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In the statistical domain theory of Heisenberg and others it is assumed that the domains
have constant volumes, but that their magnetic moments change from one direction to another
as the field or stress is changed. This model is highly artificial, for the actual process is believed
to be a growth of some domains at the expense of others by displacement of the boundary
between them. In this article the equations of the statistical theory are derived without use
of the s'implified model, by an adaptation of Kondorsky's analysis of the boundary displacement
process. The assumptions necessary for this derivation are discussed critically, and the effect of
modifying them is investigated in several special cases.

)1. INTRODUCTION dence' ' that changes in magnetization, whether
reversible or irreversible, occur by a progressive
reorientation of electron spins in the boundary
region between domains, describable on a larger
scale as a growth of favorably oriented domains
at the expense of their less favorably oriented
neighbors by displacement of the boundary
between them. It is therefore the volumes that
change agd the domain magnetizations that
remain constant. Heisenberg himself pointed
this out in introducing the simplified model.
His expectation that it might nevertheless lead to
approximately correct results has been amply
justified; its chief shortcoming is not any lack
of agreement between theory and experiment,
but rather that the artificiality of the model
makes it difficult to interpret the assumptions of
the theory in terms of a more realistic model, or to
modify the theory by substituting less drastic
assumptions in regard to the mode of behavior of
the internal forces.

A mathematical analysis of the boundary
displacement process was carried out by Bloch'
and by Becker " in a few especially simple
cases. It has recently been extended by Kondor-
sky, " who has obtained a formula for the re-

N AN endeavor to obtain theoretical ex-
pressions for the magnetostriction of iron

crystals in weak fields, Heisenberg' introduced
a simplified model .of a ferromagnetic crystal
that has been used with surprising success in

calculating a number of properties of crystals
and of polycrystalline specimens. ' ' In this
model it is assumed that the domains are all of
the same size; as the field is increased the domain
volumes remain constant, but the magnetization
of individual domains changes from one direction
of easy magnetization to another, so that the
magnetization of the specimen increases. The
relative numbers of domains magnetized in the
various possible directions are calculated by
statistical methods. To justify such methods it is
argued' that the internal forces that really de-

termine the microscopic state of affairs vary
irregularly from point to point, and may there-
fore be considered random. But before the deriva-
tion can be completed it is necessary to become
much more specific in the definition of "random-
ness;" and the definition that has to be adopted
is difficult to interpret in terms of any physical
picture of internal forces.

This model; despite its success, must be re
garded as a makeshift. There is strong evi
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versible susceptibility of iron crystals. This
formula involves the relative volumes v; oriented
in the various possible directions i; when the
field is in direction [111]or when only orienta-
tions nearest the axis of the specimen occur, the
symmetry of the problem makes it possible to
determine the v s at once as functions of the
magnetization, but in general this is not the
case. Kondorsky therefore evaluates the v s by
the use of formulas borrowed from the statistical
theory; these formulas give the relative numbers

of domains, n;, oriented in the various possible
directions i in the simplified model of this
theory.

Now the statistical theory itself, as has been
shown by the writer, ' is capable of yielding
formulas for the reversible susceptibility, and
the formulas in some cases give excellent agree-
ment with experiment. If, therefore, the formulas
of this theory must be used in the end, it seems
preferable to use them from the beginning,
rather than mixing the two models. But if
this final step can be avoided and Kondorsky's
theory made complete in itself, his analysis is
to be preferred because of its more realistic
approach. This can be done: in fact it is possible,
by introducing certain assumptions, to derive
the equations of the "statistical" theory by an
analysis similar to Kondorsky's, without any
use of the simplified model or of statistical
methods. The assumptions made in this deriva-
tion can be clearly stated in terms of the bound-

ary motion process and the internal and ex-
ternal forces controlling it. By making slightly
different assumptions, modified formulas may be
derived in several simple cases. The two theories
thus become one, and the Heisenberg model
with its objectionable artificiality may be dis-
carded without sacrifice of any of its essential
results.

