I
N) sx,*etc. In practical cases the

nuclear spin has no preferred axis which makes

(X I
i

I N) =0. Eq. (3.31) simplifies thereby to

Q~= QQ~Pbp, Q I bp
I'=1. (3.23)

The term Ibpl' is determined by the relative
abundance of the Pth isotope, while bP contains
an undetermined phase. Quantities obtained
from (3.23) must be averaged over the arbitrary
phase occurring in each bP. The previous result
for the scattered wave is easily generalized. The
scattered wave is still given by (3.2) if we
understand by qQ& the expression

qQx= QbpqpQii P,
P

(3 24)

where /P ~0 $0 ++1 'g1

qoP = ( 2i+p1)-'(i p 2ip —s), '

giP = (2ip+1)—'(ip+1+2ip s).

To illustrate coherence properties by a simple
example, the interference between the scattering
of two identical nuclei a and b shall be discussed.
The positions of the two nuclei are assumed to be
precisely known and multiple scattering shall be
neglected. If the total scattered wave is analyzed
according to different spin states of the nucleus,
we hand for that part of the wave in which the
nuclear state is unchanged the expression

t'2~&, q &exp (ill r —r, l+ik r,)
E. kk) Ir —r.

l

Xy I & I X).x.. (3.30)

A similar expression holds for the nucleus b.
This part of the wave suifices for the discussion of
coherent properties; we have from (1.11) for the
interference terms.

F q+Fi, =—cos {Air—rl —Air —ri,
l

g2

+k (r.—ri)}{[P'Inl&).*x.*j
X[(&lnl&)hx. j+con} } (3 31)

ia, +(i+1)ai '
+k (r.—rb) } x,*x,. (3.32)

2i+1

The first factor in (3.32) arises from the path
difference between the two nuclei. The last factor

x,*g, shows that the spin of the neutron is

unchanged in the interference term. The middle
factor makes it clear that the coherence depends

upon a linear combination of a0 and a1 which even

may be of opposite sign. We shall see that the
total scattering depends only upon a0' and a1' so
that even for large total scattering the spin
degeneracy may completely destroy all inter-
ference effects. Such a case is approximately
realized in 1H'; it may be expected that hydrogen
in a crystal lattice will not appreciably contribute
to the formation of a diffraction pattern.

In the presence of several isotopes the results
are easily generalized. By use of (3.23) and, (3.24)
and analogous reasoning, one obtains, after
averaging over the arbitrary phases in the
coeAicients bP, the expression

~ b+~& =2lr cos [&lr

—Air —r~l+k (r.—rs)g

ipao'+(ip+1) i'a1'
X Q I tip

I' x.*x' (3 33)
P 2zP+ 1

The bracket { } indicates that the amplitudes of
all the isotopes enter a linear combination. Hence
coherence may be reduced not only by opposite
signs of a0 and a1 for a single isotope, but also by
the cancellation of the amplitude for one isotope
against that of another. Whereas a combination

of two measurements (total scattering and inter-

ference) is sufFicient for experimental determi-

nation of the amplitudes a0 and a1in the case of a
single isotope, this is no longer true in the case of
several isotopes. Only in the case of a single

isotope with no spin (ai ——ao) does a scattering
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measurement allow predictions of interference
phenomena.

In practice the thermal agitation prohibits a
precise knowledge of the nuclear position in a
crystal. Its position is then described by a spatial
wave function 8(r~) whose extension is de-
termined by the amplitude of the thermal oscil-
lations. For the discussion of elastic scattering
each point of the distribution ~8(r~) ~' can be
considered the origin of a secondary wavelet.
Thus the elastically scattered wave becomes

F~'=)~ exp (z(k —k') r~) ~8(r~) ~'d ~r, (3.41)

where k' is the propagation vector of the scat-
tered neutron. The coherent scattering is reduced
by the factor F&, which is called the form factor
of the nuclear distribution.

To obtain the scattering from a single nucleus
one has to insert the expression for the scattered
wave (3.30) into (1.03) which gives the outgoing
flux. One 6nds

F~= & 'Dn*x.*f1'*)(nx.fix)]- (3 5)

which can be transformed on account of the
Hermitian character of g into

q' = (2i+1) 'I iao+(z+1)a, +2(a~ —ao) I s*].
(3.51)

After expansion of the product, the terms linear
in the spin component can again be dropped since
the nuclear spin has no preferred direction. We
have for the same reason the relation

(N( z z
( N) = (N (i„z„f N)

= (N~i,z,
~
N) =-',i(z+1). (3.6)

It is also clear that terms like (N~i,i„~N) have
to disappear. This can be seen as follows; if A is a
real vector the average value of (A i)z i.e.,

(N~ (i A)(i A) ~N) must be expressible in terms
of the scalar A' when i has no preferred direction.
This requires that terms like (N~i,i„~N) vanish.

g ~ (s*x,') sx, = P x,'s sx,,
spin spin

= z 2 I x. I'= z (3 7)
sp in

and so obtain Anally for the total outgoing Ilux

'( + ) "L o'+(+ ) i'] ( o)
spin

From (3.80) there follows for the diA'erential

cross section for scattering into the solid angle dQ

the expression

dC„= (2i+1) '[zaoz+(z+1)aP]dQ, (3.81)

and since the scattered wave is an s wave we have
a total cross section

o „=4z.(2i+ 1) 'fiaoz+ (i+ 1)n P]. (3.82)

Equation (3.82) contains the important result
that the total scattering is independent of the
initial spin state of the neutron and involves only
the absolute magnitude of ao and aI. In the
presence of isotopes the Eqs. (3.81) and (3.82)
must be averaged over the isotopes; each isotope
is weighted in the degree of its abundance. It is
important to realize the totally different behavior
that the expressions for the interference terms
(representing the coherent scattering) and that
for the total scattering exhibit as far as the
dependence on sign and relative magnitude of the
probability amplitudes is concerned.

The relation (3.5) also determines the change
produced by the scattering in the spin state of the
neutron. Let n and P be two orthogonal and
normalized spin functions representing the spin
parallel and antiparallel to the s axis, respectively.
The spin coordinate of the neutron also taken
along the s axis can have the values ~-,'. We have
with these coordinates

~(z) =1 P(-,') =0,

~( —z) =o &(—z) =1. (3.90)

We thus arrive at the expression

F„=r '(2z+1) 'I[iaz+(i+1)0,]'~ x, jz

+ (4/3)z(z+1) (&z —&o)'(s*x.*) (sx.) I. (3 7)

The total scattering is found by summing (3.7)
over the spin coordinate of the neutron. Again on
account of the Hermitian character of s we can
write
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The spin vector is then represented by the well-

known relations

S,n = (-', )n, S„n= (i/2)P,

S.P = —(-', )P, S„P= —(i/2),
(3.901)

~ n'=(o)P

5„8=(-',)n.

The initial spin state of the neutron can be
written as follows:

cot (0/2) =
I
a/b I, (3.911)

tan y = (b —b*)/i(b+b'). (3.912)

As a measure of the polarization relative to the
2 axis, we take a quantity Po defined by

xa=an+bP lal'+ Ibl'=1 a* a 0 (3 91)

where the last relation is used only to eliminate a
trivial phase factor. The initial state is polarized
in a direction whose polar angles are given by

Since the s axis is arbitrary, we learn from (3.96)
that the polarization of the incident beam
relative to any axis is changed through the
scattering process by a factor 1 —2Q. Large
polarization changes will occur if ao and a~ show

opposite signs; in that case Eq. (3.33) leads to
small interference eHects.

In the presence of isotopes the quantity Q
must be averaged as before.

IV. MAGNETIc ScATTERING oF AN IsoLATED IoN

To place in evidence the uniqueness of result as
discussed in Section II, we shall use the funda-
mental form (2.00) for the interaction between
electron and neutron, which must be summed
over all the electrons of the atom. By taking the
nucleus as the origin of coordinates and desig-
nating by +A the wave function of the electrons
in the state A, the Born method in first approxi-
mation gives for the scattered wave at large
distances from the ion, the expression

P = (2m. Mo/Ii') (2~Mo/bk) i P r 'e'""—
x'A'

&(x, %~ (k', s', A'IVlk, s, A), (4.00)If the initial state is unpolarized, all results which
contain x, must be averaged over the angles 0

and p. The relation (3.7) now becomes where the primes indicate final states. The
propagation vector of the neutron, k, satisfied
the energy conditionF„=r '(2i+1)—'I

I (ia +o(i+ 1) )a'i

+-,'(ai —ao)'i(i+1) J(l a I'n*n+
I
b I'P"P)

+ li(i+1) (ai —ao)'(I b I'n*n+
I
a I'P*P l

With the abbreviation

(b'/Sn'M'o)(k' —k") =Zg Eg, (4.01)—
(3.93)

where 8 refers to the energy of the atomic
electrons. The matrix elements in (4.00) when
written out in full are

