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Stark-Effect Broadening of Hydrogen Lines

I. Single Encounters
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The profile of a hydrogen emission line is investigated on the assumption that the hydrogen
atom is perturbed by passing ions. Provided that the ions do not approach to within ten times
the average atomic radius the electric field of the ion may be assumed homogeneous and the
matrix elements calculated for the usual Stark effect may be used. For a collision at low velocity
or with close approach, the adiabatic approximation is valid, and the profile depends solely on
the total phase shift produced by the collision. The Fourier analysis of the wave train may be
carried through exactly for certain values of this phase shift. Nonadiabatic transitions are
examined for the lowest lines, and an exact solution given for this case also. For higher lines a
modified Born approximation is used. The Weisskopf collision broadening formula is shown
to hold only in certain cases, and the dispersion curve smearing function for impact broadening
is shown to lead in some instances to incorrect results.

HE theory of pressure broadening has led
to rigorous solutions only for very slow

encounters. In this limiting case the distribution
over frequency of the intensity of an emission
line, known as the profile of the line, is given
simply by the statistical distribution of the per-
turbing potential produced by the passing ions.
The analysis has been carried through by
Holtsmark' and by Margenau' for various po-
tential laws.

While this "statistical broadening, " following
Margenau's nomenclature, is on a rigorous theo-
retical basis, the corresponding "impact broaden-
ing" for fast particles has been less thoroughly
treated. Investigations have usually followed one
of two methods. The Weisskopf' method on the
one hand assumes that two wave trains separated
by a phase shift greater than unity' are inco-
herent, and that twice the mean time between
such encounters may be taken as the effective
damping constant. As will be shown below, this
assumption is formally incorrect for frequencies
sufficiently far removed from the line center; in
addition it neglects the effect of the more distant

* National Reseach Fellow.' J. Holtsmark, Ann. d, Physik 58, 577 (1919).
2H. Margenau, Phys. Rev. 43, 129 (1933); 44, 931

(1933); H. Margenau and W. W. Watson, Rev. Mod.
Phys. 8, 22 (1936).' V. Weisskopf, Physik. Zeits. 34, 1 (1933).

4See, however, H. Kallmann and F. London, Zeits. f.
physik. Chemic S2, 207 (1929), where m./2 is taken as the
critical phase shift.

encounters which, in the case of ionic collisions
with hydrogen atoms, may be numerically more
important. The second method involves smearing
the statistical distribution over some kind of
impact distribution. This process is legitimate
provided the impact distribution can be cor-
rectly chosen, but the dispersion curve sometimes
used may lead to quite erroneous results. The
approximations made by Lenzs restrict the
validity of his solution to the core of the line.

For the case of a hydrogen atom perturbed by
ions it is possible to give a solution for the line
profile more nearly exact than any .of the previ-
ous impact theories. In what follows three as-
sumptions will be made throughout: (1) The
matrix elements of the interaction potential be-
tween states of different total quantum number
may be neglected, and values for the other
matrix elements may be computed on the as-
surnption that the atom is in a homogeneous field
of strength Ze/r', where r is the distance from
the nucleus of the atom to the ion. (2) Each
collision, or encounter, may be assumed isolated
from all the others. (3) The mass of the colliding
particle may be taken infinitely large.

The first of these is the only really serious
restriction. This corresponds to the assumption
of a linear Stark effect, and neglects all exchange
forces, quadratic terms in the Stark effect, forces

~ W. Lenz, Zeits. f. Physik 80, 423 (1933).
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caused by polarization and the like. More
seriously, it neglects the inhomogeneity of the
Coulomb field produced by the ion. Even if R,
the distance of closest approach between the ion
and the atom, is ten times r„ the average distance
of the electron from the nucleus, the perturbing
electric force may deviate from its average value

by as much as 20 percent. The assumption of a
uniform field is scarcely valid, then, for R less
than 10 r, ; since r, equa. ls at most 3n'a/2, where
a is the radius of the first Bohr orbit, we may take

R)8.0 y10-Sn',

where n is the total quantum number.
At such distances the exchange integrals will

be very small and the exchange forces negligible.
The quadratic Stark effect is also small at such
distances. If the electric field is e/R', the ratio
of the linear shift AI & to the quadratic shift Av&

is gi.ven by

quantum number for total angular momentum.
Since I, is a definite constant for each collision
the uncertainty principle does not affect the
results.