)2. BOUNDARY DISPLACEMENT THEORY:

A REVIEW

In the boundary displacement theory it is
assumed that the position of the boundary
surface S,;, between two domains whose mag-
netic moments are oriented in directions i and j,
is determined by an equilibrium between ex-
ternal and internal forces. The external forces

(field components and stresses)* have a direct
effect on the boundary position only insofar
as they cause the external free energy density
I; on the i side of the boundary to differ from
the value n; on the j side. Thus if only fields are
present, u;= —H J, and u;= —H J;, where

J, and J; are the vector magnetizations on the
two sides; a change of field is effective in dis-
placing the boundary only if it affects the
difference u; —u, =H (J;—J;). If the boundary
S;; is supposed to undergo a virtual displace-
ment, such that at each point P the surface
is displaced normally through a distance 8x;;(P)
from side i toward side j, the increase in free
energy due to external forces is

(u; —u;) 8x;„dS;

so that the surface 5;; may be regarded as
subject to a force —u; per unit area pushing on
it from the i side, and a force —n; per unit area
pushing on it from the j side. Since the effect on
the boundary depends only on the values of the

*The "external" field H and the "external" stresses are
the field and stresses that would be produced by the same
magnetizing currents and applied forces in a specimen
macroscopically indistinguishable from the actual speci-
men, but homogeneous instead of being made up of do-
mains. The actual field and stresses at an interior point P
would not be affected appreciably if all the matter at a
distance greater than r were to be replaced by homo-
geneous matter, provided r is large compared with the
dimensions of the domains. The deviations of the actual
field and stresses from the value for the homogeneous
specimen are therefore determined by the state of affairs
near P, and may appropriately be termed "internal" fields
and stresses. The internal field and stresses as thus defined
result from the inhomogeneous character of the material
about P; that is, from the domain structure itself, from
inherent distortions, and from impurities. The field under
discussion is one that is continuous throughout the interior
of a domain: the atomic structure of the material and the
nature of the elementary magnets are involved only in-
directly, through such constants as J,„X1pp, C. The internal.
field and induction therefore differ, and the question rises
whether H or B, and whether stresses or strains, should
be used as the independent variables. The answer depends
on whether the simplifying assumptions to be made are a
better approximation as applied to the one set of quantities
or to the other. It is evident for example that, if the inter-
nal stresses are constant, the internal strains must vary
as the domains change in size, because of magnetostric-
tion. The use of field rather than induction as independent
variable appears to lead to reasonable results, probably
because the former is more nearly uniforxn for elongated
domains, and the internal part is therefore a smaller part
of the whole and more nearly continuous across the bound-
aries. The use of stresses and the use of strains as inde-
pendent variables lead to slightly different results that
usually lie on opposite sides of the correct one (see refer-
ence 6).
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I s and not on the way in which the fields and
stresses are manipulated in order to attain these
values, it is legitimate to regard the I s as the
independent variables, whether or not there are
actually enough independently variable field and
stress components to produce arbitrary varia-
tions in the u, 's. (In iron crystals, with only six
directions of easy magnetization, arbitrary
variations of the u s can actually be produced
by varying the three field components and three
components of tension. )

The internal forces include internal stresses
and internal fields. To some extent these are
inherent in the material and unaffected by the
magnetization process. This is true for instance
of internal stresses resulting from permanent
distortion of local regions, and of magnetic
forces due to small regions of permanent mag-
netic saturation in a definite direction, resulting
from high local stresses. To a large extent, how-

ever, the internal forces acting at any point of a
boundary may be expected to depend not only
on the state of the material at that point when
the boundary reaches it, but also on conditions
at other points. For instance, magnetic forces
on one boundary due to Poisson distributions of
magnetic charge on other boundaries will vary
with the positions of the other boundaries; again,
the stresses at and near a boundary will be
altered when a neighboring boundary is dis-

placed, because of the magnetostrictive change in
dimensions of the regions through which the
second boundary has passed. Thus a boundary
S;; may be displaced even though I,; and u;
remain constant, because changes in other
uA, 's may displace other boundaries and this in
turn may alter the interne/ forces on S;;.

