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Some properties of the light nuclei of the type na~1 have been calculated on the basis of the
a-particle model. By means of this description, spins and magnetic moments of the same nuclei
are calculated here. The results for the magnetic moments of many of the nuclei are unde-
termined within a certain range of possible values since the relative order of magnitude of the
spin-orbit coupling and the separation of rotational levels is unknown. This ambiguity does not
appear in the Hartree model, so that the magnetic moments as calculated by the two models are.
somewhat diferent. The most notable difference occurs for the spins of C", N", which have not
yet been measured; the Hartree model predicts a spin of -', for them whereas the n-model yields a
spin of 1-,'. The a-model appears to give slightly better agreement for those magnetic moments
that have been measured.

INTRODUCTION

~HE a-particle model' has been successful
in explaining many qualitative features of

light nuclei. It has recently' been applied with
some success to nuclei that contain cx-particles

plus or minus a neutron or proton. However,
there is no reason to claim that the n-particle
model gives an exact, or even an accurate, de-
scription of the structure of light nuclei. The
description given by the Hartree model, which is
more difficult to apply, is certainly more funda-
mental since it takes the (unknown) forces be-
tween individual particles into account explicitly.

In order to determine which model is closer to
the truth, it is necessary to calculate with both
and to compare the results with experiment.
Total angular momenta (spins) and magnetic
moments of light nuclei in their ground states
have been calculated' on the basis of the Hartree
model. It is the purpose of this paper to find what
differences, if any, arise when the same properties
are calculated by means of the a-particle model.
This calculation has already been made4 for Li7,

but will be repeated here for completeness.
It has already been pointed out that the

saturated systems which contain an integral
number of O.-particles have zero angular mo-
mentum and magnetic moment in the ground

~ J. H. Bartlett, Jr. , Nature 130, 165 (1932); W. Wefel-
meier, Zeits. f. Physik 10/, 332 (1937);J.A. Wheeler, Phys.
Rev. 52, 1083 (1937);C. F.von Weizsacker, Naturwiss. 20,
209, 225 (1938).' L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938).' M. E. Rose and H. A. Bethe, Phys. Rev. 51, 205 (1937).

4 H. Bethe, Phys. Rev. 53, 842 (1938).

state. The interest here will be in the systems
which contain an added or subtracted particle.
Since this model is essentially molecular, the
notation used will follow that of molecular
spectroscopy as closely as possible.

1. GENERAL METHOD

The proper functions, Plr, q of the orbital-
rotational levels of the nuclei considered here
have been determined by Hafstad and Teller.
Since the systems are spherical or symmetrical
tops, they are characterized by at most three
quantum numbers X, the rotational angular
momentum; m, its projection on the space-fixed
s axis; and A. , its projection on the symmetry
axis of the body, called the g axis of the body-
fixed coordinate system.

Were there no spin, the characterization of
the levels would be complete. However, an added
or subtracted. particle introduces a spin of -'„

which means that X and m are no longer true
quantum numbers but that the levels must be
described by a linear combination of products of
spin and rotational wave functions. These states
will always be characterized by a total angular
momentum J=X~-'„and by 3f, the projection
of J on the space-fixed s axis.

A state corresponding to a given value of 3f
includes those rotational states for which
m=M+-,'; the mixing of these m values is de-
termined by the symmetry of the system and is

' The notation used here differs from that used in
reference 2 in that the J, X there become E, A here,
respectively.
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therefore completely independent of the spin-
orbit interaction.

A fixed value of J may arise from two E
values, X=J+-,' and X=J——,'. The way in
which these two states mix is determined by the
spin-orbit interaction. This interaction also de-
termines which of the two (2J+1)-fold degener-
ate levels, J=X+-'„J=E—-'„has the lower
energy. The J value, Jo, for the lowest energy is
the "spin" of the nucleus.