In Section I below the adiabatic wave func-
tions are used in an analysis of the profile of a
single component of a hydrogen line when the
hydrogen atom is perturbed by a passing ion.
Deviations from the adiabatic approximation
occur for rapid encounters; these are considered
in Section II for the case of the first Lyman lines.
In Section III the unperturbed wave functions
are used in another determination of the line
profile; this corresponds to the Born approxima-
tion and, unlike the nonadiabatic analysis in
Section II, is applicable to transitions between
any two perturbed levels. Integration of the
effect of different collisions over all distances and
velocities to yield the observable profiles will be
the subject of a second paper.

24n(k2 k,)R-'

6v2 n'I 17n' 3(ki—k2) '—9m'—+19ja'

if k2 —ki is replaced by n/2 and rn and 19 are
neglected,

3R' 27 (Rq '
=—

i
—

)
)150

4a'n' 16 Er, )

if R is greater than 10 r,.
The second assumption simplifies the analysis

and is actually not restrictive, as will appear in

a second paper to be published shortly. The
third assumption neglects both the effect of the
perturbation on the motion of the ion relative
to the atom and the actual uncertainty of the
simultaneous position and motion of the ion. If
the ion is an electron, this is, of course, appreci-
able. The effect of the perturbation is clearly
negligible when the Stark shift is only a few
angstroms. For the closest encounters, however,
for which R equals 8)&10 'n', the maximum
interaction energy equals the kinetic energy of a
particle at a temperature of 1380' (n —1)/n', but
these close encounters are not frequent and do
not contribute appreciably to the observed pro-
files. As to the uncertainty principle, the results
of the analysis depend not on v and R separately
but on their product (I+-', )0/in, where I is the

A change in potential will be adiabatic and will

leave unchanged the quantum state of a system
if the change occurs sufficiently slowly. In this
case the equation for the line profile may readily
be found from the usual Dirac radiation equa-
tions as used by Weisskopf and Wigner. ' We
may consider a two-state atom with an upper
state A and a lower state 8, with energies E&(t)
and Ze(t), respectively. If H(t) is the Hamil-
tonian operator, Zz(t) and Zs(t) are given by
the solutions of the equation

~(t)0"(t) =&.(t)4.(t) (1)

where t is simply a parameter. For the case of a
hydrogen atom perturbed by a passing ion, the
eigenstates of (1) will be the usual hydrogenic
states in parabolic coordinates, rotating so that
the s axis is always pointing towards the ion.

Let a(t) denote the probability amplitude of
the state in which the electron is in A and there
are no photons present. Similarly let b, (t) denote
the corresponding amplitude of the state in

which the electron is in 8 and a quantum of
frequency v, has been emitted. If the interaction
energy between the photon and the atom is

'V. Weisskopf and E. Wigner, Zeits. f. Physik 63, 54
(~93o).
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where j&~& is the nondiagonal matrix element of
the interaction energy between the light quan-
tum and the atom.

A solution for a(t) may be assumed of the
form

a, (t) =e—lr' exp EA (r)dr, (3)

which is equivalent to the assumption that the
sum in (2a) equals —-', pki'a(t). Thus a(0) equals
unity and b„(0) must vanish. The I' used here is

twice the usual quantity, but is the only reason-
able definition in accordance with the usual

concept of a damping constant, since the proba-
bility that the electron is in A will be given by
~a(t) ~', or exp I't, from (3)—. Integrating (2b)
for b, (t), and substituting from (3) for a(t),
we find

taken as a perturbation, the usual equations
for a(t) and b, (t) become

pkda/dt =EA(t) a(t) +Q,jAsp "b,(t), (2a)

P'hdb, /dt= {Es(t)+kv,}b,(t)+jAs&a(t), (2b)

8 be Z&0 and Z», respectively, and let the un-

perturbed frequency be vAs —(EAp Esp) /k. Then
let

AA(t) = {EA(t)—EAp}/5, (Sa)

As(t) = {Es(t)—Esp}/5, (Sb)

x =2&(v —vAs).

Here x represents the distance in angular fre-

quency units from the unperturbed line center,
while A~ and A~ represent the perturbations to
the energy levels, again in angular frequency
units. We set J'(v(x)) equal to J(x) and the
square of

~
b, (~)

~

in (4) becomes in this notation,

f oo

J(x) =— e"*+l"& rd T
2' 0

T 2

Xexp —i ~g 7. —A~ 7. dr, 7
0

where the integral over all x of J(x)dx has been
normalized to unity.