These indirect effects seem too hopelessly
complicated to analyze, and the usual procedure
has been to avoid the difficulty by assuming that
the permanent, local part of the internal forces
is much larger. In many cases to which one
would like to apply the theory, for instance in
annealed specimens, this is certainly not true.
On the other hand, the importance of magnetic
forces between neighboring boundaries is de-
creased by the tendency of boundaries to assume
shapes for which the Poisson densities vanish. ' "

"L.Landau and E. Lifshitz, Physik. Zeits. Sowjetunion
8, i53 (1935).

Perhaps by arguments of this sort it would be
possible to justify the neglect of indirect effects.
At any rate, the results obtained by assuming
them negligible seem to apply even in some cases
(annealed polycrystalline nickel is an example' )
in which the assumption is not strictly justified.
In the remainder of the analysis, this assumption
will be made.

The free energy associated with these local,
permanent internal forces is of two kinds: (I)
Energy associated with the region on each side
of the boundary, but whose amount m per unit
volume is different on the two sides, so that a
displacement of the boundary S,, produces a
change in total energy of the form

Lw;(x, y, s) —u;(x, y, s) ]8x;;dS.

An example of this is the energy associated with
permanent internal stresses, and arising from the
fact that a reorientation of the magnetization
vector is accompanied by a magnetostrictive
change of dimensions of the affected region, and
therefore involves work against the permanent
internal stress in that region. In an iron crystal
this energy, for a domain oriented along the
positive or negative cubic axis Ox;, is of amount
w ' = Xgppp'„'(x, y, s) per unit volume, where

happ is the magnetrostriction of a crystal mag-
netized to saturation along such an axis, and the
quantity written for brevity as o.; is the local
tension along the axis. in question minus the
mean tension along the other two axes." (2)
Energy associated with the boundar'y layer be-
tween domains, but whose amount per unit
area of the boundary varies with the position of
the boundary, so that a displacement of the
boundary S;;produces a change in energy of the
form

Here e represents the boundary energy per unit
area of the boundary, and depends on the local
conditions (stresses, for instance) in the bound-
ary layer. An example is the boundary energy
discussed by Bloch, ' which results from the
joint action of exchange forces and anisotropy
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(spin-orbit) forces. This energy is given by

e =(J'C) l/0'

where a is the lattice constant, J' is the exchange
integral, and C is the anisotropy energy per atom.
Internal stress distorts the lattice locally and
therefore alters the values of these quantities.
Kondorsky has added to C a magnetostrictive
term, designed to take account of the fact that
in the boundary region the magnetostriction has
a value different from that corresponding to
magnetic saturation. If the variation of e with
position of the boundary is due chiefly to varia-
tion of this magnetostrictive term, the magnitude
of this variation is according to Kondorsky

Be/Bx, ;= —,').'BB~/Bx;;,

where ) ' is the saturation magnetostriction
minus the boundary value, 8 is the thickness of
the boundary layer, and 0. is the internal stress.

In a virtual displacement of the boundary, the
total change of free energy is

BTV= u.—u + 'M —GJ; +Be Bx;;
Ss)

+e[(1/r, ) + (1/re) ]}»;;dS. (3)

The last term, in which r~ and r2 are the prin-
cipal radii of curvature of the surface, takes
account of the variation of the boundary
area as the boundary progresses: BdS= [(1/r&)
+(1/re)]5x;;dS. It may be regarded as a sort
of surface tension, tending to contract the bound-
ary. It plays a role in determining the size of the
domains, "" but its inclusion in the present
analysis would seriously complicate the equa-
tions. It can be safely omitted if the linear
dimensions of the domains are large compared
with the distances over which e changes by
large fractions of itself, that is if a domain
contains many maxima and minima of e, for
then Be/Bx;;»e/rq or e/re. Even if this is not
true, there is some justification for omitting the
surface tension term in the fact that a boundary
of type ij will be concave toward i in some parts.
and toward j in others, so that the average
curvature should be small. This argument breaks
down when domains of one type have become

"J.FrerIkel and J. Dorfman, Nature 126, 274 (1930).
"W. Doring, Zeits. f. Physik 108, 137 (1.938).

or

I B[(w;—w;)+Be/Bx;;]/Bx;;}»;;=B(u;—u,),

»;;=k;;B(u;—u, ), (6)

where

k;;= }B[(w, w;)+Be—/Bx;;]/Bx, ;I ') 0 (7).
The total increase of volume of domains of type
i at the expense of domains of type j, in unit
total volume, is

bp;;= k,;8 u; —u; dS
S;~

=I „S,,B(u, u;) =P,-;B(u; u;), -
where S;; is the total area of boundaries of type
ij in unit volume of the specimen, and k;; is the
mean value of k;;.