If y„o-=' ~-'„ is the spin proper-function for
which 0. is the projection of the spin on the space-
fixed s axis, the above linear combination may
be written as

+M, J=K+2 — p }CK, m, ~/K, m, 2'po
m+0=M

+CEiy1, m, rr4'K.+1, m, A&Pa }

According to the above, for a given value of X,
the ratios of the CK, , to each other are de-
termined by the symmetry, but the ratios of the
CK, , to the CK+1. . .depend on the spin-orbit
coupling. It happens that, in the cases considered,
A values are not mixed, as is indicated by the
summation indices.

The following particular cases will occur:

a neutron or proton, and may be calculated
immediately as

Jp+k

g. Z Z (CK, -, .)'~
K'=Jp—~s m, +a=M

(3a)

In order to calculate the contribution due to
rotation, the gyromagnetic ratio of magnetic to
angular momentum for rotation of the system
must be determined in the body-fixed &, g, I axes.
If the extra particle or hole is assumed, in the
average, to be distributed uniformly over the
system (see Section 4), the values of gt and g„are
completely determined and g~

——g„=ratio of total
charge to total mass. However, the angular
momentum about the g axis is sometimes com-
posed additively of motion of the system as a
whole and of orbital motion of the extra particle
with respect to the system. Since the g factor is
different for the two motions, gg will depend on
this distribution of angular momentum and will
in general be different from gi.

If we choose to write the Landh factor, g|, as

(gr —gp)+gp the last term and the $, ot components
of the magnetic moment give the simple con-
tribution

+04'0, 0 agj+&1[V a4'1, 0, 11P1'
—v'-'4'1. 1. 0 v'-1 3 (»)

Jp+]
gr P P (CK. „..)'m,

K=Jp—-', m+o=M
(3b)

Normalization of the wave functions requires
that

g 2+g ~= f; $ ~+$22= $, (2)

Knowledge of the eigenfunctions makes it
possible to calculate the average value of the s
component of the magnetic moment in that
ground state of the system for which M= Jp (Jp
is the angular momentum in the ground state):

Po= (+Jo, &0', Iao+Jo, Jo).

p, is additively composed of the moment due to
the spin of the added or subtracted particle and
of that due to the rotation of the system as a
whole. Of these contributions, the first is con-
nected to the spin with a fixed proportionality
factor g„depending on whether the particle is

+11, lo I 14'1, 1, 2011+I2[1/Q3 4'2, 1, 0021

—2/+5 $2, 2 apo 1]. (1b)

since the three together transform from one co-
ordinate system to the other simply as a constant
(gp) times the angular momentum.

For the calculation of the contribution due to
gt

—
g~, the direction cosine between the body-

fixed g axis and space-fixed s axis must be used.
These matrices have been calculated' for the
asymmetrical top; they have elements referring
to the transition X to %~1 as well as elements
diagonal in X, but they are completely diagonal
in m, A. If (X, m, A~D, r~A, ns, E') be an element
of these matrix direction cosines, the contribution
due to (gr —

gp) is:

(CK. . .) (CK, ,)
K, K', m+a=M

A(E', m, A
~
D,r ~

A, nl, X') (gr —g$). (3c)

' H. B. G. Casimir, Zeits. f. Physik 59, 623 (1930). For
the table of direction cosines in the notation used here, see
G. Placzek and E. Teller, Zeits. f. Physik 81, 209 (1933).
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In particular, the following elements of the
direction cosine matrix will be used

(1, 1, 1ID,„I1,1, 1) =-,',
(2, 1, 1

I
D, r I 1, 1, 2) =-,',

(2, 2, 1
I
D, r I 1, 2, 2) =-,',

(1, 1, 1
I
D.rI 1, 1,. 2) = (2, 1, 1

I
D, rI 1, 1, 1)

=k(5)'

(4)

and for 3f= Jo ——~, 4=1:
~ = -'g {bi'- Sb~' }

+at {lb~'+kb2' —5(3) 'b~b2}

+gr {2bg'+3/10b2'+ ', (3) 'b&b—2} . (Sb)