When states A and 8 are hydrogenic, we have
the formula for the linear Stark effect

b (t) = pjAsv/k exp ——2mpv tP
h

Es(r)dr

t

X e ' dT exp 2~ivpT
0

z T

+— (Ee(r) EA (r) )dr—
0

The assumption of (3) may be verified by the
use of (4) in computing the sum in (2a). The sum
becomes essentially a double Fourier integral of
a(t) and hence is proportional to a(t).

The line profile J'(v) is simply
~
b, &„&( )pp~',

which gives the distribution of emitted light
quanta. It is evident from (4) that one obtains
J'(v) by squaring the absolute value of the
Fourier integral of the damped wave train whose
instantaneous frequency is {EA(t)—E&(t) }/k.
This is the same result as obtained on the
classical theory. If Ee(t) is set equa. l to zero,
J'(v) is the absolute value squared of the Fourier
transform of a(t).

The result may be put in a more convenient
notation. Let the unperturbed energies of A and

AA(t) =3hnA(kpA k~A) F/—2me, (8)

where n& is the total quantum number of the
Ath state and k2& and k» are the quantum
numbers for the pt and & coordinates, respectively;
Ii is the electric intensity. If Ii is produced by an
ion of charge Ze at a distance r(t), and if the
velocity of the ion is v, its path is a straight line,
and its distance of closest approach R is reached
at a time t0, then

F=Ze/r'(t)

r'(t) =R'+ s'(t —t,)',

g/k
DA(t) hs(t)=-

R'+s'(t —tp) '
where

g/k =35gZ/2m = 1.73gZ,

(9)

(10)

(12)

The total phase shift produced in the collision is

g —nA (kQA k 1A) ns (kps k ps) . (13)

Also we find from (11), on integrating,

f g v(T tp)—
{AA(r) hs(r) }dr= —tan —' . (14)

tp ARv R
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thus pry/SRv. If we set

8=g/ItR v, (15)
and substitute (14) into (7), we find, after
integrating by parts, using (11), and assuming
that the integral (14) taken from 0 to tp is e'ssen-

tially equal to -,'~b,

F 1 8v
J(x)=—

. i ——e *"
2pr x'+(-,'I')' R

(16)

"e'&*+2"& d T exp I i 8—tan —' v(T —tp) /R)fX
1+v'(T—tp)'/R'

-I/2The quantity 5 is of fundamental importance in
the theory and reappears throughout the analysis.
It is equal to 1/pr times the total phase shift
produced by the encounter. Since v/R is in general
much greater than —,'I', a factor exp i(x+-2, iI')t2
may be taken outside the integral in (16). Also,
unless x is comparable with F, the process of
averaging over to will remove the cross product
when the square of the absolute value is taken
in (16). If, furthermore, T is set equal to r+t2
and the lower limit of integration is extended
from —to to —~, we have

3/2 2

FIG. 1. Line profiles for single encounters. The curves
represent fg'(g) for various values of the phase shift 7l.b.
Those with odd 8 are shown by dotted lines, those with
even 8 by dashed ones; the solid line represents the statis-
tical distribution; i.e., the limiting case of infinite B. The
abscissae are in units of xjx, , where x is 27l-(v —egg) andx,„is the maximum value of x in the limiting statistical
case. The ordinates are proportional to fx2+(-,'F)2I J(x),
where J(x) is the line profile; the constant of proportional-
ity is adjusted to give equal areas under all the curves.

x the line profile is quite unaffected by the col-
lisions. This is contrary to statements that the
effect of collisions with 6 greater than some
critical value is simply to split the line into
noriinterfering parts, each with a much greater
damping constant. In the second place 5fp(0)
equals 2 sin (pr5/2), as is evident from (21) with
the substitution tan 'u = 0; or, if we average over
8, 52f22(0) equals two. Thus for sufFiciently small

$, I' is replaced by 2Q(8, f), summed over all 8

sufficiently large. If QI/ is the total number of
collisions for which 8 is greater than 1/pr, or the
phase shift is greater than unity, this gives

J(x) =Bit /prx2, (22)

which is Keisskopf's' result.
For integral values of 8, (21) may be integrated

exactly. Using the formula

exp ( i tan ' u—) = (1—iu)/(1+u')' (23)

and expanding (1—iu)', one finds

J(X) = (I'/22rX') 1+e r Pp)2V2/R2

+"e'*' exp I i5 ta—n ' vr/RI
X J dv . (17)

The (-,'I')' in the denominator of (16) has been
neglected in (17) since this latter formula is

valid only for x greater than ~F in any case.
Introducing the new variables

u=vr/R, &=xR/v, (18), (19)

and integrating (17) over tp, assuming Q(8, p)
collisions per second, we have, finally, for a
particular 8 and g,

