JANUARY 1, 1939

PHYSICAL REVIEW

VOLUME 55

Theory of the Quadratic Zeeman Effect

L. I. ScHIFF AND H. SNYDER
University of California, Berkeley, California

(Received November 9, 1938)

The experiments of Jenkins and Segré, reported in the
accompanying paper, are considered theoretically. The
quadratic Zeeman effect observed in absorption to large
orbits in strong magnetic fields is due to the diamagnetic
term in the Hamiltonian, which is proportional to the
square of the vegtor potential and hence to the square of
the magnetic field. For the alkalis, the problem involves
essentially only one electron, and its spin can be ignored.
my and parity are always exactly defined, while #» and !
are not. The observed spectrum can be divided up with
increasing # into three regions, according as the lines are
broadened asymmetrically (region I), broadened further,

but nearly symmetrically (region II), and broadened so
much as to overlap into a continuum (region III). It is
shown that region I corresponds to # being a good quan-
tum number and / a fairly good one; region II to # being
a fairly good quantum number and / not good at all; and
region III to both »# and ! breaking down completely as
quantum numbers. Good quantitative agreement with the
experiments is obtained as long as inter-n perturbations
can be neglected. When this can no longer be done (large
n), the theory becomes prohibitively complicated, although
some qualitative indications can still be obtained from it.

HE quadratic Zeeman effect can arise from

two parts of the atomic Hamiltonian. The

term linear in the vector potential (and hence in
the magnetic field)

(ehH /2mc) (mi+-2m,) (1)

is not a constant of the motion when there is
coupling between spin and orbital angular mo-
menta, and therefore gives rise to second-order
perturbations proportional to H? The diamag-
netic term quadratic in the vector potential

V = (e2H?/8mc?)?? sin? 6 2)
gives first-order perturbations that are also pro-
portional to H2. These two terms are never simul-
taneously of importance.! For (2) is important
only for large orbits and strong magnetic fields,
in which case the spin and orbital angular mo-
menta are so completely uncoupled that (1) is
practically a constant of the motion. This results
in a complete Paschen-Back effect, and the
electron spin can be ignored entirely. The de-
termination of the atomic level structure under
these conditions is reported by Jenkins and
Segré in the accompanying paper (referred to
here as JS), and was accomplished by measuring
high members of the absorption series from the
ground states of sodium and potassium. In this
paper, we shall attempt to obtain an under-

1 Cf. Van Vleck, Theory of Electric and Magnetic Sus-
ceptibilities (Oxford, 1932), p. 178.
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standing of the principal experimental results of
JS on the basis of existing atomic theory. For
definiteness, we consider sodium, and indicate
later how our remarks can be extended to the
other alkalis.

It was expected that the experiments of JS
would show the well-known quadratic shift of
the terms towards higher energies.! However, an
examination of the microphotometer traces (Fig.
5 of JS) indicates that the situation is more
complicated. The observed spectrum can be
roughly divided into three regions. In region I
(n<29), both the w(m;=0) and ¢(m;= +1) com-
ponents show an asymmetric broadening; the
peaks are on the high energy side of each line.
Also, the centers of the lines lie at higher energies
than the no-field lines, and the displacements
increase with #n. As » increases, the lines become
broader, and each peak is pushed more to the
high energy side of the center of gravity of its
line. At the same time the peaks become lower,
so that soon the lines become nearly sym-
metrically . broadened (we call this region II,
29 <% <33). Finally the lines become so low and
broad that they merge into a continuum showing
a weak banded structure (region III, »>33).
Throughout regions I and II, the centers of both
the = and ¢ lines continue to advance ahead of
the no-field lines. In region III, however, this
applies only to the ¢ series. The 7 series are much
more compressed and tend to fall back into step
with the no-field series.



60 L. I.

To understand these results, we:consider the
motion of a single electron in a central field
(nucleus plus electron core) and uniform external
magnetic field, with neglect of spin. The problem
possesses only axial and mirror symmetry, and
hence m; and parity only are exactly defined ; the
term (2) in the Hamiltonian will prevent » and /
from being exact quantum numbers for the terms
that interest us. Then the true eigenfunctions can
give dipole radiation only by virtue'of the amount
of I=1 state that is mixed into them ; moreover,
we can restrict our consideration to those upper
states for which m;=0, 1. If we choose the
usual representation for the unperturbed states
in which m;, » and ! are diagonal, then it is
readily shown that 7 has matrix elements be-
tween states of all # provided that their [ values
differ by 0, =£2; since only the /=1 part of the
perturbed states can radiate, we need consider
only the matrix elements of V between states
of odd .