(ai —ao)
Q= -', (2i+1)-'i(i+1) (3.94)

i a+o(i+1) aio (k's'A IVlksA) = —(4x)—') QH(ri) curl~
»

we can now write (3.93) in the form

~ =~'f L(1 —Q) I
a I'+Q lb I'3n*n

+ I (1—Q) I
b I'+Q

I
a I'3P*P }

y [iaoo+(i+1)aio J(2i+1)-'. (3.95)

Constructing a quantity P for the scattered
wave as we did in (3.92) for the incident wave, we

find for the polarization of the scattered wave the
expression

~=(1—2Q)(lal' —Ibl') =(1—2Q)I'o (3 96)

("lt ls)x(r —ri)
,

exp(i(k k )—r)'dr dr„.
- (4.o2)

when dv, ~, is the volume element for all the
internal coordinates of the atom and dv is the
volume element for the space coordinate of the
neutron. H(ri) is the magnetic field due to
the current distribution of the I'th electron while
curl» is the indicated operation for the coordi-
nates of the 1th electron. (s'I y Is) are the matrix
elements of the neutron's magnetic moment
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(k's'A'IVlksA) =]tP4g *cn~4g
l

(~'I p I ~) x (r —«)
~ exp (f(k —k') r)dr, t,,~dr

I
r r&

I

' (4.03)

The current density of the electrons' can be
written up to the order v'/c' in the following form

j,—j,(o)+j,(I) (4 04.)

referred to the initial and final spin states, s
and s'. Inasmuch as the magnetic field of the
electrons is nowhere discontinuous or singular, we
may integrate by parts over the electron coordi-
nates and safely discard the surface integrals that
result. The expression curl~ H(r~) which results
may then be replaced by 4mi&/c where i& is the
current density of the l'th electron. Thus we find

with the result

Ik —k'I
(4.07)

P=Q exp (i(k —k') r~)s~, (4.08)

where s stands for the spin of the neutron and y
for its moment in nuclear magnetons. In the
limit of long wave-lengths the exponential in
(4.08) can be replaced by unity. P then becomes
the total spin of the ion. Substitution of the
matrix element into the wave function (4.00)
gives the result

eh qf eked

( s'A IVlueA)=4
I(2s.mc) I 2mMoc)

X[(s'Isis) Xe] [eX(A'IPIA)], (4.06)

k —k'

eh t'2~Mop: p2e'qq e'"'"
i~&" = [4*grad~ 4' —4 grad~ k*j, (4.041)

4 mi kk ) &mc') "~ r

eh
i~&'& = — curl~ (@*a~+),

2'-mC
(4.042)

(s'I p Is) X r
X (k —k') XQ

exp (f(k —k') r~)s~+~dr. .,. dr (4.05).
The integration over r is now easily carried out

where s~ is the spin of the l'th. electron, i~( ~ its
orbital current, and i~('& its spin current. In all
cases of practical interest (ion in crystals) the
orbital current is either absent (s state) or
quenched. The magnetic properties of the ion are
almost wholly due to the electron spins. We
shall therefore in what follows use i~('& for the
electron current. Inserting it into (4.03), changing
the origin of coordinates for the integration over
the space of the neutron to r&, and integrating by
parts over the electron coordinates we obtain

ek
(k's'A'IVlksA) = ~I I

i"exp ('("—"')')
E2mmc) &

X (s'A '
I (e s) (e P) —P s

I
sA). (4.1)

(M'B
I
P

I MB) = (M'
I
S

I M) P&,

P S
B —B

$(5+1) )
s) S

=I B Pexp(~(k —k')'«)
E. S(S+1) ) (4.2)

We have with the aid of (4.2) obtained an
expression for (A

I
P

I A) as a product of two
factors, one of which refers to the spin coordi-
nates only, while the other deals with the
remaining coordinates. The quantity F which
now refers to all the electrons in the atom can be

If the ground state of the ion is alone involved
in the collision the expression (4.1) may be
further simplified. Let Q~ be the spin wave
function describing the orientation of the spin S
of the ground state and let 8 stand for the
remaining atomic quantum numbers so that 3f
and 8 replace the totality of quantum numbers
A in (4.1). We then have by a well-known result
in the algebra of vector coupling'

W. Pauli, article on quantum mechanics in Springer's
IIandbech der Physik, Vol. 24-A, p. 238.

'E. U. Condon and G. H. Shortley, The Theory of.
Atomic Spectra {Cambridge University Press, 1935), p. 59.
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called the atomic form factor. It reduces to unity
if 'A/2~ is large compared to the linear size of the
electron distribution. This condition is in practi-
cal cases not even satisfied by liquid-air neutrons.
For elastic transitions k' = 0 and F then becomes
unity in the forward direction and decreases to
its smallest value for scattering under 180'
(k'= —k). Since, under the last made assump-
tions, the atomic system can only change its spin
state 3f during collision, we may omit the part of
the wave function referring to the other internal
coordinates and can write (4.1) in the form

t 2~Mop & (2e'yi

kk ) &mc' ) "~' r

OR= (e s)(e S) —s S.

X(s'M'~ ORt sM) F' (4.3)

(4.4)

If all collisioils are elastic so that F: is the same
for every term under the summation sign, (4.3)
can be written

t 2~&,q
'* p2e'qF='q e""

ORx.Q~. (4.5)
hk J & mc' J r

V. SCATTERING FROM INDEPENDENT

PARAMAGNETIC IONS

The formulae for magnetic scattering as
derived in the last paragraph are far too general
to permit a direct physical discussion. We shall
investigate in this and the following sections a
number of special cases which allow a more
explicit evaluation as well as a direct physical
interpretation. These special cases will also form
the theoretical basis for various groups of experi-
ments. Unfortunately we can proceed quanti-
tatively only in selected circumstances and have
to limit ourselves frequently to qualitative
discussions.

Beginning with the treatment of paramagnetic
substances especially salts containing mag-
netically active ions, we remember that, in the
solid state, the levels of the ions are as a rule
strongly affected by interionic forces. If e.g. the
ground state of an ion forms a multiplet having
an orbital angular momentum L and a spin
angular momentum S, then the crystalline field
will, as a rule, decouple L and S and quench the

)2~Mop 1 (2e'yF

kk 2 4 mc' )
Xexp (ilier —r, ~+ik r,)

Xyr~OR~~), nM. . (5.0)

Since the ionic spin has no preferred direction in

space, we obtain

(Mi S
i 3f).=0, (5.01)

(5.02)

The result (5.01) is valid as long as the medium
is far from magnetic saturation. In accordance
with (5.02) the interference terms are zero and
all the magnetic scattering is incoherent. There
is no interference between the scattering from
two ions in a lattice or between the magnetic and
nuclear scattering of the same ion. The con-
sequent additivity of nuclear and magnetic scat-
tering from paramagnetic substances forms the
basis for the method of separating the two effects
as mentioned in the introduction.

orbital currents. This is the reason why we
retained in (4.05) the spin current only. In most
cases the states associated with different orienta-
tions of L are split and differ from each other by
energies large compared to kT. The ion then will

be normally found in the lowest of these levels.
Since energetic considerations make it impossible
for a thermal neutron to transfer the ion to higher
states, only the ground state will be active during
the collision. We shall in this section assume
throughout that the ionic spin is uninfluenced by
forces due to the neighboring atoms; also we
shall, at first, suppose that the spin is completely
free from internal forces. The ground state of the
magnetic ion is then degenerate and Eq. (4.4)
can be applied directly.

To illustrate coherence we treat the inter-
ference between the magnetic scattering by two
ions a and 5 which are situated at the points r,
and r~. According to (3.30) it is for the interfer-
ence questions only necessary to consider that
part of the scattered wave P ' in which the ionic
spin is unchanged. By expa.nding P ' in terms of
the spin states M of the ion, we find for the part
of the wave in which the spin state is unchanged
by the scattering process the expression
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(2c'yFiq '
} [(ot|:x.0~)*(oltx.fbr) l.. (5 1)

mc' 8~ (e'y ) '
o =—S(S+1){

3 Emc'~
(5.5)

By use of the Hermitian property of S, (5.1)
becomes which may be large in comparison with nuclear

cross sections.
Equation (5.3) also allows a study of the

change in polarization produced by the scat-
tering process. Placing (3.91) for the spin state
of the incident neutron into the expression (5.3)
we find, for the scattered Aux

(2e'7'~ '
} (X~(onx, )*(oltx,) ~u), (5.2)

4 mc'

oR'=(e s)(e S)*—s S*. (5.21)

Just as in the case of the nuclear spin, the random
orientation of S implies (e'yF'*) '

F =-:S(S+1){—} {[(1—e.') {a{'
(5.22) ( mc' &(~

i
S,S,

i M) = -', S(S+1),

The scattering by a single ion is determined by neutron. In the limit of long wave-lengths the
(4.05) and (1.03). We obtain form factor F approaches one and we obtain for

the integrated cross section the simple expression

(M(s,s„(M) =0, etc.

Eq. (5.2) now becomes

(5.23) +(1+e.') [b(' —Xja*n+[(1—e,') )b('

+(1+e.')
I
a I'+ Z3P*P }, (5.60)

The total scattering is found from (5.3) by
summing over the spin coordinates of the
neutron. Again the Hermitian character of s
gives

s x, 'sx, = 4,
spin

(5.31)

2 (e s)*x,*(e s)x.= 2 x,*(e s)(e s)x, =-,'.
8'pin spin (5.32)

Eq. (5.3) then becomes

e'yFl )
}-;s(s+1).