I' Q(8, $)
~(x) = 1+ &'fp'(5)

2~x2 F +" e'"&dN

fp(E) =
(l +u2)1+pP8

+oo ei(pu —5 tan I tt)

(f) = dl.
Q

(21)

7 V. Keisskopf, reference 3. Compare also reference 4.

+
( 8(8-1)(-iu)2

There are several inferences to be drawn from X
~

1 i~u+
(20) and (21). In the first place fp($) clearly goes

2!
to zero with increasing $ and for sufficiently large
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A(5) = k'*""'&:0+~) (k)
r(1+-', S)

(23)

where Z„(P) is the usual Bessel function of the
second kind for imaginary argument. In terms of
gq($), fq(() becomes

If the integral of the first term in (24) is called
gb(P), then this auxiliary function can be inte-
grated' and

2k(l—~)~k

curves deviate markedly from the limiting curve
Sf&($) as 8 approaches infinity. This limit may
be derived directly from (21) or more simply
from the usual formula for statistical broadening.
In this case J(x) dx is proportional to the time
during which the perturbing potential A~ —A~
lies between x and x+dx, in angular frequency
units; hence J(x) is proportional to dt/dx, where
x equals glair'(t), from (11).Therefore we have,
using (10),

d 8(8 —1) d'
f~(t) =g~($) ~ ~ a~—(&)+ a~(k) (26)

d( 2! d&' dt

2g v'(t —tp)
e

bra r

where the minus signs on alternate terms go with
positive p and vice versa.

When 6 is an even positive integer 2n, (26)
reduces to

f2 ($) =2~(—1) '$e & ~F&(1 —cx, 2, 2$) (27)

when P is positive, and vanishes when P is
negative. &F&(a, b, x) is the confiuent hyper-
geometric series. When 8 is equal to one and
three, respectively, f&(&) becomes

f~(8) =2k{&~($)+&0($) I (28a)

f3($) = 3${&r(f)(—I+4()+%(k)(~3+45) I
(28b)

where again the upper signs go with positive &

and vice versa. It is evident from (21) that f q(&)

equals f&( —P).
It is readily shown that the integral of fP(&)

over $ is independent of 8. From the defining
formula (21) and from standard theorems on
Fourier transforms it follows that

l
e+GO +~ du

fj ($)d&=2~ (29)
(1+u') '

In Fig. 1 fP(g) is shown for b equal to 1, 2, 3, 4
and 6, together with the limiting case of infinite
8. The abscissae represent P/8, a quantity which
equals x/x, , where x, is g/AR'; thus x/x
is the ratio of the observed frequency shift
v —v» to the maximum frequency shift in the
limit 8~~. To preserve equal areas under each
curve, the ordinates are taken to represent
Sfb2($) Except possib. ly for fP($), none of these

' G. N. Watson, Theory of Besse/ Functions (Cambridge
University Press, 1922), Section 6.16, p. 172.

lim Sf''($) =2~(x, /x —1) 1. (30)

It will be noted that the curves for fP(g) all
fall off as P exp —2g. Thus if values of fP($)
are to be obtained from f ($), the limit in which
the statistical theory is valid, by use of a
smearing function of one sort or another, one
must use a function that falls off at least as fast
as P exp —2P if the result is to be asymptotically
correct. The dispersion curve sometimes used
does not satisfy this requirement, since this falls
off only as P '. The "block" and triangle func-
tions used by Margenau are better approxima-
tions from this standpoint.

It is also possible to determine J(x) from a
consideration of the perturbed wave functions
for the ion. ' If the perturbing potentials are
proportional to 1/r', the perturbed wave func-
tions are Bessel functions and the problem can
be handled exactly, without neglecting the effect
of the potential on the motion of the ion. In
general the method leads to the little-investigated
hypergeometric functions of the second kind
and is thus of little use. When 8/2 is an integer n,
however, the formulae simplify. If M and l are
the mass and orbital quantum number, respec-
tively, of the incident ion, and the perturbing
potential is g/r' for the upper state, and zero for

'See W. V. Houston, Phys. Rev. 54, 884 (1938). This
corresponds to his method 3 as opposed to method 2 used
above.