2. SPIN-ORBIT INTERAcTIQN

Although the spin-orbit coupling energy arises
from both Larmor and Thomas precession, it has
been pointed out' that, in nuclei, the Larmor
term may be neglected as compared to the
Thomas term since the Coulomb forces are much
smaller than the nuclear forces. The interaction
energy is therefores V=(a)&v/2c'Sk), where a
is the acceleration of a particle with spin S and
velocity v relative to the n-particles that give
rise to a. The acceleration a is the resultant of the
acceleration due to the field of the a-particles
plus the Coriolis acceleration, ' and v is the sum
of the body-fixed velocity of the neutron (proton)
and the velocity of the neutron with respect
to the O.-particles due to rotation of the entire
system. If the spin-orbit coupling is expressed in
terms of these quantities, it takes the form
U= —n(Lo S) —P(Lg S), n, P)0, where Lo is the
orbital angular momentum of the neutron (pro-
ton) relative to the n-particles, and Lg is the ro-
tational angular momentum of the complete
system.

The angular momenta for the rotational states
of the nuclei can be taken directly from the

7 D. R. Inglis, Phys. Rev. 50, 783 (1936).
See D. R. Inglis, Phys. Rev. 50, 784 (1936).

.'Accelerations of the order of magnitude of the cen-
trifugal terms will be neglected, since they depend on the
square of the rotational angular momentum.

Equations (1 a and b), (3 a, b, c) and (4) give
«r ~=Jo=-'„A= 1:

u= I.=la.{«' ln —'}+l~ '(g~+gr) (»)

results of Hafstad and Teller however, since
they are different for different systems, the form
of the spin-orbit interactions will be different.
Therefore, for the calculation of the ground
states of the nuclei, each system will be con-
sidered separately; the order in which they are
considered will simply be that of complication.

3. GRQUND STATEs

Q 17 F I 7

The system consists of four n-particles at the
vertices of a tetrahedron plus a particle with a
spherical node through the a-particles. The
ground state therefore arises from X=0 and has
an angular momentum equal to the spin of the
added particle; thus Jo ——2. The magnetic mo-
ment is given by the magnetic moment of the
added particle.

C", N") A=o) x=1"
The three n-particles form an equilateral tri-

angle, and the added particle has a node in the
plane of this triangle so it can have no orbital
angular momentum in the body-fixed system.
The angular momentum is then due only to
rotation of the system as a whole. This yields the
interaction V= —P(K S), P)0.

The usual angular momentum matrices give
the energy matrix:

—(K, m, o
I UI ",m', K')

=p(K, m, oI Q KS;I o', m', K')
j=s, g, z

=Ps ~ P(K, mIK; Im', K)(oI S;I o')
1

=polr~' {', ((K+m) (-K —m+1)) lb

+ ', ((K m)(-K+m—+1))ib„+,"'b. &"

+mo8„"'b, '}.
The characteristic values are: E=P for J= -'„

8= —-', P for J=1-', arising from K= 1; 8=1 P2
for J=1-,', Z= —P for J=2-,' arising from %=2,
etc. The state of lowest energy" therefore has
Jo = 1 2 and, since the energy is diagonal in X,
b2=0, b& 1(Eq. (2)). ——

~'The angular momenta given here and in the following
correspond to the lowest rotational states as given in
reference 2.

» This assumes that the separation between rotational
levels is of the same order of magnitude of, or greater than,
the spin-orbit interaction, so that rotational levels cannot
be made to cross by this interaction.
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Li', Be'; A =0, %=1
In this case, the nuclei lack one neutron or

proton of being tv o complete cx-particles. This
lack of a neutron or proton may be considered
as an added neutron or proton "hole, "where the
hole is placed in the state from which the sub-
tracted particle has been taken. The hole has a
node between the two a-particles so that there
is no body-fixed orbital angular momentum. In
the complete system, there are then three neu-
trons (protons) with body-fixed orbital angular
momentum equal to zero. Two of these particles
are in the same state with antiparallel spin and
give no contribution to the spin-orbit coupling
energy. The third is coupled to rotation of
the complete system since there is no body-
fixed orbital motion. The interaction is again
V= —P(X S), P)0 so that the ground state
has Jp ——1—'„b2——0, bI ——1.