&mc') '

We finally have for the differential cross section
for scattering into the solid angle dQ the ex-
pression

(e'qFiq '
dC =-',S(s+1){ } dQ.

( mc')
(5.41)

(2c'yF'*& '
F.=-',,S(S+1)r '{

mc' )
y[s*x,* sx.—(e s)'x,*(e.s)x,]. (5.3)

E=e,[a*b(e, ie„)+ab"—(e,+ie„)j. (5.61)

Here 2 is a unit vector in the direction of
polarization of the incident neutrons. By remem-
bering the relations

~b(' —~a('=sin' 8/2 —cos' 8/2

= —cos 8= —X„(5.63)

we can write (5.60) in the form

(e'7F&~ '
F„=-', S(S+1)r—'{

I mc'&

)& {[1 e,(e )—7]n*n+. [1+e,(e X)]p*p}. (5.7)

If we designate by Y.the direction along which
the scattered beam is analyzed, we find for its
polarization I' the value

F=-(e X)(e X'). (5.8)

If we now express a and 5 in terms of the angles
6}, Q, we have

%= 2 cos 8/2 sin (8/2) e, (e cos e+e„sin e)
= (e X—e,X.)e,. (5.62)

This cross section depends on the angle of scat- Eq. (5.8) allows a simple interpretation: the
tering only in virtue of the form factor and is part of the original polarization which is parallel
independent of the initial spin state of the to e is reversed in the scattered beam while the
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part which is perpendicular to e is completely
depolarized.

Let us next examine in a general manner the
modification of these results required by the
presence of internal forces acting on the ionic
spin. Such forces are present for all ions of the
ion group except Fe+++ and Mn++ which are in

an S state; they arise from the incomplete
decoupling of the spin S and the orbital angular
momentum; their interaction normally causes
the separation of the multiplet states formed
from L and S. This incomplete decoupling can
produce an energy separation of the orientation
states of the spin which may result in a more or
less complete quenching of the spin currents also.
Since anomalies in the magnetic susceptibility
frequently begin around 70'K, the separations
are of the order of magnitude of 50k. Conse-

quently a part of the neutron scattering will be
inelastic and involve energy changes of a similar
amount.

For the reason indicated in Section I we use
the neutron density I in dealing with inelastic
collisions. The density of scattered neutrons is
constructed by summing lf l' over the spin
variables of the ion and the neutron and dividing

by the density of incident neutrons, i.e. , 27r3IO/kk.

We find

Iso t'2e'y) '
l
(e'~'

l
~

l g~) P'
l

. (5.90)I ~ (mc J

The form factor F has been included under the
summation sign as it depends on the energy
change in each transition and is to be taken zero
for those conditions which are energetically
impossible. The quantity (5.90) must be averaged
over the orientation states of the ionic spin in
accordance with the Boltzmann distribution law.
If the wave-length of the neutron suffers a small

change on scattering, F is nearly the same for all
tr'ansitions and the summation yields our former
result for the total scattering. If the scattering
becomes inelastic, the inhuence of this loss of
energy varies with the scattering angle. The
forward scattering is diminished from that given

by (5.41) because lt —lt' is no longer zero when

k and k' are parallel, and this leads to a decrease
in the value for F. Transitions in which the
neutron gains energy k' &k decrease in frequency.

for all scattering angles while transitions in which
the neutron loses energy, k'(k are more frequent
in the case of backward scattering.

It is of interest to see how much of the scatter-
ing given by (5.90) is elastic. Summing over the
spin variable of the neutron in that term of (5.90)
for which 3f=M', one obtains

I„(elastic) /I;„

(~lsl~) —(~l e Sl~)] (591)

The expression (5.91) again must be averaged
over the temperature distribution of the ions
among their orientation states. If the spins are
fully quenched in all these states, we have

(~Isla) =0, (mls. lu)2=0, (5.92)

which means that all the scattering is inelastic.
The greatest decrease will be shown for scattering
through small angles and particularly so if the
neutron energy becomes smaller than the energy
difference between the orientation states. In this
latter case only hyperelastic collisions could
occur which are made less frequent if these
higher orientation states are less populated
because of a lowering of the temperature. If the
quenching of the spin current is incomplete,
intermediary results have to be expected. This
brief discussion is sufhcient to show the great
complexity which even in absence of a coupling
between the spins of different ions must be
expected in the scattering of very slow neutrons
unless the ion is originally in an S state.

VI. ScATTERING BY AN INDIvIDUAL IQN IN A

FERROMAGNETIC MATERIAL

A ferromagnetic material below the Curie
point consists of microcrystals each of which
shows an alignment of the spins of its ions along
a definite but arbitrary axis. We shall assume
as basis of our discussions that each spin in the
microcrystal is parallel to the axis, the direction
of which shall be designated by the unit vector x.
In addition, it shall be supposed that the spins
are rigidly aligned so that the initial kinetic
energy of the neutron is insufficient to change the
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orientation of an ionic spin. Elastic collisions in
which the ionic spin state is unchanged are then
alone possible for energetic reasons. The con-
dition that the scattering system remains un-
changed during the scattering process underlies
the previous discussions by Bloeh and Schwinger.

If the ferromagnetic medium is magnetized to
saturation the vectors, v., of all microcrystals
become parallel while in the unmagnetized state
they are oriented at random. The discussion of
a change in the spin orientation of a whole micro-
crystal will be taken up later.

Let us designate by C the amplitude of the
coherent nuclear scattering

The vector q is not a unit vector but has the
magnitude

~=I 1-(e )']'. (6.31)

It is perpendicular to e and has a projection on x
equal to F2~1.

The scattering by a single ion is now described
by considering the Aux associated with the wave
function. Thus

cally scattered wave now becomes

(2~Mop '
~

r—'e'"'(C+2Dq s)x, . (6.30)&ski

C=glb l'(2ip+1) 'P aoP+(p +1)a P]. (6.0) F.,=r 'L(C+2Dq s)*x,*]
XL(C+2Dq s) x,]. (6.32)If E' be the quantity

zp=p
l
f pl p(2ipi1)-i

SQ~ ——SxQ~. (6.10)

The spin function Q~ may therefore be omitted
in the incident and scattered wave. The mag-
netically scattered wave is now given by

(2~Mop &

l
2Dr-'e'""q sx,ill) (6.20)

with the abbreviations

e'yS
D= Ii,

mc'
(6.21)

q= e(e pp) —pp. (6.22)

The sum of the coherent nuclear and magneti-

Xpp(ip+ 1) (ai ap ), (6.01)

which is proportional to the intensity of inco-
herent scattering, then the total nuclear scat-
tering is given by 8'+ O'. Here we have neglected
the possible effect of the nuclear form factor Ii~
of (3.4) as it is probably not very large, at least
for the forward scattering and sufficientl heavy
nuclei.

For the magnetic scattering the relation (4.5)
is here applicable. The spin function Q~ of the
initial state of the ion must represent the ionic
spin parallel to the axis x. Since transitions to
other ionic spin states do not enter, we may write

To obtain the total scattering cross section,
(6.32) must be summed over the neutron spin
coordinate. Using the hermitian property of s
and the relation

(9's)(%'s) =-'Q' (6.321)

we find

P F~=r 'tLC'+a'D'+ 2 x~*4CDq'sx8] (6 33)
SP 111 SP 111

Here, for the first time, the scattering in a given
direction depends upon the initial spin state of
a neutron. It is remarkable that the distinguished
direction is not characterized by the direction of
the ionic spin alone, but rather by the vector q
as defined by (6.22).

For an unpolarized incident beam the spin of
the neutron has no preferred axis. The last term
on the right side of (6.34) which involves the
matrix elements (sl sls) linearly, therefore van-
ishes and the differential cross section becomes

dC = (C'+D'g')dQ. (6.40)

Eq. (6.40) expresses the fact that as far as the
total scattering is concerned nuclear and mag-
netic scattering of an unpolarized beam superpose
their intensity.

The corresponding differential cross section for
scattering into a solid angle dQ is then

dC = LC'+D'g'+ P 4CDx, *q sx,]dQ. (6.34)
SP ill
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For an Nnmugneti2'ed medium we must average
(6.32) and (6.34) over all directions of x which
gives

(6.41)2
gsv 3 ~

If we pass from an unmagnetized to a completely
magnetized state of the medium, the differential
cross section dC given by (6.34) will increase or
decrease from its average value

(C'+ -'D') do (6.42)

depending upon the direction of scattering. It
will become a maximum for g= i, i.e. , e perpen-
dicular to x. It will be a minimum for g=0, i.e.,
e parallel to x. The vector e lies in the plane
defined by the directions of incidence and
scattering, k and k', and is perpendicular to k
for scattering through small angles. Thus, the
first case can be realized for small angle scattering
if the medium is magnetized transversely, per-
pendicular to the plane defined by k' and k;
the second case if the medium is transversely
magnetized in the plane of k' and k.