Since furthermore,

8'(t —to)' =r' —R' =R'(x~g~/x —1)y

we have, taking out an x ', see (20), and normal-
izing to ~' in accordance with (29),
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the lower state, J(x) is given by (20); if g is
positive (corresponding to 5 positive and the
perturbing force repulsive) f&(g) is given by

where
a

k.„(t)=~I'P,*(t) (t)dr;
8$

(36)

It is of importance to investigate the limits
within which the change of potential is adiabatic
and (20) is a valid approximation. Nonadiabatic
processes have been investigated by Giittinger"
and more rigorously by Schwinger" for the case
of a rotating magnetic field. For a passing ion the
analysis is somewhat similar. The perturbations
produced by the radiation field will be neglected,
since it is evident from (20) that the value of I'

does not affect the shape of the line provided
that x is greater than —,'F but not so great that
the collision term fP($) in (20) is negligible. Let
a, (t) be the probability amplitude of the rth
state, where as before P„(t) satisfies Eq. (1). In
the general equation

we let
i've/at=H(t) e,

+="..«)4.(~)

(33)

(34)

and find, multiplying through by P,*(t) and in-

tegrating over space,

da, E,(t)
=i u, (t)+P„k„.a„(t), (35)

dt h

"P.Guttinger, Zeits. f. Physik '73, 169 (1931)."J.Schwinger, Phys, Rev. 51, 648 (1937).

q
l('+l)

f2.(()=2K(—1) 'I 1—
E I+-,')

&&2Fi(1—~, i+32+m;2;2g/l+~), (31)

where 2Fi(a, k;c;x) is the ordinary hyper-
geometric series, in this case a terminating poly-
nomial, and where

P=xA, (t+ 2i)/2E-o, (32)

and ED is the initial or final energy of the ion for
an emission or absorption line, respectively; 5 is
defined in (15). When P is negative, f2 (&)
vanishes. For I large (31) goes over into (27).
A similar formula holds when n is negative. If
close encounters were sufficiently important it
would be possible to investigate by means of
these formulas the effect of interaction energies
large comparable with the original ionic energy
jvo

dv. is an element of volume.
A more convenient expression is available for

k„(t). Differentiation of (1) yields, after rear-
rangement,

f'BH dE, ' BP,
I& =(E (~) —H(~)) (37)( at dt ) 8$

Multiplying by P, (t), integrating, and making
use of the fact that H(t) is an Hermitian operator
and that P, is orthogonal to P„we find, for s~r,

pBH)
I

=(E (~)-E (~))k-.
E at), „

(38)

BII Ze'v
{2s,v(t —'0) —y,RI.

at r4(t)
(39)

Since the matrix of s, is diagonal for states of the
same total quantum number, only the term in

y, need be considered. Combining the formula
for E,(t),

~ss
E.(~) =-

r'(t)
(4o)

"This may be proved as follows: To preserve the nor-
malization of P, independently of t, k„must be purely
imaginary; i.e., k„*=—k„. If we take the plane q, =0
to be the plane in which the ion is moving, this plane will
be stationary, and 8P./Bt will have the same symmetry
properties with respect to reHection in this plane as p, .
Since P, is the reflection of P, in this plane, the same rela-
tion will hold between BP,/Bt and 8&,*/8t. Hence k„ is
unchanged when its complex conjugate is taken, and is
purely real. Therefore k, must vanish.

If we neglect states of different total quantum
number, k„vanishes, since P, is not a function
of the scalar electric intensity and for any rota-
tion such that the coordinate system does not
rotate about its instantaneous s, axis, where
subscripts e refer to electronic coordinates in the
perturbed atom, P, will be orthogonal to its rate
of change Bf,/Bt i2 Eq. (3.8) thus suffices to
determine all relevant k,„.

If the field intensity is again given by (9) and
(10), and the ion is assumed to be moving in the
s,y, plane, where y, =(r 2 s2)l cos y., that—part
of H which varies with time will be —s,Ze'/r'(~),
and a simple calculation shows that BH//Bt is

given by
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with (38) and (39) above, we find

VR /sr
~sr

r'(t) s„„—s„ (41)

where y,„and s„are the matrix elements of y,
and s„respectively. In formula (40) Egp has
been set equal to zero.

If now the variable m is introduced, where

Iv'(t —t 3) '+R'I dw =vRdt,

w =tan —' v(t —tp)/R

(42a)

(42b)

and if r'(t) is expressed in terms of Z, (t), from
(40), then (35) takes the form

das /sr+is„a,+P„~, a„=0,
dZO Srr —Sss

(43)

where 8„ is defined by

ti„= —Zeps „/ttvR. (44)

~11 ~44 j ~22 ~33 0 j

$12 $21 $13 ' ' ' $34 psll (45)

If 8„ is set equal to 5, (43) becomes

da, /dw+isal+ ,' (ap+a 3)-= 0, (46a)

dap/dw —-,'(ai —a4) = 0, (46b)

and similarly for a3 and a4. If a solution is
assumed of the form exp iform, the determinant of
the coefficients of the a, in (46) must vanish and
0 is given by

a=0 a(1yr')-:.
' H. Bethe, Handbuch der Physik, Vo1. 24/1, p. 297.

