
LETTERS To THE EDITOR

Nuclear Excitation of Indium with Alpha-Particles

It has been found that indium bombarded with neu-
trons, ' protons, 2 or x-rays' becomes beta-radioactive and
that this activity is due to In"'* which forms a metastable
state and decays with a half-life period of 4.1 hours.

Barnes and Aradine' also tried to produce this excitation
with 8,5 Mev alpha-particles but did not observe the 4.1-
hour period.

Since we have 16 Mev alpha-particles available from our
cyclotron, we have investigated this process again. After
bombardment with about 0.03@A for periods of 30 to 90
minutes the 4-hour period was found with either the
multiple counter' described recently, or a Dow metal
counter of 0.004-inch wall thickness. ' By exposing two
identical layers of indium, one behind the other, it was
found that the activity is not due to neutrons or x-rays,
since only the piece in front directly exposed to the beam
becomes active. Traces of antimony and tin were added to a
a solution of activated indium and after chemical separa-
tion the 4-hour period was found with the indium pre-
cipitate. The number of counts is comparable with the
intensity reported by other observers for the nuclear
excitation process. Samples of indium obtained from Hilger
and from the Indium Corporation of America gave the
same results: we conclude therefore that impurities cannot
be responsible for this activity.

In the Wilson chamber six hours after exposure only
soft electrons can be observed. These electrons are ab-
sorbed in aluminum of approximately the thickness as
reported by others. '

Besides the 4-hour period other weak activities of about
one hour and a half day have been found which are being
investigated now. Also a short period of about 5 minutes
(due to a positron-emitter as shown by cloud chamber
experiments) has been found. This period goes with the
antimony-tin precipitate, and since only stable tin isotopes
can be formed, it should be due to antimony.

It seems, therefore, that the nuclear excitation of In"5
can also be produced by an (ot., n) process.
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Vibration-Rotation Energies in the Tetrahedrally
Symmetric XF4 Type of Molecule

The complete quantum-mechanical Hamiltonian for the
oscillating-rotating XY4 type molecule has been derived
perfectly generally to second order of approximation and
may be written H=Hp+Hl+H2. In Hp are contained the
energy of a spherical top, I'/2A p, I' being the total angular
momentum operator and Ap the equilibrium value of the

moment of inertia, and the energies
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of the molecule oscillating in its nine modes. Hl contains
the first-order centrifugal expansion terms, the potential
energy terms cubic in the coordinates, and in particular
the Coriolis interaction terms (p I' +p„I'~+p-I' )/A p,
the p are components along the axes of the molecule of the
angular momentum arising from the oscillations and con-
sist essentially of a sum of terms of the type

g;; being the modulus of the internal angular momentum
vector. For the frequency v2, $2=0 and for v3 and v4 the
relation &3+&4———,

' is known to hold. H2 contains the
second-order centrifugal expansion terms, second-order
Coriolis terms, terms quadratic in p and quartic terms of
the potential energy, The zeroth-order wave equation is at
once soluble and of the terms in Hl only the Coriolis inter-
action terms where v; = v, give first-order contributions to
the energy. It is therefore convenient to transform H by a
contact transformation, SHS ' into Hp+Hl'+H2', so that
to second approximation Hl' contains only the Coriolis
interaction terms where v; = v;. This transformation
facilitates the determination of the second-order energy
corrections.

It has been possible to find linear combinations of' the
zeroth-order eigenfunctions such that the matrix of Hi' will
be diagonal, for the states vl, v2, v3, v4, 2v3, 2v4, vl+v3,
vl+v4, v2+v3, v2+v4, and v3+v4. For the state v3 (and v4)

these combinations were found to be identical with those of
Jahn' which lead to the eigenvalues of Hl'. —(J—1)$3A /+ p,
—$352/A p and J&3A2/A p. For . the states v2+ v3, 4 and
vl+v3, 4 the eigenfunctions are respectively products of
the functions

v7 =1 & ev =0

and q(@9=1) times the eigenfunctions of v3 and v4 and
lead to the same eigenvalues of Hl'. The selection rules
for J are the same as those found by earlier investigators.

For 'v3+v4 wave functions have been derived which
give the matrix of Hl as a step matrix, consisting of two
single steps, two double steps and one triple step. The
eigenvalues for this case are

J(0 +0 )(&2/~ p), —(J—1)(0 +0 )(&2/~ p),
—,
' I(J—1)(g3+g4) ~L(J+1)2(t 3 f4) +4/3/4 j~I Q /A p)—l{(J- ) (&3+&4)~LJ'(|-3-r4)'+4&3&43 II'/~p

and those given by the cubic equation
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where 8'=el/Ap and k=h/2~. The selection rules are