If the incident beam is completely polarized
in an arbitrary direction defined by a unit vector
X we have to proceed as follows. We use the
spin wave functions which characterize states
with a neutron spin parallel to and obtain

2 px, *(s)x,=2(slsls)=3, . (6.43)
spin

This result is, of course, independent of the
direction along which we analyze the spin.
Eq. (6.34) now takes on the form

dC = t C'+D'g'+2CDq 3 hdQ. (6.5)

When q is kept fixed, the cross section obviously
becomes a maximum for 2 parallel to q if the
amplitudes C and D have the same sign, and a

-minimum if 2 is antiparallel to q. If C and D
have opposite signs, the behavior is just reversed.
In the first case discussed in the previous para-
graph, e x=0 q= —x and so is antiparallel to
x and of absolute magnitude unity. In this case
the greatest difference of scattering from the
parallel and antiparallel polarization states is
obtained. The second case mentioned above
e x = i, leads to g = 0 and therefore to the
absence of any magnetic scattering. All polariza-
tion states of the neutron are then of course
scattered alike. It must be kept in mind that

o .,g 4irC'+8xD——'q/3 (6.52)

The change in scattering, due to magnetization
of the medium is given by

0 —(r „=~rD's(3s —2)(-', —i~,'). (6.53)

Equation (6.32) allows us to determine the
polarization of the scattered neutrons. Using the
spin functions of Eq. (3.91) along an arbitrarily
chosen s axis we find by substitution into (6.32)
that

F-= r 'I L(C+Dg.)'I ~
I

'
+D2(g~ —g 2)

l b
l 2+D(C+Dg, )

X(a*b(g. ~g„)+ah*(g.+ig„))gn*n

+C(C Dg )2lbl2+D2(g'--g. 2) lnl~

+D(C—Dg,) (a*b(g,—ig„)

+nb*(g, +ig„))P*PI. (6.6O)

according to its definition q depends upon the
scattering angle and the csimlth. It does not
therefore represent a fixed direction even for a
constant scattering angle. Relations between q
and x therefore hold true only for special scat-
tering angle and azimuth. If, for example the
direction of polarization lies along q, dC becomes
a perfect square, dC = (C&Dg)2dQ in agreement
with Bloch's result. But this special expression
for the differential cross section cannot be inte-
grated over all angles of scattering for which
purpose recourse must be had to the generally
valid relation (6.34).

It is interesting to observe that the form factor
which becomes important when dC is integrated
over all angles has a double inHuence. On one
hand it reduces the total scattering, and on the
other it changes the inHuence of magnetization
on the total scattering. Taking for example, as
a crude approximation for illustrative purposes,
Ii = i inside a cone of scattering directions
making an angle 00 with the incident direction,
and Ii=0 outside this cone, one obtains for the
integrated cross section for an unpolarized beam
the expression

0 =4&C'+&D'nl 2+q —~*'(3il —2)3 (6 51)

Here the direction of incidence is taken as the
s axis and q stands for sin' (eo/2). The cross
section for an unmagnetized medium is obtained
by averaging over w
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If we express a and b in terms of the polarization
angles 8, p and let 2 be a unit vector along the
direction of polarization, we find

The coefficients of n*o. and P*P become

X.=r ~[C2~-a~~+D~q2(b(2

+CDq, +D(C+Dq, )X q], (6.62)

Np = r [2C'
~

b
~

+D'q
~

a
)

~

—CDq. +D(C Dq )2 q]— (6.63)

The sum N +Vs leads at once to (6.5). The
polarization of a scattered beam defined by

P=(X Xp)(N +—Xjy) ' (6.64)

now becomes equal to

(C' —D'q')X 2'+2CD~' q+2D'(X q)(X'q)

C'+D'q'+2CDX q (6.65)

where 2' denotes the axis along which the spin is
analyzed. If the original polarization is parallel
to q, P~ becomes equal to 2 2' which shows that
the scattering in this exceptional co,se leaves the
polarization unaltered. In all other cases the
direction and amount of polarization are altered.
Of special interest is the case of an initially un-
polarized beam. Here it is necessary to average

and Np over the incident polarization direc-
tion

(fq ) =r—'['( C+ D'
q) +-CDX' g]

(&s)-=«'P. (C'+D'q') CD&' a—]
(6.66)

Thus

a'b(q, iq„)+ah*(q, +fq„)

=2 cos 0/2 sin 8/2(q, cos P+q„sin 4)

=~ q.
—

q (lal' —Ibl') «61)

If we want to study intensity and polarization
of a transmitted beam, we must average (6.60)
and. (6.67) over all angles of scattering. The
results would consist of so lengthy formulae that
we limit ourselves to the discussion of the cross
section in the special case of a transverse field,
i.e. , k x=0. From the previously mentioned
crude approximation for Ii&, we find

og. ——~{-,'[4C'+D'rl(2+g)]
+-', [4C' —D'g(2+g) ]2 2'

—CDr, (2+ l)r(3+3') x

+D'g[(1+g+-', g')(2 x)(0.' x)

+-', (—1+g+-', q')2 2'+-', (—1+3'—Sg'/3)

X(X Ir/k)(X' It/k)]). (6.71)

The total cross section for scattering into both
polarization states X' and —X' is obtained by
adding 0~ and 0. q

o =op +0 g. =7r[4C'+D's(2+g)
—2CDg(2+s)X x]. (6.72)

The result (6.72) can also be obtained by inte-
grating (6.5) over all angles of scattering.

So far our attention has been confined to single
scattering processes. The treatment of double
(or multiple) scattering is only possible for very
restricted cases. It is easily seen that large
polarization effects may be expected in two
successive single scattering processes. If the first
scattering occurs under the small forward angle
and such an azimuth that e x=0, the scattered
beam according to (6.65) is almost completely
polarized if we assume for illustrative purposes
and probably as an approximation to the case of
Fe that C=2D. If e x=0 for the second scat-
tering also and if the polarization is parallel or
antiparallel to the magnetic field at the second
scatterer, the cross sections become

2CDX' g 2X' q C Dq —'
(&~ )-= = + . (6 67)

C'+D'g' g Dg C or

dC = (C+D)'dQ

dC = (C—D)'dD,

(6.731)

(6.732)

The polarization can be complete only if C=Dq.
It is a symmetrical function of the ratios C/Dq
and Dq/C and becomes small whenever either
of these quantities is large.

respectively; consequently reversal of the polar-
ization state relative to the magnetic field of the
second scatterer can cause the intensity to
change by a factor of 9 in our assumed case.
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To obtain a precise estimate it is necessary to
treat the double scattering without averaging over
the initial polarization state until the end ("inter-
ference of amplitudes" ). By omitting factors
referring to the space coordinates the spin wave
function of a twice scattered neutron becomes

equation has the general solution

i~tk r)-
)/=exp (ik r) Gn exp

2vE k)
ior (k. r't

+bP exp ——
( ), (6.81)

2v& u)
P„=(C+2Dq& s)(C+2Dq2 s)x,. (6.74)

co =y(eH/M pc). (6.811)
Constructing then the Aux as before, we find for
an initially unpolarized beam

P F„=constant X [C4+D4g&'rJ2'
BP i11

+C'D'(2~~ a2+ la~+el')1 (6 73)

For the conditions mentioned above qI
——q2 ——1

and qi is parallel or antiparallel to g~. The ratio
of intensities then becomes 41:9.

In his treatment of double scattering Schwinger'

used the conditions e~ x~ ——e2 x2 ——0 to simplify
his formulae and added the remark that they
describe a convenient set of experimental condi-
tions. It deserves mentioning that these condi-
tions give rise to the maximum effect as the
magnetic scattering is then greatest. Further-
more it should be noted that the theoretical
treatment is strictly correct only under these
same conditions. In all other cases the scattered
neutrons are not polarized parallel to the mag-
netic field, and there results a precess'jon of the
spin about the direction of the field as the neutron
passes from the first to the second scatterer.
Only the component of the spin parallel to the
field is preserved; the perpendicular components
average to zero because of the varying neutron
velocities and different distances between points
in the two scatterers. The polarization at the
second scatterer is thereby reduced. In our dis-
cussion of polarization and double scattering
these precessions must be taken into account, a
task to which we now address ourselves.

The wave equation of a neutron moving in a
constant magnetic field is

Here H'is the homogeneous magnetic field in the
ferromagnet which we have omitted from our
previous considerations since the scattering is
caused entirely by the atomic fields. 1A'e assume
the field to be either constant or to change so
abruptly that the passage of the neutrons through
the regions of inhomogeneity can be treated as a
quasi-instantaneous process.