NI5) 0"' X=1
The system consists of four n-particles at the

vertices of a tetrahedron plus a neutron or proton
hole. The nucleus is then a spherical top and has
no preferred axis; thus the angular momentum
may be quantized along any body-fixed axis, but
the rotational proper functions are degenerate in
this quantum number, A.

Just as in the above case, there is one particle
in a state of unsaturated spin which is entirely
responsible for the interaction energy. However,
the unsaturated particle moves relative to the
n-particles and therefore gives rise to an orbital
angular momentum which combines with rota-
tion of the system as a whole to form the total
angular momentum. Without a very detailed
treatment, the question of how the total angular
momentum is distributed between these two
cannot be settled. It will be assumed that the two
angular momenta contribute to the total angular
momentum in the ratio 0/(1 —0) where 0~& 8~& 1.

There are now two contributions to the energy;
one due to rotation; Vs= —p(X S)(1—0), and
the other arising from orbital motion, Vp

= ~a(X S)8. In order to determine the sign of
Up, it is necessary to consider the wave function
of the hole in a little more detail.

Let f~, q(k) be one of the possible orbital wave
functions of the kth neutron or proton. Since a
rotation by 2s./3 about an axis through one

n-particle and perpendicular to the plane of the
other three permutes the three n-particles, these
orbital functions must form a representation of
this rotation. Therefore, under this rotation of
A&o= 2m/3, the P~, q(k) must transform like
exp (iX&o); X= 0, 1, —1. The fourth function, Ppp,

will be symmetric under all covering operations
of the tetrahedron.

To get the lowest energy for the system, the
hole is placed in a state of ~X~ =1. Therefore the
proper functions of the system may be taken to be

+= 2 (—1)P&0»(1)~(1)Ao(2) P(2)
P

X4 io(3)~(3)4 io(4) p(4) A-&, (3, )~(3)

(~(&)
X4'1, —x(6)p(6) p, x(~)

P(f)

where P is the permutation operating on par-
ticles 1 to 7 and n and P are the usual spin wave
functions.

If the entire system is rotated by 2~/3 about
the threefold axis and the neutrons (protons) by
—2~/3 about the same axis, the proper functions
of the complete system should remain unchanged
since the o,-particles form an Einstein-Bose
system. This rotation multiplies the neutron
(proton) proper function by exp 2m. iX/3 and the
rotational functions by exp 2~iX/3, where A is the
projection of X on the axis of rotation. The com-
plete function is multiplied by exp 2m'(A+X)/3
which must be unity, and hence A = —) . The
only particle with unsaturated spin, that is, the
only one that contributes to the spin-orbit
energy, is in the state P&, z. For this particle,
the projection of /, theorbital angular momentum,
on the above threefold axis of symmetry is pro-
portional to ). Since the interaction energy is
proportional to —(I S), the equation A= —X

indicates that the energy Up is given by Vp
= n(X S)8, n )0;

The total interaction then becomes V= Up

+ Vs=(E ~ S)[u9—p(1 —0)g=y(X S). The sign
of y is determined by the ratio of rotational to
orbital motion with y~~0 for 8/(1 —8) ~~p/a,
respectively.

The quantity p may be assumed to be small
as compared to o., since it gives the contribution
to the energy due to rotation of the complete
system, which corresponds to a much smaller
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velocity than that of the orbital motion of the
particle. Thus 0/(1 —0) is probably greater than
P/o. and y)0. According to the section on C",
N" the characteristic values of the interaction
energy would then be E= —y for J=—', and
E= ~y for J=1-', arising from X=1. Thus the
ground state would correspond to Jp=-,'and,
since X values are not mixed, ap = 0, ai = 1

(Eq (2)).
For p &0, the situation is exactly the same as

for C" etc. , and Jp ——1-,', b2 ——0, bi = 1.