(47)

Note that for the Lyman lines and for all lines
with unperturbed lower states, this is the same
quantity as the S defined in (15).

The set of simultaneous first-order equations
in (43) have constant coefficients and may be
solved in any finite case. In practice y,„vanishes
except between states whose magnetic quantum
number m differs by plus or minus one. For the
first excited state of hydrogen the solution is not
complicated. If the eigenfunctions are denoted
by pp, , &.. . let the states 1plpp, lpppl, lapp —1 and
&pip be enumerated as $1, $3, tt'3 and p4, respec-
tively. Then it follows from the eigenfunctions
involved" that

It would be possible to obtain explicit ex-
pressions for the transition probabilities, but
there is no need to pursue the analysis further.
It is shown above and in the work of Houston'
and Weisskopf' that when the upper state of a
radiative transition is perturbed in any way, the
line profile is given by the absolute value squared
of the Fourier transform of the state function.
From the nature of the solution above it is
evident that there will be three components of
the lowest hydrogen line: one an unshifted line
with 0- equal to zero; the second arises from the
state function

a(t) =a(tp) exp Ii(1+2)'* tan —' v(t tp)/RI—, (48)

and the third is the complex conjugate of the
second. Comparing these results with the integral
in (16) we see that the breakdown of the adia-
batic hypothesis affects the form of the line profile
in only one way: fp($) in (20) is replaced by
f,($), where the functional form of f, ($) is still
defined by (21) and where p is taken equal to
(1+83)&—the trivial value zero in (47) may be
neglected. The relative intensities of the shifted
and the unshifted components are investigated
in Section III below, where the approximation
is made that 5 is small, but where the analysis
takes into account the effect of transitions among
the various lower states and eliminates the quan-
tities y,„.

When the potential changes rapidly with the
time it becomes convenient to assume as a first
approximation that the change in the atomic
wave functions in the course of the collision may
be neglected. This corresponds to the Bohr
approximation for fast collisions, except that the
emphasis here is on the radiation emitted rather
than on the electrons scattered. As in the case of
the nonadiabatic transitions discussed above, one
cannot use directly the integral in (7) for the
line profile, but must start afresh from the Dirac
radiation equations.

If only the upper states of a radiative transi-
tion are perturbed by collisions, the analysis is
not involved. ' The inclusion of perturbation
terms in the equations for the lower states,
however, introduces complications. Let there be
two states A~ and A2 with the same unperturbed
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energy S&0,' let there be two lower states Bl and
B2 with unperturbed energy Z~o. Let the diagonal
matrix elements of the perturbing ionic field be
k&zi(t), hh~o(t), hhei(t), and ht). &to(t); let the non-
diagonal terms be AK~(t) and hKtt(t). Let the
probability coefficient of a radiative transition
from Ai to 8 i per unit time be I'. As usual ai(t)
and ao(t) will represent the probability ampli-
tudes of states A i and Ao, while bi, (t) and bo„(t)
will represent the corresponding amplitudes for
the states in which the electron is in Bl and B2,
respectively, and a photon of frequency v, has
been emitted. Then if x is again defined by (6),
the equations for the derivatives with time of the
probability amplitudes become'

t

t O)= iP —"O)f t tt')tt'x "(t')t (r) (»b)

pi(t) =exp ixt+i t&tti(r)dr,
0

(53)

and similarly for po(t).
If now we expand bl, t in a series of successive

appl oxl m ation s,

bi (t) =bi &"(t)+bi i'&(t)+ b i'&(t) ~ ~ ~, (54)

and similarly for bo, (t), we obtain bi,"'(t) from
(52a), integrating by parts and neglecting Ke(t).
This leads to the formula

dai/dt = —otI)g i(t)at —kg (t)ao ——,
' I'at,

db„/dt = i(x+5&ti—(t)bi,

(49a) pi*(t)i »'
bip&o&(t) = hi(0) —hi(t) pi(t)e —I"

x+—i I"

iK&t(t)bo—, ij ge'at(t—), (49b)

dbo, /dt = —i(x+ A&to(t)) bo, —iKe*(t)bi„ (49c)

ai(t) =e—trthi(t), (50)

where jg~t' is the matrix element for the radiative
transition; its value does not concern us. The
equation for ao(t) is not needed. Except for the
terms in Kx and Ks these equations (49) are
identical with (2), provided that the notational
changes of (5) and (6) are made. If the integral
over time of Ke(t) is small, these equations may
be solved for bl, and b2, by successive approxi-
mations.