According to (6.81) the two components of the
spin function of the neutron

(6.812)

have phase factors which vary from point to
point along the trajectory of the neutron. This
result can be put into a more convenient form by
means of the operators 2'(1+2m s) where x is,
as usual, a unit vector parallel to H. These
operators obviously have the following properties

—,'(1+2m s)n=n, -', (1—2x s)P=P,
(6.82)

-', (1+2m s)P=O, -', (1 —2x s)n=0

Hence

'leo (k r)
/=exp (ik r) -', (1+2m s) exp

2sL k)
(6.83)

ice fk tp
X-', (1 —2x s) exp ——

~

—

~
(an+bP)

2s( u)
If x,' is the spin function of the neutron at the
point r& of its trajectory and x, its spin function
in another point r2 then

er cur
cos +2ix s si—n —x„(6.84)

2v 28

V'+y s H —E &=0. (6.80)
8+'Mo 2m 3IIoc where r denotes the distance along the trajectory

between the points r~ and r2.

By use of spin functions n and P representing If now x, denotes the spin function of the
states of spin parallel and antiparallel H, this incident neutron at the location of the scatterer,
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the scattered wave is given by

(2~3EIp& & e"" cur ~r
cos —+2' s sin-

hk & r 2v 2v

cos' cur/2v =sin' rar/2v = —,',
cos cur/2v sin cur/2v= 0.

(6.851)

(6.852)

By taking the important special case e x=0, the
general equation for the polarization reduces to

(C'+D')2 r. 2CD-
Igr —2 K (6.86)

C'+D'+2CDX x

The polarization (Pq ),„ for an initially un-
polarized beam is then still given by (6.67) with
g= —x, this agrees with our expectation that
the polarization is unaffected if it is parallel to H.

In the double-scattering problem only the
effect of the magnetic field on the neutron as it
traverses the distance r between the scatterers is
of importance because we are interested in the
total Hux originating from the second scatterer.
Hence we may write for the spin function of the
doubly scattered wave,

f„=const. X [C+2Dqa s]
X [cos (cur/2v) +2ivssin (.cur/2v)

X [C+2Dq& s]x,. (6.90)

The Aux is now computed in the familiar way.
Again we find that the result in the important
case described by e& x& ——e& x& ——0 reduces to
that previously given.

Only a few words need to be said about the
modifications which are introduced if the ionic
spin can change its orientation during the
collision. Such transitions are very unlikely in
Fe, Co, or Ni since the work required to change
the spin state is approximately equal to sJwhere
J is the well-known exchange integral and s the
number of neighbors of every ion. The value of

X(C+2Dq s)x, . (6.85)

The polarization of the scattered wave can be
studied exactly as before; the general result is of
course considerably more complicated than
(6.65). Because the neutrons have traveled over
varying distances with varying velocities, it is
permissible to put

e'

As the ion is initially parallel to field, 3II= S and
M'=S —1. The matrix element of S for this
transition is given by the well-known formulae

(S—1
~
S,+iS„(S) =0,

(S—1~S, iS„)S)=—(2S)&,

(S—1(S,iS) =0.
(6.92)

By use of (4.4), and substitution of (6.92) into
(6.91) we obtain

I(inelastic) /I;„
=(e'yP'/mc')'2SQ

~
(s'~ (e s)(e,+ie„)

—s.—is„[s) f

'
= (e'yF'/mc') 2S P x,*

~
(e s) (e,+ie„)

spin

—s, —is„~ 'x, . (6.93)

By using the familiar commutation relations,
sXs=i/2s, and the fact s,'=s„'=s,'=-'„ this
reduces to

pe'yI'~ ' S
I(inelastic)/I;„=

~ ~

—
I 1+(e ~)'

E inc' 2

—2 g x,*(e x) (e.s) x, I. (6.94)
sp ln

If the incident beam is unpolarized, the sum in
(6.94) vanishes. The intensity becomes a maxi-
mum for e.x= 1; this condition implies that the
elastic magnetic scattering treated previously
becomes zero (cf. p. 911).If the incident beam is
completely polarized along the direction 2, the
term under summation becomes —(e x)(e 2).

sJ lies for the substances mentioned in the
neighborhood of a fraction of a volt. Only in a
medium with a very low Curie temperature can
such transitions be of importance. To treat this
problem we construct the density of scattered
neutrons

~ P„~' from (4.4). Dividing the result by
the density of incident neutrons and omitting
the term corresponding to elastic scattering,
M'=ALII, we have

I(inelastic) /I;„= (2e'y/mc~) ~
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VII. THE FQRM FAcTQR FQR ELAsTIc CQLLIsIoNs

We have seen in IV that the matrix element
which determines the transition in the scattering
process is essentially defined

P=P exp [zr (k —k')].s, . (4.08)

Consequently states which are polarized anti-
parallel to e will be scattered most; the scattered
neutrons will therefore be partially polarized in
this direction. The details of the state of polar-
ization can be determined analogously to the
cases discussed before.

In dealing with ferromagnetic media, it should
finally be remembered that we do not possess a
satisfactory theory of the magnetic moment of
the metals below the Curie point. The magnetic
moments obtained through saturation at low

temperatures do not agree at all with the
magnetic moments above the Curie point or with
the spin which has to be ascribed to the ion for
the purpose of accounting theoretically for the
saturation curve. These discrepancies have led
to the well-known attempts to explain the be-
havior of the ferromagnetic metal by ascribing
several sta, tes to the atom (ion) in the metal. The
discrepancy becomes the more important since, in
no case, does the magnetic moment of metallic
Fe approach that of the ions Fe+++ or Fe++ as
observed in salts. It appears therefore that the
model for a ferromagnetic medium so far used in
the case of neutron scattering may well require
drastic modifications. This can affect the neutron
scattering principally in two ways. The atomic
domain giving rise to the magnetic moment may
not be confined to the d shell which would reduce
the scattering on account of the form factor.
There may also be several ionic levels of different
spins involved which would permit inelastic
scattering of the neutron. Finally there may occur
a considerable amount of quenching of the spin
current which is indicated by the experimental
fact that the gyromagnetic ratio lies only close to
two but differs from it measurably.

gr pe ar—(7.0)

where 0. is in a simple way connected with the
effective nuclear charge Z, ii or the ionization
potential. The most probable radius ro is defined

by

(d/dr)(rze "")=0

n =3/rp.

(7.01)

(7.02)

It can also be expressed in the form

Of =Z, ff/3a p, (7.03)

where co= 0.52A stands for the Bohr radius of the
ground state of hydrogen. Since for room-
temperature neutrons the wave-length 'A is
approximately 1.45A, the inHuence of the form
factor will be considerable since Z, H will lie
between 3 and 6 and 2zrrp/X therefore will be of
the order of magnitude of one.

To find the differential form factor, i.e., the
factor with which the cross section for scattering
under the angle 8 has to be multiplied we have to
evaluate the integral

arising in the case of inelastic transitions are
qualitatively discussed in Section VI II.

Assuming therefore the same spin distribution
for the initial and final state we have to make
more or less arbitrary assumptions about the spin
density. It is reasonable to take the spin density
proportional to the charge density of the outer
electrons (cf. 4.042). The charge density on the
other hand can be estimated either from semi-
theoretical expressions given by the Hartree
distribution or with the aid of simple assumptions
treating the problem as quasi-hydrogenic.

In the case of greatest interest (Mn++, I'e+++;

j=5= 5/2) we know that the ffve extra electrons
are in a 3d-state and that the whole distribution
is spherically symmetrical. It therefore does not
seem to be without interest to represent the
charge distribution with the aid of the hydrogenic
wave function

To evaluate (4.08) we have to know the energy
change in the transition as well as the spin
density distribution in the initial and final state.

We shall be concerned in this paragraph with
elastic scattering only. The numerous difficulties

F p'ff —A exp [z(k —k ) r —2nr]

&&r' sin 8drde (7.1)

and to normalize the constant A in such a form



O. HALPERN AND M. H. JOH NSON

that Fd;«approaches unity for very small values
of k. P~;« is a function of the scattering angle 8
alone. Choosing the polar axis along the direction
of k' —k and introducing spherical coordinates we
find for Iiq;«the form

a' 40 —24(k/a) '
I4 ———=-

k' 11 10 9 8[1+(k/a)a]a

k' 11 10 9.8.7[1+(k/a)']'

(7.45)

(7.46)

~co

Fd ff — f 8 df
0

&& exp [2ak sin ', a1r-cos 0] sin Odg, (7.2)
~ p

It seems noteworthy that the differential form
factor Fg;« is not a monotonic function of the
angle; it has two zeros which are due to the
di8raction from the spherical spin distribution
and which are located at the two angles

which can be immediately evaluated. We so
obtain

sin ,'a7 a =—a/k3',

sin a 6a ——3'a/k.