To carry the analysis further it is necessary to
make some assumption in regard to the mode
of variation of A;;; and of S;; as the boundaries

so small as to be completely surrounded by
others. Nevertheless this term will be omitted
in the remainder of the analysis, on the assump-
tion that it has been taken sufficiently into
account by postulating the existence of domains
of a certain average size.

The condition for equilibrium is that in a
virtual displacement 8Ã shall be zero, or

[w, (x, y, s) —w;(x, y, s)]
+Be(x, y, )s/B;x; =u; u—; (.4)

The locus of points satisfying this equation
defines an equilibrium position of the boundary
for given values of the u's. In order that the
equilibrium be stable it is necessary in addition
that

B[(w;—w;) +Be/Bx;;]/Bx, ;& 0.

As. long as this condition is satisfied the boundary
proceeds reversibly as the u's are varied. When
the boundary reaches a point at which the left
member of (5) changes sign, the equilibrium
becomes unstable, and the boundary proceeds
irreversibly until it either reaches a new position
of stable equilibrium, or reaches another bound-
ary and fuses with it (annulling it, if it is one of
opposite type). Throughout the reversible part
of this process, the change of position of the
boundary produced by a change 8u;, bu; in the
external conditions is given by
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move. Kondorsky assumes: (1) that the quanti-
ties k;; remain constant; (2) that if there is no
tendency for particular types of domain to be
grouped together, S;; is proportional to the
product v,v, .

The constancy of the k; s is assured if there is
negligible correlation between the mean re-
ciprocals of the normal gradients of internal
force, averaged over surfaces of equal force, and
the corresponding values of the force. (By "in-
ternal force" is meant the quantity (w„—w;)
+Be/Bx;;.) The assumption therefore is roughly
equivalent to the assumption that the space rate
of variation of internal force does not depend
in any regular manner on the magnitude of the
force itself. This is a reasonable assumption when
the internal forces vary irregularly from point
to point and force maxima occur in all ranges
of force values. Irreversible displacements carry
the boundaries to positions where the force
gradients are different, and therefore should
make the assumption more rather than less

justifiable.
For the assumption S;;~ v,v; Kondorsky offers

no justification. It can be defended to some ex-
tent by the following argument. It must be
assumed first that the S; s are single-valued
functions of the v s. The total surface area S;,
bounding domains of type i in unit volume, is
made up of portions S„;(jAi) in contact with
domains of the various types j. If there is no
tendency for domains of one type to be grouped
with domains of a particular other type, " it is

"The "grouping" excluded here (but to be investigated
in $ 4) means a situation in which some parts of the crystal
contain only domains of two particular types, other parts
no domains of these two types. Thus an iron crystal may
consist of three types of region, in each of which the mag-
netization is parallel or antiparallel to a single one of the
positive cubic axes; such a region in turn then consists of
parallel and antiparallel domains. Even if grouping does
not occur in this extreme form, there is probably a tend-
ency toward it because of the fact (already noted) that the
boundaries tend to assume shapes for which the Poisson
densities vanish, This requires that the domains be elon-
gated in the direction of their magnetizations; the areas
between oppositely oriented domains must then exceed
the areas between domains oriented at right angles to
each other. For this reason it may seem more reasonable
to assume not that S,;:S,I„-=v;:vq, but that S;.;:S;I,

c gv7 ~ c;&vA,', where the c; s are constant weighting factors.
The further assumption that S;; depends only on v; and,
v; leads to Kondorsky's equation S,;= a;;v, v;, with diferent
proportionality constants for diFferent types of boundary.
Eq. (9) is unaffected except that the A. ; s have a slightly
different meaning, and the physical interpretation of Eq.
(13) is no longer contained in as simple a statement
as (10a).

reasonable to suppose that these portions S;;are
proportional to the corresponding volumes v;;
then S,;/v„v; is the same for all j's. By a similar
argument it is the same for all i's Le. t S;;/v;v; =a:
then

S;=P S;;=av; P v;=av;(1 —v;).

where the A; s are constants; and hence

bv;= P 8v,;=Q A;;v;v;b(u; u~)—(10)

This equation is implied, though not explicitly
stated, in Kondorsky's work. The assumptions
on which it is based may be summarized as
follows.