Be', B', A. =l, %=1
In this system, the proton or neutron has a

node through the two n-particles; this corre-
sponds to an angular momentum, 5=1, about
the body-fixed g axis. Therefore the greater part
of the interaction energy is (since a»P; see the
section on N' 0 ') V= —o.(A S), n)0.

In order to calculate this energy matrix, the
spin vector, S, with components S„S„,S, in

space must be projected on the body-fixed t axis

by means of the direction cosines D (see Section
1). This projection, Sr, is given by

Sr —— Q D)S;,
7=&~ W~

which yields

(A S) =A.Sr ——A+Dr;S;

(E m, A, o
~

(A S)
~

o', A', m', E')

=4'~E(E, m, ~~Dr;~~, m', E')(~~S;I ~'),
7

since D~; is diagonal in A and 0- and S; is diagonal
in E, m, A. The (o. ~S;~o.') are the usual spin
matrices and the matrix elements of D~; may be
obtained from the table of direction cosines. '
From these and the fact that the energy must be
Hermitian,

(E, m, A, o.
~
(h. S)

~

o ', A, m', E+1)
= (E+1,m', X', o'

~
(X S)

~

o, X, m, E)
A[(E 4+1)(X+A+1)]l—
(E+1)[(2E'+1)(2E+3)]'*

X {-,'[(E—m j1)(E—m+2)]*'8„,"'8

——,
' [(E+m+ 1)(E+m+2)]lb„+g '8

+o[(E +m1)(E+ +m1)]lb "'6 —"}

(E, m, 'A, o.
~

(A. S)
~

o ', h. , m', E)

{-,' [(E'+m) (E—m+1)]lb„g"'8.„g"
E(E+1)

+ o [(E—m) (K+m+1)]l4+,"'8, ,"
+om8 "'8,"}.

In accordance with Section 1, the energy
matrix is to be transformed in such a way that it
is labeled by J, M and X values. J and 3f values
and those values of E for which E/ J&-,' are not
mixed, therefore the matrix will split up into
two-dimensional blocks corresponding to fixed
values of J, 3f and to X=J+-', . In particular if
VKK are the matrix elements of V corresponding
to X=J——,', E'= J+2, then for J=1—'„3II=1-', ;

1V»= —4~) V22=4~) V12= V21= ——,'3 ~.
In order to transform the energy matrix into

diagonal form, it is necessary to calculate the a' s
and b's of Eqs. (1) a,nd (2). The proper functions
of the system may be written as 0' =bzgz+ bz Pz
If II is the complete Hamiltonian of the system,
and if IX=Ii, cx(A S), H, has—the proper values

8», Ez for E=I—-'„E'=I+-', , and the b's (or
the a' s) may be calculated by substituting
Incog»=&»g», Hog« =Z» Pz and 4'=&zP»
+bz Pz in the equation H@=E+. Multiplica-
tion by Pz, fz, respectively, and integration
yields:

with

(Vzz 8)bz+ V» —«b» =0,

Vz»'f z+ ( Vz'z' ~ &) ~»'

e =EK—EK, 6=E—EK.

(6)

The ground state has Jp ——1-'„ for which the
energy is given by

26 2 [f. (6 A)o!)2

The coefficients in Eq. (1b) for this state
depend on the ratio o/n, and, since this ratio is
not known, the calculations will be made for the
extreme cases —e))A, —6((A.

For —e»n (set a=0), 8= —-', e ——', ~o} =0 since
c is negative, and, by Eqs. (6), b2 ——0. According

The condition that bK, bK be nontrivial
determines the energy correction b. This is

VKK —6 UK K =0
Vzz —

& —~~
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to Eq. (2), the normalized wave functions are
given by bI = i.