(7.51)

(7.52)

10 (k sin aalu)
a (k sin -', 8y ' '

1-—
I

—
) +I ———

Ii
~@oaf(&)=—

(7.3)(k sin a6) ' "
1+I )

I';.a=la+»+la+~a+14+la, (7.40)

4 (n$2

20(ky' (118' (kq'
1—

I

- I+I II
-

I
3 (ai 4 9 ) 4a)

(al
&ki

20 (k~ ' (k~ '—
I

- /+I -
I3 Ea) &ai

$2- 11

11 1+—
(7.42)

20 236 (k) ' (k) ' (k) '
I

—
I +2oI —

I
-4I —

Ia' 3 9 4a) Ea) (a)
I2 ———--- (7.43)

k2 hp
2- 10

r11 10 1+I —
II~i

236 (k) ' (k) 4

-40I —
I +»I —

Ia' 9 4a) Ea)I = ——
3

h2 (k~a s

11.10.9 1+I —
I

&a)

(7.44)

The integral form factor F;„,follows from (7.3)
by integration over 8. A trivial but lengthy
procedure leads to

The first zero 61 makes the expression

k sin a6/a

equal to 3a/3. The denominator in (7.3) has not
yet grown too large so that this zero is of physical
interest. The second zero if reached at all, is
without significance since the form factor is
already unobservably small. The zeros shift with
increasing wave-length towards larger angles;
their presence is of particular importance for
comparatively short wave-length since it then
diminishes the scattering under small angles
which otherwise is of greatest importance. It is
also clear by inspection that for any value of
Z, ff between 3 and 6, the scattering of room
temperature neutrons, is negligible for angles
larger than say, 60'.

In the expression for the integral form factor
only the term Ip which does not contain denomi-
nators contributes in most cases of practical
interest. We see from (7.40) that the total scat-
tering is inversely proportional to the absolute
neutron temperature provided that a/k does not
become so large that the terms with the denomi-
nators in (7.42—7.46) must be taken into account.
But even for a/k 2 these terms would give only
a small correction. Furthermore, we see that in
our model the integral form factor becomes
proportional to Z, ff'. We assume for the purpose
of illustration that Z, ff equals 6 which probably
overrates the screening eRect of equivalent
electrons and obtain for F;„~ with ) 1.45A

F;„, 1/23.

The exact numerical value of the integral form
factor as well as the occurrence of diRraction
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zeros in the differential form factor are of course
dependent upon the special model we have
chosen; it seems plausible on the other hand that
the general features of the angular dependence as
well as the big reduction in total scattering is not
too badly represented by these calculations.
They also allow us to understand why in the case
of backwards scattering of neutrons from MnS
Whitaker7 was unable to find any indication of
additional magnetic scattering.

VI II. COUPLED SCATTERING SYsTEMS

The treatment of neutron-scattering by coupled
systems can be carried out quantitatively only in
a few special cases. The solution of the more
general problem appears to be extremely labori-
ous due to great mathematical difficulties.

Coupling may occur between the spins of the
individual ions, between the electronic and
nuclear spins of an atom or between spins of the
nuclei in a homonuclear molecule. Since the
nuclear coupling is most easily considered, we
discuss it first.

The coherent part of nuclear scattering (cf.
Section III) arises from the terms in (3.51) which
do not contain the nuclear spin. It is therefore
always . present and remains coherent inde-
pendently of the coupling between the nuclear
spin states. Furthermore, in all attainable experi-
mental arrangements the nuclear spin will have
no preferred axis; our previous arguments there-
fore show that this term will give the entire
coherent scattering. The additional scattering
will be inelastic because of the energy separations
introduced by the coupling. If the coupling is due
to atomic electrons (hyperfine structure), then
the energy separations are, in every case, very
small as compared with the neutron energy. The
energy change will therefore have no appreciable
effect on the atomic form factor. For the. same
reason, the different states of the scattering
system will be equally populated. An obvious
application of the principle of spectroscopic
stability shows us that the total scattering is
under these conditions unaltered by the coupling.
Similarly in the homonuclear molecules, the
coupling forces are in general too small to have
any influence on the scattering. The only im-

~ M. D. Whitaker, Phys. Rev. S2, 384 (1937).

portant exception to this rule can be found in the
case of parahydrogen to which Teller' was the
first to call attention. , Here the coupling energy
equals the energy separation of the neighboring
rotational states of the molecule. If the neutron
energy is less than the energy necessary to excite
the first rotational state, then inelastic collisions
with parahydrogen in its ground state become
energetically impossible. Since the ground state is
nondegenerate, only the coherent scattering
remains. The striking transparency of para-
hydrogen for very slow neutrons thus illustrates
the marked effect previously mentioned (cf.
Section II I) which the spin degeneracy may have
upon coherent nuclear scattering.

The problem of the spin coupling of neighboring
ions in a salt presents difficulties of a different
order of magnitude essentially for two reasons:
the energy changes due to the exchange forces
are very much larger than those due to nuclear
coupling; furthermore, the problem becomes a
many-body problem since the spins of all ions
have to be taken into account simultaneously. It
is customary to write for the interaction function
between the spins the expression'

H= —2J+s~ s„ (8.0)

E. Teller, Phys. Rev. 49, 421 (1936).
J. H. Van Uleck, Theory of Electricity and 3faf,netic

Smsceptibilities, p, 328.

where J is the Heisenberg exchange integral and
sp is the spin of the P'th ion. The summation
extends as a rule, over all neighboring ion pairs.
If J is positive, then states of large resultant spin
of the crystal are most stable (ferromagnetic
case) whereas a negative value of Jmakes states
of small resultant spin energetically most stable
(antiferromagnetic case). The resultant crystal-
line spin S' can be used as one quantum number
to describe the stationary states of lattice since it
commutes with the interaction function II.

The discussion branches now along two ways.
The ferromagnetic case below the Curie point has
been treated before. The ferromagnetic case
above the Curie point and the antiferromagnetic
case can be treated together for our present
purposes.

The presence of the spin exchange forces had
manifested itself previously in the deviation of
the paramagnetic susceptibility of most salts of
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—sJ
W(S') = [S'(S'+1) fS'(S'—+1)j, (8.01)

f 1—
(f' 4S")(—3f' 4S")—

=2J2-—
f3

(8.02)

(s= number of neighbors per atom. )

It is clear from (8.01) that the average energy
for small values of the resultant spin is small and
the difference between the average energies of
two groups of levels with neighboring resultant
spins is quite negligible for W(S') —W(S' —1)
= (2sJ/(f 1))S'. On —the other hand the "spread
in energy" even of the levels belonging to S' = 0 is
considerable; namely, of the order of magni-
tude fJ

For the purpose of calculating paramagnetic
susceptibilities, it is customary and has been
found to be a sufhcient approximation, to ascribe
to the levels of total spin S' a weight as deter-
mined by simple permutations and the energy
—(sJ/f) S";With t'hese approximations one ob-
tains for the magnetic susceptibility the following
expressions

the iron group from the simple Curie law. To
determine theoretically the paramagnetic perme-
ability it is necessary to know the energies of the
(2S+1)~states into which the originally (2S+1)~
times degenerate state of the crystal of f ions
splits up in virtue of the spin coupling forces. It
is, of course, still possible and will actually be the
case that some of these states still retain their
energy degeneracy. We encounter here a problem
which is well known from the theory of ferromag-
netism and is at present anything but solved.
We have to be satisfied, to know for the moment
the number of states o&(S') which belong to a total
resultant spin vector 8' and. to possess some
information about the average energy values
W(S') for levels belonging to a total resultant
spin S. We quote the following well-known
relations'

Here s denotes the number of neighbors possessed
by each ion. It is clear that this statistical
procedure is not at all rigorous; it seems to work
for the determination of susceptibilities because
in the presence of even weak magnetic fields the
resultant spin is of the order nfS where n is a
small number depending upon the external con-
ditions. Still afS is almost always very much
larger than f&S which is a measure of the spin in
the absence of an external magnetic field. We can
sum up by stating that paramagnetic investi-
gations do not lead very far in the study of the
levels of a spin lattice.

Returning now to the scattering of neutrons in
a spin lattice, we may write from equation

f 2~M, q
~ p2s'yq e"'"

P ()—
/ / i fP x, ,fl, ()
( hu j Emc') "~ r

Xe'P(s'M'
i
5K

~
EM) pF X II ('Q~('& (8.20)

for the wave scattered from the P'th lattice point.
Here the P'th atom is located at the position rp,
which is contained in b~, the phase difference for
waves scattered from this point. The II~' means a
product of the spin functions of all the atoms but
the P'th. The entire wave scattered by the
lattice is then

XQ (s'M'
~

OR
~
sM)g F'11&~ "(

XO' " O' ' 0' +" ~ ~ . (8.21)Mp q M~~ M~+g

If we let L stand for the totality of lattice
quantum numbers, thus replacing M&. ~ ~ Sf'
by L and write QL, for the spin wave function of
the entire lattice, we have

i 2~MD) (2e'pl e"'"

hk ) (mc') "r' r

p eh q
' 4S(S+1)

E4~mc) 3k(T —T.)

T, =2sJS(S+I)/3k.

(8 11)

(8.12)

X (s'L'/Pe "~Palp
~
sL) F&. (8.22)

Summing the density of scattered neutrons,

~, over all spin variables and dividing the
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result by the incident density, we have

I/I;~=r '(2e'y/mc')'

2 I
(s'L'I Ee'"~~

I
sL) F'I ' (8 3o)

s'L'

To obtain the complete result, we must average
(8.30) over the temperature distribution among
the lattice states.