Now according to the Rydberg formula, the P
terms in sodium (/=1) are depressed by a uni-
form amount below the corresponding hydrogenic
terms (this is due to penetration of the core by
the electron when it has low angular momentum),
while the F, H, - - - terms (l=3, 5, - - ) are given
quite accurately by the hydrogenic values (see
Fig. 6 of JS). The matrix elements of V are pro-
portional to #* (see Eq. (3) below), while the
separations between successive terms in a series
or between corresponding P and F terms are pro-
portional to #~3. Thus, we expect that for small
n these separations are large compared to the
perturbing energy, and both # and / should be
fairly good quantum numbers (region I). More-
over, since the separation between corresponding
P and F terms is smaller than the separation
between successive terms of a series, we might
expect #°to be a better quantum number than /,
so that we can neglect the inter-z perturbations,
and treat the inter-I perturbations as small, in
this region. Now the quantum defect for the P
series of sodium is 0.85, so that each P term is
depressed almost a whole interval below the F,
H, --- terms of the same #. Thus the important
inter-l perturbations will be between a given P
term and the F, H, --- terms corresponding to
an n value that is smaller by one ; the P term then
lies on the high energy side of the higher I terms
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with which it combines. This results in a peak on
the high energy side of the line, and a smear on
the low energy side which is the group of un-
resolved lines arising from the slightly mixed in
terms of higher J. As # increases, I ceases to be a
good quantum number before # does. Thus all /
terms are thoroughly mixed together, resulting in
a nearly symmetric line, while the inter-» pertur-
bations are not yet so large as to seriously affect
the regularity of the series (region II). For still
higher # values (region III), the inter-n pertur-
bations become so large that # is no longer a good
quantum number, and the broadened lines merge
together.

Recions I anp 11

We could hope to deal with regions I and II
by neglecting inter-n perturbations, and solving
the secular equation obtained from the matrix
elements of V between odd ! states for a par-
ticular m; and #. But since this matrix has about
n/2 rows and columns, such a solution would be
an extremely tedious matter. However, we can
find quite simply the centers of gravity of the
broadened lines and their mean square breadths.
In region I, we can also find the perturbation of
each P state by higher [ states consistently to the
second order of perturbation theory, and can
interpret its perturbed position as the position
of the peak of the corresponding broadened line.

To find the matrix of V in these regions, we
choose particular values for m; and #, and label
rows and columns according to I values. The
angle integrals are readily evaluated, and the
only nonvanishing elements that interest us are
Vi1, Vis= V31, Vss, Vas= Vs, etc. In evaluating
the radial integrals, we note that because of the
7? appearing in V, it is important to know the
radial functions only for large 7, well outside of
the inner electronic core. We should thus expect
to obtain a good approximation for the radial
integrals by using the hydrogenic functions? with
indices 7z and I, and putting #n=n* (the effective
quantum number) after the integrals are evalu-
ated. For the principal series of sodium (/=1),
n*=n—0.85, while for the higher series (I=3,
5, -+ +), n*=n. As remarked above, however, we
expect the mutual perturbations between states

. 2Cf. Condon and Shortley, Theory of Atomic Spectra
(Cambridge, 1935), p. 114.
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of:different I to be greatest when their effective
quantum numbers (and hence their unperturbed
energies) lie closest together. We shall therefore
put for the higher I series, n*=n—1. The total
energy matrix for a particular m; and # is:

IKZ”r(n, ’lel) =Sclo(n; ml) 5ll’+ Vll'(n*y ml)r

me*  ehHm,
30 (n, my) = — + —,
2hn*2 2mc
HiH?
Vu(n, 0)=
8mic?e?

n2[5n2+1—31(1+1) ]2 +1—1)
(20+3)(20—1)

(3)

m*H? Sni(l—1)
Vz, 1_2('}1‘ 0) = — .