Similarly, Eqs. (6) and (8) may be solved for
a» —e with the result that bI ——-', 3', b2 ——-,'.
B», C» A=i, @=i

These nuclei are assumed to have three n-
particles at the vertices of an equilateral triangle
and a hole with a nodal plane intersecting the
axis of figure. One particle in a state of unsatu-
rated spin is again responsible for the spin-orbit
interaction energy. Just as in the case of N", 0"
the angular momentum is assumed to be divided
between orbital motion in the body-fixed system
and rotation of the system as a whole in the ratio
8/(1 —8), 0 ~& 8 ~& 1. There are then the two
contributions to the energy Vs ———P(Z S) (1—8)
and Vp ——~a(A S)8. The difference between the
Uo of N", 0"and the Uo here is due to the fact
that there is now a definite axis in the body, and
the hole has its nodal plane through this axis,
that is, its angular momentum about the axis.
The sign of Uo may be determined just as in the
case of N", 0"with the simplification that only
rotations about the axis of symmetry need be
considered. The result is again Vp ——n(A. S)8. The
total interaction is

V= Vp+ Vs =n(A' S)8 P(X' S) (1 —8).

The second term of the interaction energy has
been calculated for C", N" (p is to be replaced by
P(1 —8)) and it does not mix X values. Therefore
the mixing of X= Jo+ ~ with X= Jo —

2 will

depend entirely on the first term, which has been
treated for Be', B' (n to be replaced by —a8).

There are again two possibilities for the lowest
state; if the term cx8(A S) is the more important
term, Jp=-'„and if P(E.S)(1—8) —is the pre-
dominant term, Jo ——1-,' for the ground state.
These energies may be calculated as for Be', B';
C", N", respectively, and the result is that the
angular momentum for the ground state is Jo ——-,'
or 1~~, according as 8&2P/(2P+n) or 8&2P/
(2P+ a), respectively.

If 8&2p/(2p+n), Jp ——1-', and the b's in Eq.
(1b) must be calculated as in Eqs. (6) and (7).
When ( —a8) is substituted for cp in Eq. (8):

8= pp p[p +(p+Q8)cx85~,

where e includes not only the separation of

rotational levels but also the correction due to
p(1 —8)(X S) or

p = —2h'/I —2P(1 —8).

Eqs. (6) give:

(n8) ' ne —45
6I —4 b2-——— bI.

(n8) ' 2—u88+48' 3l~8

It seems reasonable to assume that the value of
0 appearing here is approximately equal to the 0

of N", 0". It is experimentally known" that
Jp ———, for N"; this is possible only if 8)P/n. It is
still possible, however, for the total angular
momentum of 8" C" to be 1-', if 0 satisfies the
condition P/n&8&2P/(2P+n). Since P/n is
small, the limits are narrow, and it may be
assumed that 8= (4/3) p/u (for convenience) with
very little error. A value of 0 of this order of
magnitude is consistent with the fact that the
exchange forces for a hole are small, ' and there-
fore correspond to a small orbital velocity.

It is again necessary to know the ratio p/n.
For —p))u, b~=1, bp=0; and for —p=P&&~,
b~=2/7l, bp= —(3/7)1. The actual values should
lie between these two estimates which are valid
for P/n not much greater than 0.1.

For 8)2P/(2P+n), Jp ———', and the coefficients
in Eq. (1a) become up=0, ay=1.

4. MAGNETIC MOMENTS

For the calculation of the magnetic moments,
all that is needed now are the g factors. When
these are given, they may be substituted in
Eqs. (Sa) or (Sb) after applying the results of
Section 3.