If now the energy changes in all transitions
were small so that the atomic form factors were
the same for all transitions, then expression
(8.30) becomes

I/I; =r '(2e'/FAN/mc')

Unfortunately we are not justified a priori to
use the approximation as sketched. The splitting
of the levels of low spin is in general so wide that
energy differences which are quite comparable
with the neutron energy must be expected to
occur. There does not exist therefore any direct
connection between the theory of magnetic
susceptibilities and that for neutron scattering.

Relation (8.31) allows a further simplification
if we neglect for a moment the interference-terms
which are without interest for us at the present
stage of the discussion. Dropping the phase
factors e'&'&—'P' we find

I,./I;„= r '(2e'y/mc )'0

X(sLI P e'&0i' 0P'&0Ri *5Ki IsL). (8.31)
PP' Ps'L'

I
(s'I'I Ãtpl sL) F0I '. (8.40)

Here the interference between different ions
can be neglected. We can furthermore put
(L,

I
s ps„i

I L) = 0 since the total crystalline spin S'
is always small compared with fS in paramagnetic
substances. Eq. (8.31) thereby reduces to our
previous result (5.2). Changes in the scattering
formula can therefore only occur if in virtue of
the spin coupling the transitions in the lattice are
accompanied by energy changes large enough to
alter substantially the form factor F. It should be
remembered that almost all of the scattering is,
strictly speaking, inelastic; the elastic transitions,
L=L' in (8.31) are proportional to terms of the
type

I
(I Is, IL) I0. This expression is very small

since the total crystalline spin lies in the neigh-
borhood of zero.

If we now employ the approximation which we
describe as being useful for the treatment of
susceptibilities, then it can easily be seen that the
scattering is uninHuenced by the spin coupling.
This is due to the fact that as we learn from

W(S') —W(S' —1)= (2sJ/(f 1))S' (2sS—S/f&)

whenever the crystalline spin is small. But only
such transitions can occur in (8.31) because
Pie"'PORi has nonvanishing matrix components
only between states for which AS'= +1, 0. The
energy change during the scattering process
would thus be completely unobservable; the
scattering. from the crystal would be therefore,
the same as that from an equal number of free
lons.

Since now the spins are no longer distinguished
by their position, we can write instead of

I«/I;. = r '(2e'y/m-c') 'f

~ 2 1(s'L'I ~o
I
sL) F'I'. (8.41)

sl LI

Here 5R0 refers to any of the ions in the lattice.
If we now use the abbreviation

P(LL') = I(s'L'Iolz0lsL) I'

—: 2 I(s'L'I3itolsL)l', (842)

then P(LL') gives us, apart from the form factor,
the probability that due to the collision, the
lattice will change from the state L to the state
L'. The problem of neutron scattering by lattice
therefore consists in the determination of the
matrix elements P(LL') as a function of the
energy difference between the initial and' the
final crystalline state. The form factor belonging
to the transition L~L' may then be constructed
and the distribution of energy changes for each
collision determined. The simplification now
achieved consists in the fact that (8.42) contains
the spin coordinates of one ion only in the
operator. Mathematical dif6culties seem to us to
prevent an immediate and direct attack even on
the simplified problem.

The conditions in a saturated ferromagnetic
medium which we have treated before are quite
different. If the medium is close to saturation, the



920 O. HALPERN AND M. H. JOH NSON

elastic term, L'=L, in (8.22) gives the coherent
scattering treated in Section VI. Since this
scattering equals the fraction S/(S+1) of the
total scattering which is to be expected from a
free ion of equal spin, the remaining terms cannot
contribute more than the fraction S ' of the
coherent scattering. It is possible that a con-
siderable amount of this scattering appears in
transitions between states of the lattice having
the same resultant spin. It would probably
exhibit polarization phenomena which are similar
to those discussed in Section VI. Quantitative
estimates of this scattering face exactly the same
difficulties as those outlined in, the previous
paragraph.

If the spin coupling should actually lead to
considerable splitting of crystalIine levels having
equal total spin, then a remarkable phenomenon
should become observable at the Curie point of
ferromagnetic bodies. Since below the Curie point
the ferromagnet should show the scattering given

by (6.40) which is large and coherent, a marked
decrease is to be expected if the ferromagnet
becomes paramagnetic. Since the Curie tempera-
tures of all ferromagnets lie appreciable above
room temperature (exchange integral large), the
energy changes in the paramagnetic state would
become very appreciable and the accompanying
form factors would cut down the scattering to a
large extent. Particularly the scattering into
forward angles should be strongly diminished.
Absence of the effect just described should be
interpreted in our opinion as information that the
transitions occur mostly between levels of small

energy difference, and that the wide fluctuation
in the energy of levels with equal spin as given by
(8.02) is due to a comparatively small number of
levels with energies vastly different from the
average.

IX. EXPERIMENTs

The considerations of the last sections obvi-
ously suggest a number of experiments in the
field. The purpose of such experiments can
essentially be twofold. They can be arranged with
the aim of obtaining information about the
magnetic moment of the neutron, or they can be
used to explore the magnetic structure of the
scattering system provided that the magnetic

moment of the neutron is known& Quantitative
information about it therefore seems to be of
paramount importance.

The determination of the-magnetic moment of
the neutron can be carried out by scattering
experiments alone or by a combination of
scattering experiments with outside fields which
act upon the polarization state of neutron beams.
The last type of experiment is the one carried out
by Frisch, Von Halban and Koch." In these
experiments a beam of neutrons was partially
polarized by allowing it to pass through a
magnetized piece of iron. Upon leaving the
ferromagnet the neutrons were exposed to a
magnetic field which could be varied in magni-
tude and direction, and which changed the state
of polarization by an amount dependent on the
neutron's magnetic moment during the passage
from the first ferromagnet to a second. To
determine the angle through which the individual
spins Iotate it is necessary to know the time of
passage, i.e. , the velocity of the neutrons. The
scattering by, or the transmission through, the
second ferromagnet will show a maximum (mini-
mum) for definite directions of polarization of the
incident beam. It is obvious that by assuming a
certain knowledge about the velocity of the
neutron, the variation of the strength of the
magnetic field will permit a change from maxi-
mum to minimum transmission and thereby
obtain information about the magnetic moment
of the neutron. The authors gave as the most
probable value two nuclear magnetons for the
magnitude of the magnetic moment of the
neutron.

Unfortunately the effect observed is very small,
though, according to the authors, beyond the
experimental error. It seems that iron is as poor a
polarizer as it is an analyzer since the change in

scattering (transmission intensity) remains a
fraction of a percent. Furthermore, we do not
seem to be able to determine the neutron velocity
with too great an accuracy which also has a
detrimental influence on the quantitative relia-
bility of the method described.

Turning now to pure scattering and trans-
mission experiments, it may, perhaps, be pointed

"Frisch, Uon Halban and Koch, Phys. Rev. 53, 719
(~938).
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out that the treatment of the scattering of a
neutron by a free paramagnetic ion involves no
uncertainties with the possible exception that the
interaction between neutron and electron may
not be wholly magnetic in origin. Furthermore,
the scattering effects which are to be expected if
the magnetic moment of the neutron is of the
order of magnitude of one nuclear magneton can
be very large (cf. (5.5)). Therefore, as previously
stated, the simplest and most direct method of
determining the neutron's moment seems, in our
opinion, to be a scattering experiment with an
appropriate paramagnetic salt. The salt selected
should have a large magnetic moment, a con-
dition which is well satisfied by the salts of
divalent manganese and trivalent iron, and to a
lesser extent by salts of several other ions in the
iron group. (The rare earths are not very suitable
for experiments of that type since they cannot be
freed from highly absorbing members of their
group). A particular salt must then be chosen
which approximates as closely as possible the
condition of a free ion. The ion will be called free
if there is no appreciable effect from quenched
orbital currents, from the spin-orbit coupling and
from the spin-spin coupling between different
ions. There is convincing evidence that divalent
manganese and trivalent iron ions are in an S
state so that the first two conditions are well
satisfied. If we finally choose a salt which shows
the full molar magnetic susceptibility as calcu-
lated on the assumption of a free spin (T, in (8.12)
small), we may be fairly certain to have also
avoided difficulties arising from spin-spin coup-
ling. Several salts whose susceptibility has been
studied over a wide range of temperature satisfy
(8.11) with a constant T, considerably less than
100'K (e.g. MnSO4). After selection of the salts
as described, scattering experiments with slow
neutrons should be carried out under several
angles up to a minimum deHection chosen as
small as the experimental arrangement will
permit. These scattering measurements should. be
made relative to some standard which is nonmag-
netic and shows only isotropic nuclear scattering;
thereby geometric uncertainties can be avoided.
The scattering data can then be fitted to the
curve corresponding to a form factor (cf. Section
VII) by an appropriate choice of the size of the
scattering domain. Even without such theoretical

assistance the measurement of the scattering at
several angles should permit a satisfactory
extrapolation to very small forward angles where
the form factor becomes unity. The experiments
can then be evaluated by the use of (5.9).