8mic2? 2(21—1)

(=19 [n2— (1= 1)2]}}

(2141)(21—3)
niH?
Vll(ny :!:1) =
8mdce?

w[Sn3 41— 310+ 1) PA+1)
' (2+3)(21—1)
BIP Sw
8m3c2e2' 2(21—-1)
(=)= (1—=1)2]J0+DI1-1)(1—-2))}
' (21+1)(21—3) '

Vz, zmg(n, :!:1) = —

To obtain some information from the matrix
(3), we assume that it is diagonalized by a
normalized real orthogonal matrix S (since 3¢
is real): Zsz,-kZCkZSﬂ=Ei6”. Then the new
eigenfunctions (corresponding to the eigenvalues
E;) are given in terms of the old approximately
hydrogenic functions by: ¢;=3;S:;¢;. If now
we neglect the dependence of the dipole radiation
probability on energy over the small range of
energies involved in this group of states, this
probability will be proportional to the square of
the amount of ¥;in each ¢;, or to .S;:2. The center
of gravity of the group of lines is thus given by

E’= ZEiS“Z:Jcll« (4:)

The dispersion of the group of lines about their
center of gravity, or the mean square breadth of
the unresolved broadened line, will similarly be
given by:

(AE):=Y (E;—E)2S;?=Y E2Sin*—E*

_ 5)
=231 — B?=3C15", (
i

since 3Ci; vanishes unless j=1 or 3. Neglecting
terms of order #~? compared to unity, we thus
obtain:

_ met BAE 2 %4
E(?’L, 0) = - ’
2hn*2  8mdcle?
(6)
_ met ehH h*H?*n*4
En, £1)=— + ;
2R2n*2 2mc  4m3ce?
3 3 ﬁ4H2n*4
2AE(n, 0)= (—) . ,
7 4m3ce?
@)
2 3 h4H2n*4

2AE(n, £1)= (—) . .
7/ 4mic%e?
In Eq. (6), n*=%—0.85;in Eq. (7) we should use
a value for »* approximately halfway between
n—0.85 and n—1, although its precise value is
not important. Eq. (6) is well known,! and gives
the position of the P term if inter-/ perturbations
are neglected. It is interesting that the center of
gravity of the group of lines resulting from these
perturbations is still given by the same formula.
Although formulas (6) and (7) apply to both
regions I and 11, we are, for region I, more inter-
ested in the position of the peak E, of each line
than in E. This can be found by assuming that
the inter-I perturbations are not yet strong
enough to wipe out the identity of the P state,
so that this line will be strongest, and will be
shifted towards higher energy by interaction
with the other [ states. A second-order perturba-
tion calculation gives:

Vi?
E,=3"4+Vu+2

. 8
i#1 300 —3C0 ®

Remembering that V;; vanishes unless =1 or 3,
and that

me'A

B2k

me*
5o — o= ——1[ (n—0.85)2— (n—1)"*] =~
2h?
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where A=0.15, we obtain:

3h10H4n* 11

448m7ctesA’
ﬁ10H4n* 11
224mTciesA’

where to sufficient approximation, n*=n—0.85.
We expect formula (9) to give the position of the
peak of the broadened line as long as the peak is
well defined and displaced from the center of
gravity of the line, that is, throughout region I.
In region II, the line is more nearly symmetric,
and the peak and center of gravity practically
coincide, their position being given by (6).

The transition from region I to region II
should take place at such a value %, of # that the
perturbing energy Vs and the energy denom-
inator 3¢,°—3C® in (8) are about equal. This
gives us the relations:

Ey(n, 0) zE_’(”, 0)+
9)
Ey(n, £1)~E(n, £1)+

T\ 8mic2etA
(nc—0.85)7z(g) 'W, m;=0,
T\ 8mic2tA (10)
~(3) T me

To obtain similar results for the other alkalis, we
need only insert into the above formulas (6) to
(10) the proper numerical values for #* and for A,
which is defined as the effective quantum number
for the P series minus the nearest integer ; these
values are given in Table III of JS.

The measured peaks of the lines are plotted in
Figs. 3 and 4 of JS, in which the solid curves are
computed from Eq. (6) and the dotted curves are

computed from Eq. (9). It will be noted that the -

experimentally observed peaks follow the dotted
curves quite well throughout region I. Towards
the end of region I and the beginning of region II,
the lines lose their asymmetric character, and the
measured peaks begin to give the positions of
the centers of gravity of the lines. Thus the
experimental points here fall away from the
dotted curves and approach the solid curves. This
good agreement indicates that the inter-z per-
turbations in this region do not have an appreci-
able effect on the positions of the peaks of the
lines. On the other hand, the breadths of the lines
seem to be given well by Eq. (7), only for rather
small values of #(<25). For larger #, the values

SCHIFF AND H.

SNYDER

obtained from Eq. (7) are of the same order of
magnitude, but smaller than, the observed
values. This seems to indicate that the inter-n
perturbations, which were neglected in obtaining
(7), do broaden out the lines, and also make the
ratio of = to ¢ breadth larger than the value
(3/2)¥=1.22 obtained from (7) (see Table II
of JS). The comparison with experiment on this
point is complicated by the fact that the mean
square breadth defined by (5), and which is most
readily calculated, is not simply related to the
width at half-maximum, which is most readily
measured ; however, the two should be of the
same order of magnitude.