First we have for ai(t)

pdhi
p, (T)e—:-{ +i~.,h, (T—) }dT, (55}

&dT

which satisfies the boundary condition bi, (0)
equal to zero. Substitution of this into (52b)
gives bo, "&(t}.If we neglect all terms that, when

squared, contain products or powers of the X's
and the 6's higher than the second, we have

—ipo*(t) jxa'
b i'&(t) = -- h, (0) P(T)dT

x+ -,'il' { o

t

p (T)e trrKe*(T)hi(T)dT ~ ~ ) (56)
0 }

h (t) =exp {
—i tt (r)dr }

o

where by definition

l(t) =K.(t)pi(t) p.*(t).

X li (0) if X tT)—ii,(T)
0

Similarly,

pi*(t)j vit-
hi(0)

x+-,'~F( F b, ()(t)=
Xe.p{ ~ t.,(.)d.+ ,I T }dT . (5I}-

0
~ t. T

&& l(r)dr P(T)dT+ ~ ~ ~ . (58)
0 0

This satisfies the boundary condition ai(0} equal
to hi(0). For bi, (t) and bo, (t) one obtains the
integral formulas

t.o) ip "o)ft (t')tt'= —

X Ij gtt'e-"rhi(T)+Ke(T)bot(T) I,

Other terms in bi, &'&(t) are of effectively higher
order since their cross products with bt, "&(t)
vanish on the average. Since b2, ~'~, bI, '" and
be &2} all vanish, we have to the second order of

(52a) approximation,
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I &~.(~) I
'+

l bop(~) I

'=
Ij»') '/(x'+ (o'I')')

CO Io
lb'(0) f' 1+ l(T)dT

0

OO T

t ~d~ l* TdT
0 0

f dhg
+ pr(T)e ' dT) — +iAs~hg

0 ldT J[
CO

i

2-

+ Po(T)e ,rrdTK—
0

(59)

, phases of h~ and h2 will be random in general
and that any terms involving cross products will
vanish.

The functional form of the 6's and the X's
will depend on the choice of axes. If the z, axis
(again in parabolic coordinates) is taken parallel
to the direction of motion of the ion, and the
y, axis is in the plane of motion, Az&(T) d»(—T)
will equal g sin 8/kr', where 9 is the angle sub-
tended at the atom by the distance from the ion
to its point of closest approach. Since the matrix
of z, is diagonal, Xg and X~ will arise from the
matrix of y, alone and hence E& will equal
«~ cos 8/kr', where «~ is some constant. A similar
formula holds for Xg. Since

since, as above, cross terms containing p&(T)
or po(T) cancel out when an average is taken over
t'0,—the time of closest approach. The symbol (R

denotes the real part of the double integral.
If one takes real and imaginary'parts of l(t) in
the double integral and integrates by parts, it
will be seen that this term cancels the one
immediately preceding. If we normalize to unity,
take exp ——,'I'T outside the integrals, substitute
from (50) and (49a) for dk&/dT, and finally
make use of the fact that the change in h& and h2
in the course of the collision may be neglected,
taking both these quantities outside the integral
and setting the mean square value of each
equal to unity, we have for J(x), when x))-,'I',

sin 8=v(T tp)/r, —cos O=R/r, (61)

we have, using (10) and (15),

f
CO . + QdQ

e'*r(Agq her)dT= —8 e'&

0 (1+u') &

(62)

f
QO + due"rK~d T= e'&" . (63)

p hRv „(1+u')&

These integrals have already appeared in I and
equal idg&(—$)/dP and g, ($), respectively (see
(25)). Hence (60) gives

J(x) = I'/2orx' 1+exp (—I'io)
r

J(x) =—1+4 exp (—I"tp) $'
27rX2

oo 2

X e+'~~ Agg —Agi dT
a p

l Kg +Kgb
XI 'Kp'(()+ Kr'«)

I (6 )i'p'R'v' )
2OO 2 CO

+ e'*frK~d T + e'*rKs*d T . (60)
o

'

o I I

The integrals of A~~ and 6~2 in the exponents, —
see (53) and (57)—have been dropped, as these
would first appear in the fourth order. Ordinarily
the mean-square value of h& or h2 would be —,',
but to make the results comparable with those
of the previous section, each state must be
assumed to have unit population. In deriving
(60) we have made use of the fact that the