The various formulae of Section VI offer in

principle a basis for the determination of the
magnetic moment of the neutron through experi-
ments with ferromagnets. By far the simplest
method can be deduced from (6.40). It consists
in an observation of the beam scattered by a
magnetized body under a constant angle of scat-
tering 0 and at two different azimuths so chosen
that e x= 1 and e x=0. The difference in
scattering then amounts to the total magnetic
scattering independent of the amplitude and
phase of the nuclear scattering. The disadvan-
tages of this arrangement are several: It is
necessary to delimit the scattered beam to a
fraction of the azimuthal circumference which
weakens the intensity by a factor of 27r approxi-
mately. It is furthermore essential to have single
scattering since otherwise additional neutrons
will be scattered into the chosen angle and also
the assumption of a primarily unpolarized beam
would no longer be justified. Apart from these not
unsurmountable technical difficulties there re-
main certain theoretical ambiguities of perhaps
greater importance. It would of course also be
necessary, as in the paramagnetic case discussed
before, to carry out observations at different
angles 0 to obtain information about the form
factor. Even for the case of elastic scattering the
form factor for ferromagnetic bodies will prob-
ably be of greater importance than in the case
of paramagnetic scattering from free ions since
it is likely that the outer shells will also be some-
what coupled and that there has occurred a non-
calculable but probably large amount of spin
quenching. A considerable contribution from
incoherent magnetic scattering must also be
expected to be present which will probably
strongly diminish the otherwise marked azi-
muthal effect.

It should also be mentioned that the relative
effect, even in the absence of all the difficulties
mentioned above is rather unfavorable in the
case of iron, since the nuclear cross section is
large, d4„=10 "dQ, while the elastic magnetic
scattering amounts to d4 2.5&10 "dQ if we



O. HALPERN AND M. H. JOH NSON

use for y the empirically determined magnetic
moment 2 Bohr magnetons.

Originally it had been suggested' and an
attempt" made to determine the magnetic
moment with the aid of polarization experiments
based upon the interference between nuclear and
magnetic scattering. The two types of experi-
ments mostly discussed are the double scattering
and transmission arrangements which we men-
tioned in Section VI. Here too there exist in our
opinion grave difficulties if one attempts to
evaluate the experiments quantitatively for the
purpose of determining the neutron moment.
Section III dealt with the problem how far the
coherent scattering of a nucleus can be deter-
mined from observation of the total nuclear cross
section. We found that in the presence of isotopes
and the nuclear spin it is almost impossible to
draw quantitatively reliable conclusions. It must
be admitted that the case of iron is favorable
insofar as the dominant isotope has an atomic
weight of 56 and therefore, probably no spin. It
nevertheless does not seem feasible to determine
the amplitude of coherent scattering quanti-
tatively; we must be satisfied to enclose it within
certain not improbable limits. There must, in
addition, be considered a background due to
inelastic nuclear scattering which arises from the
coupling with the lattice. Since this coupling
need not be the same for nuclear and magnetic
scattering there arise inaccuracies which cannot
be removed at our present state of knowledge.
The inelastic scattering which is due to the
strong spin coupling forces will, in the case of a
saturated ferromagnet also show polarization
effects of an unpredictable magnitude. The dif-
ficulty of obtaining sufficient intensity in a
neutron beam for the purpose of carrying out a
double scattering experiment has already been
pointed out in the literature.

That all these factors mentioned are of con-
siderable influence on the actual state of polariza-
tion of a beam passing through iron follows in
our opinion from the minuteness of the effect
which has been observed in the experiments by
Frisch, von Halban and Koch. A rough estimate
on the basis of (6.30) etc. would indicate that

"Cf. e.g. Hoffman, Livingstone and Bethe, Phys. Rev.
51, 214 (1937);several notes by J. Dunning and collabora-
tors in Phys. Rev. 51, (1937).

iron is by far a better polarizer (and analyzer)
than the actual observations indicate. We con-
sider these experiments as offering direct support
for our contention as to the complexity of scat-
tering processes in ferromagnetic bodies.

Similar difficulties enter into the quantitative
evaluation of experiments concerned with the
attenuation of an incident unpolarized neutron
beam. Since it is the total and not the dg"ererltial
cross section that here becomes of importance,
we are not able to. study independently the form
factor as function of the scattering angle. This
form factor enters (cf. e.g. (6.53)) in a decisive
but complex manner into the absorption cross
section; without knowing the form factor no
conclusions can be drawn as to the magnitude of
the magnetic moment. If there is an appreciable
amount of incoherent nuclear scattering present,
the beam will be depolarized as it passes through
the ferromagnet. Care must also be taken that
in the case of a highly attenuated primary beam
no secondary neutrons shall be scattered into the
forward direction. Previous evaluations have
also neglected the purely magnetic coherent and
incoherent scattering as well as the effect of the
precession of the neutron spin during the passage
through the ferromagnet. "The combined weight
of all these variable factors seems, in our opinion,
sufficient to make a quantitative evaluation of
transmission experiments appear rather improb-
able.

Assuming a quantitative knowledge of the
magnetic moment of the neutron which, as we
have shown, can probably be obtained with fewest
ambiguities from observations of paramagnetic
scattering, we are able to outline a series of
experiments from which much information can
be gained as to the magnetic structure of the
scatterer. As previously pointed out, we find
ourselves now on less satisfactory ground as far
as the theory is concerned, and we think that
the most promising attack can be made from the
experimental side. The difficulties to which we

"Note added in proof.—The problem of magnetic scatter-
ing of neutrons. has been further treated together with
related questions in two notes which will appear shortly.
Abstracts have been presented to the meetings of the
American Physical Society in Washington (cf. a paper by
O. Halpern and Th. Holstein presented in December, 1938;
Phys. Rev. 55, 601 (1939); and a paper by Halpern,
Hammermesh and Johnson presented in April, 1939;
Abstract No, 73 in Am. Phys. Soc. Bull. 14, No. 2, April 12,
1939).
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are referring are mainly our lack of knowledge
concerning the elastic and even more important,
the inelastic form factors. The complications
which we encounter in attempting to estimate
the energy change per collision due to the
presence of spin coupling forces have been dis-
cussed fully in Section VIII. We there realized
the impossibility of drawing reliable conclusions
from the mean square fluctuation of the energy
which, in our opinion, does not at all determine
the actual energy change per collision. Ceding
this group of problems to experimental investiga-
tion, we have learned in the meantime by letter
and personal communication that Professor Van
Vleck has become interested in the theoretical
side of this problem and is attempting to derive
information about the energy changes from con-
siderations about energy fluctuations. His re-
sults" show that from such considerations the
average energy change is of the order of the
exchange integral.

Leaving these theoretical considerations aside
for the moment we may point out that there
exists a very simple type of experiment which
will 'show if it is justified to predict energy
changes of the order of magnitude of the exchange
integral J. For this purpose it is only necessary
to determine the integral cross section of various
salts containing the same paramagnetic ion
(Mn++ or Fe+++). Since these salts show widely
varying susceptibilities and exchange integrals
(Curie temperatures between 100' and 1000'K),
we should expect large changes in the integral
cross section. If, for example, we choose a salt
like MnS which does not show an appreciable
magnetic scattering in the backward direction,
then we should expect according to the hypothesis
mentioned a vanishingly small total magnetic
cross section, since the inelastic form factor will
almost completely eliminate the forward scatter-
ing also. If, on the other hand, the small back-
ward scattering is due to the influence of the
elastic form factor which (cf. ('7.30)) is small
enough to make it unobservable, then a sizable
magnetic cross section should be measured which

"See following paper.

would be due to a large amount of forward
scattering. All these discussions presuppose of
course, the existence of a magnetic moment of
the neutron which is not much smaller than one
nuclear magneton.

Experimenting with quasi-free magnetic ions
we can use the angular dependence of the mag-
netic scattering to obtain information on the
magnetically active size of the ion. Similarly
observations on the angular dependence of scat-
tering can be used to obtain information about
the probability P(I, L,'). For this purpose it
seems advisable to carry out observations at
various neutron energies, and for a series of salts
of variable "magnetic dilution. " Since the mag-
nitude of spin coupling is known from suscepti-
bility data, one can thus obtain experimentally
a relationship between spin coupling and neutron
scattering. Again the salts of divalent manganese
and trivalent iron are especially suitable because
of the absence of orbital currents. It will also
prove interesting' to investigate the scattering
from paramagnetic metals. Susceptibility data
are here difficult to interpret because of the
erratic temperature dependence which may well
be connected with a large spin coupling in these
magnetically concentrated materials. This spin
coupling will in the antiferromagnetic case
operate to quench the ionic spins in the presence
of an external magnetic field. After one has deter-
mined the general effect of spin coupling with the
aid of observations on ions of known magnetic
structure, the neutron scattering from metals
should present information as to the actual ionic
moment and hence, the ionic state in the metal.

We have already pointed out that the presence
of spin coupling forces could give rise to marked
phenomena if the scattering by ferromagnets is
observed above and below the Curie point. If the
energy changes should really turn out to be of
the order of magnitude of the exchange integral,
then we would expect that the scattering above
the Curie point is practically absent on account
of the large inelastic form factor. An experiment
of such a kind should give us information similar
to that obtained from observations on the total
cross sections of paramagnetic salts.