In order to calculate the g factors due to
rotation, it will be assumed for simplicity that
the added particle or hole is uniformly distributed
over the system of a-particles with the result
that the g factor for pure rotation of the system
is given by the ratio of total charge to total mass.
The g factor for orbital motion is one for a proton
and zero for a neutron, and that for spin is given
by twice the magnetic moment p, or p„as the
case may be. The magnetic moments are given in
the adjoining table in units of nuclear magnetons,
pp = eh/2Mpc (cVp ——mass of proton), but several
require special attention.
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The identification of the 0 of N", 0"with that
of B" C" ga.ve e=(4/3)(P/n) if Jo ——-', and 1', for
N" 0" and B" C"' respectively. Since p/n is
small, 8 has been assumed to be zero in giving the
magnetic moments for this case. The g factors of
these four nuclei depend on the distribution of
angular momentum between orbital and rota-
tional motion and are given by:

N": at=at=e+(7/~3)(I —8),o":ar =at= (8/») (I 0)—
B":ar=t/+(5/~I)(I —t/), a~=5/II,
C":ar = (6/I I)(I—~), ar = 6/& I

For B",C" with Jp= 1~, the magnetic moments
have been listed for all e between —a=p and
—e))u.

The magnetic moments of Be', B' are given in
Table I for n))

~
c ~, n((~ e ~. The n-particle model

then predicts that the actual magnetic moments
should lie between these two extremes, and the
experimental values may be used to determine
the ratio e/n.

5. F" NE"

The considerations of Hafstad and Teller did
not include the nuclei F", Ne"; since the mag-
netic moment of F" has been measured, "it is of
interest to extend the calculations to these nuclei,
which consist of five n-particles minus a proton

"J.M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr. , J. R.
Zacharias, Bull. Am. Phys. Soc. 13, 7, 10 (1938).

and neutron, respectively. The arrangement of
the five n-particles is such that three are at the
vertices of an equilateral triangle and the other
two are placed one above and the other below the
plane of the triangle. In order to set up the
invariant wave functions of the hole, it is
necessary to consider rotations of 2s./3 about the
axis connecting the two a-particles and reHection
in the plane of the three o.-particles.

If the three a-particles in the plane are labeled
1, 2, 3 and the other two, 4, 5, and if the proper
function of the hole on the ith o.-particle is y;, the
orbitals for a given neutron (proton) may be
written as

0 1+Pm+ F3'

IP2 pl+ s2 xi/3 p~+ s—2 i/spy

e2 w i / 3y &+s 2 w i / 3
/v 2

—+y g

4'4= 04+%5'

p5 = p4 —
// ~r.

Since Pi and Pi are invariant under rotation by
2s./3 about the axis of symmetry and under
reflection in the plane of symmetry, any linear
combination of them is invariant under these
operations. They will thus be mixed by the true
Hamiltonian to form two states, one with no
nodes and the other with two nodal planes, one
above and one below the plane of symmetry.
Since the other orbitals have one nodal plane and
the hole is to be put into the state of highest

TABLE I. SPins and magnetic moments of the light nuclei by the n-particle model. The last column contains the results of
the Hartree model for the magnetic moments and for those values of Jp (in parentheses) which are diferent in the two models.
All magnetic moments are givenin units of nuclear magnetons. The results of the Hartree model are taken from Rose and Bethe,
reference 3, with the numerical values corrected to y =Z.78, p,„=—1.75.

NUCLEUS

Li'
Be',
Be'
B'
Bll
Bll
CI1
Cll
Ci3
N13
N15
Nl~
Q15
Q15
Ql 7

F17

F19
Nelo

Jo

1.,'-
1
'2

1 1

1
2

1-,'
1
2

12
1
2
1
2
1
2
1
2
1
2

MAGNETIc MQMIaNT

Ijtr+ 3/7
p„+4/7

p„+2/9 &p & (3/5) p„+1/3
(3/5) p, +0.87 &p &p, +7/9—(1/3) p + (2/33) (38+5)
(1/3)~.+0.57 &/tI, &&.+5/11.—(1/3)p.+ (2/11) (2 —~)
I „+6/11 &p, &(1/3)~„+0.68

p„+6/13
p +7/13
y +7/15—(1/3) p + (2/45) (8~+7)
p„+8/15—(1/3) p„+(16/45) (1—0)