The value of # at which the transition from
region I to region II takes place is given by Eq.
(10) as about 29 for the = component, and about
30 for the ¢ components, in the case of sodium.
From Fig. 5a of JS, we see that both these values
agree well with experiment. A comparison on this
point for potassium is difficult because of the
poor definition of the lines.

Recion III

In region III, both # and ! break down com-
pletely as quantum numbers, and we cannot use
any of the approximations that made the theory
workable in the preceding section. There is a
striking experimental observation in this region,
however, for which we might hope to get an
indication from the theory. This is the compres-
sion of the = series relative to the ¢ series, just
before they wash out. One might expect this from
the fact that in region II, the = components are
much broader than the ¢ components, thus
indicating a greater influence of inter-» perturba-
tions. Then since there are more terms above a
given term than below it, and since they get
closer together as one goes up the series, the net
effect of such perturbations should be to push
the terms down and thus compress the series.

Another indication pointing towards the same
conclusion can be obtained from an examination
of the behavior of the terms near the series limit.
Here the electron is controlled mainly by the
magnetic field, and it makes many oscillations in
this field before it makes one in the Coulomb
field. This is the condition for applicability of the
adiabatic approximation, which we use here. The
solutions of the equations of motion of an elec-
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tron in a pure magnetic field are well known,? and
admit of a continuum of energy levels
E=(ehH/2mc)(2v+mi+ |mi| +1)+E.,

v=0,1,2, ---, E,=0, (1)

because of the free motion along the field (z
direction). We now apply the adiabatic approxi-
mation, using the Coulomb field to restrict the
motion in the z direction. This gives us a po-
tential for the z motion that is an average of the
Coulomb field over the x, y plane for each value
of z. We are interested only in the lowest state
v=0, and in m;=0, 1, the z potential is then:
Uo(3) = —2¢?8% exp (82%) Erfc(|2]6%), m.=0,
Ui(z) = —e[B|z| +B% exp (B22) (1—2B32)
XErfe(|z|89], mi==1,
Us(0) =2T1(0) = —e(xB)",
Up—U,——e?/|z2|, as

Erfo(x)= f " v
B=eH/2kc.

3 Cf. Condon and Morse, Quantum Mechanics (McGraw-
Hill, 1929), p. 79.

(12)

lz] =

Thus U, had twice the depth of U, at 2=0 and
the same asymptotic form; it can also be shown
quite readily that U, is less than U; for all finite
values of 2. The total energy is then given ap-
proximately by (11), where E, is now an eigen-
value of the equation:

d% 2m
:l-z—z-F;L‘;[Ez — U(2) Ix=0.

Then for energies just below the series limit, the
eigenvalues for the case m;=0 will be more
closely spaced than those for the case m;= +1,
since the potential U is considerably deeper than
the potential U;. While this conclusion cannot
apply even qualitatively as far from the series
limit as the beginning of region III, it serves as
another indication that the = component series is
expected to be more compressed than the ¢ com-
ponent series, as is observed.

It is a pleasure for us to thank Professor J. R.
Oppenheimer for several helpful discussions of
points that arose in this problem.
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Surface and Volume Photoelectric Emission from Barium!
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Spectral sensitivity measurements between 5000 and 2300A have been made on barium
surfaces prepared by fractional distillation in a gettered vacuum. The resulting yields are
compared with those predicted by Mitchell’s square-top barrier theory which is here modified
to a form that facilitates comparison with experimental data. From 5000 to 3000A relative
values of the observed yields are in good agreement with the modified theory. At 2967A there
is an abrupt rise in the experimental curve which continues to the limit of the measurements.
This is attributed to the onset of the volume photoelectric effect. The theoretical threshold
for the volume effect calculated from the rough formulae of Tamm and Schubin agrees well

with the experimental value.

T is usually assumed in the electron theory of
metals that the electrons move independently

1 Presented in part at the Washington meeting of the
American Physical Society, April 28-30, 1938.

2 Now at Leeds and Northrup Company, Philadelphia,
Pennsylvania.

in a periodic potential field in the metal. The
introduction of a metallic surface which is neces-
sary for the photoelectric effect gives rise to a
second type of field and complicates the model by
destroying the perfect periodicity of the crystal
lattice. To avoid this difficulty Tamm and