Suppose, however, that the z, and y, axes are
interchanged. The roles of the 6's and the X's
will be precisely reversed, a,nd in (64) Koo and
KP will become interchanged. When J(x) is
summed over all possible components of a par-
ticular hydrogen line n,—weighting J(x) for each
component by the oscillator strength of that
component —the result must clearly be inde-
pendent of the choice of axes. The weighted sum
of all values of b2 must therefore equal the
corresponding sum over all «~' and «e'. If (64) is
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going to be summed we may legitimately replace
(&&2+ &&~)//pR~s2 by G2

If, as before, there are Q(S, $) collisions per
second for some particular values of $ a.nd S,

J(x) is given by (20) where now fo'(g) replaces

f, (P), and

f '(8) =25(& '(5)+&o'(5)) '*(65)
or in other words fo'2(g) is simply the average
over plus and minus values of fP(P) This. is in

accord with the conclusion reached in II that
the shape of the line profile is given by the
adiabatic approximation provided that 8 is re-

placed by 0 or (1+S2)'. The change in f,(p) as S

goes from one to zero is hence very small. The

observed profile will of course vary considerably
over this range, since as 8 goes to zero, & corre-
sponds to larger and larger x (see (19)).

Also it is evident from (52b) that the proba-
bility of a transition from 81 to 82 is approxi-
mately given by the square of the time integral
of Z&(t). This is simply 1/2~ times the total
collision phase shift, or in this case 2xs/AvR.
This is usua. lly of the sa,me order as S (see formula

(45)). Thus the change in the atomic wave
functions becomes appreciable and the Born
approximation becomes invalid in the same
region as that in which the adiabatic approach
becomes approximately valid; i.e., for 8 between
one-half and two.
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About 65 lines, belonging to the aluminum-like spectra of K and Ca, and the silicon-like

spectra of Ca, Sc and Ti, are reported. All known term values for these ions are listed. Ioniza-

tion potentials for Ca VII and Sc VIII are estimated as approximately 127 volts and 158 volts,

respectively.

H ITFORD, ' who used Ekefors' ' list of belong to those spectra of potassium and calcium

Kand Cawave-lengths, haspublished the which are isoelectronic with Al I and Si I. A

identifications

o anumber of lines, partof which previous paper from this laboratory' reported

' A. E. Whitford, Phys. Rev. 40, 793 (1934).
~ E. Ekefors, Zeits. f. Physik 71, 53 (1931).

"' P. G. Kruger and L. W. Phillips, Phys. Rev. 52, 97
(1937).

TABLE I. Classified lines of K VII, Ca VIII, Ca VII, Sc VIII and Ti IX.

INT. X (VAC) u(CM i) CLASSIFICATION INT. )L (VAC) v(CM i) CLASSIFICATION

K VII Ca VIII

4
10
0
4
7
1
3
2
8
0
1
7
5

403.980
403.783
402.267
401.758
401.534
400.091
399.485
398.988
398.931
398.252
397.674
176.106
175.189

247,537
247, 658
248, 591
248,906
249,045
249,943
250,322
250,634
250,670
25 1,097
251,462
567,840
570,812

s2p &Ps/s-
'Ps/2—

Sps «PG/2
«P G/2

«PG/s-
«Ps/s
«Ps/s
«Ps/s

ssp»i/s-
sp P1/2

'Pi/s
ssP 2Ps/s-

2Pi/s

ssd sDs/2
sDG/s

spd «Ds/s
«DG/s
«Dv/s
«Di/s
«Ds/2
'Dsgs

s2d sDs/s
spd «Dl/2

«Ds/s
ss4d sDG/s

2Dsg~

8
12
5
8
9
4
2

10
7
4
2
6

357.983
357.497
357.347
355.692
354.985
354,508
353.699
353,004
184.160
182.713
179,510
179.188
178.687

279,343
279,723
279,840
281,142
281,702
282,081
282,726
283,283
543,005
547,305
557,073
558,073
559,637

sp& «PG/2
«PG/s
PG/2

«Ps/2
«Ps/a
«Ps/2
«Pi/s
«Pi/s

s2p 2Ps/s
'Pi/s

sPs «PG/s
«Ps/s
«Pl/s

spd «Ds/s
«DG/s
«Dv/s
«Di/s
«Ds/s
«DGg2
«Di/s
«Ds/s

ss4s sSi/s
sSi/s

sp4s «Ps/s
«Pi/2
«Pi/2