Pv
P7r

Pv

a-MODEL

3.21—1.18—1.53 &9& —0.7
2.55 &I,&3.56—0.44 (8=1)
1.5 &I, &3.2 (8=0)

o.77 (e=1)—1.2 &p, &0.1 (8=0)—1.29
3.32
3.25—0.62 (0=0)—1.22
0.94 (e=0)—1.75
2.78
2 ~ 78—1 ~ 75

HARTREE MODEL

3.08—1.05—1.40
3.43

3.43

—1.40
1.05 (Jp=,'-)—o.73 (J.= —,')

—0.26

0.59
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energy, which is the one with the greatest number
of nodes, it will be in the second of the above
mixed states. This state is nondegenerate and the
orbital remains unchanged under a rotation
around the figure axis. Since the total eigen-
function must be symmetric under all those
rotations which correspond to an exchange of
n-particles, it is seen that the state A=O, and
therefore X=O is allowed. Therefore Jo=-', and:

F":p= p„,
Ne": p=p„.

The experiments that have been made" on F"
give Jo ——-'„but the magnetic moment is some-
what smaller than predicted. In order to explain
this by the pure n-particle model, a more detailed
account must be taken of the spin-orbit inter-
action. The interaction that has been used. here
does not mix the state with angular momentum
J=—', arising from X=O with the state J=-',
which arises from the higher rotational level
%=1. However, if the centrifugal terms which
have been neglected' are taken into account,
these two states of the same symmetry may be
mixed. Since the state J=—,

' arising from %=1
has a negative magnetic moment (just as for
N'~, B"), any slight mixing will decrease the
magnetic moment in the ground state.

CQNcLUs?oN

The numerical results in the table of mag-
netic moments are given for p = 2.78 " and
p„= —1.75."The results of the Hartree model as
given by Rose and Bethe'4 are given in the last

~'This value is based on the mixing of S and D states in
the deuteron as calculated by J. Schwinger, and makes use
of the magnetic moments of the proton and deuteron as
given in reference 12. The author wishes to express his
appreciation to J. Schwinger for giving him this result
before publication.

'4See reference 3. Rose and Bethe assumed p =2.85,
p„= —2.0; however, the values given in Table II have been
corrected to p =2.78, y„= —1.75 for comparison.

column of the table for comparison. The Hartree
model gives the same angular momenta and
approximately the same magnetic moments for
all nuclei except C'3, N". Rose and Bethe give
different angular momenta in the ground state
for these nuclei with the result that the magnetic
moments are much different. However, in the
n-model, the state J= 2 is very close to the ground
state, Jo——1-„since the separation is of the order
of magnitude of P.

It has already been pointed out4 that the
a-particle value of the magnetic moment of Li'
is somewhat better than that given by the
Hartree model. The two models agree with each
other and with experiment in the case of F".The
value of the spin of N" also is in agreement with
experiment, ' ~ " but the magnetic moment has
not yet been measured.

The results of the cx-model for B",Be' may be
made to fit a large range of possible values by a
suitable choice of 8 and n/e, whereas the results
given for the Hartree model are unambiguous.
However, it must be pointed out that the
calculations' by the Hartree model do not take
into account the mixing of I' and S states due to
spin-orbit coupling. This has been considered
here and is completely responsible for the
arbitrariness of the result.

The author wishes to thank Professor E. Teller
for the suggestion of the problem and both
Professor Teller and Dr. M. Goeppert-Mayer for
many very valuable discussions.

Note addedin proof. The recent rn—easurement
of the magnetic moment of Be' by Kusch, Mill-
man and Rabi" comes well within the range of
possible values given by the n-model if the spin
is assumed to be 1-,'.
"R. W. Wood and G. H. Dieke, J. Chem. Phys. 6, 908

(1938).
~' On the assumption that 0)P/a, see the section on N".
'7 P. Kusch, S. Millman and I. I. Rabi, Phys. Rev. 55,

666 (1939).