(1) The position of the boundary between do-
mains of two types is determined by an equilib-
rium between external and internal forces.

(2) External forces are directly effective only
insofar as they alter the free energy per unit vol-
ume in one or the other of the two regions
separated by the boundary.

(3) The internal forces are preponderantly
ones that depend only on conditions in or near
the boundary; interactions over distances of the
order of magnitude of the domain dimensions
may be disregarded.

(4) The tendency of boundary forces to de-
crease the boundary area, having once been taken
into account by postulating the existence of
domains, may be neglected in studying the
detailed motion of domain boundaries.

If it is now assumed that the surface bounding
domains of a particular type remains unchanged
if the corresponding volume remains unchanged,
it follows that e is a constant. This assumption
is somewhat arbitrary, but may be partially
defended if the internal forces and hence the
shapes of the boundaries are irregular; for then a
change in which some domains of type i grow
larger and others smaller, so that the changes in
volume compensate, may be expected to produce
no significant systematic change in the shape of
the aggregate of domains of type i, and hence in
the bounding area.

If the assumptions just stated are made,
Eq. (8) becomes

bv;; =ak;;v„v;b(u; —u;) =A;;v;v;8(u; u;), —(9)
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(5) There is no correlation between the mean
reciprocals of the internal force gradients
normal to surfaces of equal force, and the corre-
sponding force values.

(6) The total area of all the boundaries of a
given type in unit volume is a single-valued
function of the relative volumes occupied by the
various types of domain.

(7) There is no tendency of domains of one
type to become grouped with domains of any
particular other type. (The alternative assump-
tion will be considered in f4.)

(8) When (7) is true, domains of any given
type are in contact with domains of the other
types over areas proportional to the relative
volumes occupied by the various types.

(9) In a change in which the volume occupied
by domains of a given type is unaltered, the
combined surface area of these domains is also
unaltered.

Stated this fully, the assumptions that must
be made are dismayingly many. The last seven,
however, are merely more precise expressions
of the general assumption that the internal
forces governing the boundary displacement
process are local in origin, permanent in nature,
and irregular in their spatial variation.

Kondorsky actually considers only the effect
of a magnetic field (u;= —H. J;) and writes

. not'Eq. (10), but the equation for the reversible
susceptibility derivable from it (BJ=Q,J,BV~).

He also supposes that there are only two values
of the A; s, one for boundaries between op-
positely oriented domains and one for all other
boundaries. Moreover he considers chiefly the
case in which oppositely oriented domains are
grouped together, so that Eq. (10) has to be
modified somewhat. Nevertheless Eq. (10) is es-
sentially due to Kondorsky.

f3. COMPLETION OF THE THEORY

The derivation of the equations of the "sta-
tistical" theory from Eq. (10) requires only one
additional assumption; this will be stated first
in a form that seem. s, but is not, trivial:

(10a) The reversible properties of a specimen
are properties that it would be possible for a
reversible specimen to have.

This means that a reversible specimen could
have the properties described by Eq. (10), with

whence, since

Bv;/Buk =A, iv;vk = Bvy/Bu;,

A;, =A,I,
——~ ~ ——A.

(12)

(13)

Thus assumption (10a) implies that:
(10b) The mean reciprocals of the gradients

of internal force normal to the boundary are the
same for all types of boundary.

If it is preferred, (10b) may be taken as the
assumption and (10a) regarded as a corollary.
There seems no doubt, if Kondorsky's descrip-
tion of internal forces is correct, that (10b) is an
oversimplification. Nevertheless it leads to in-
teresting results.

If condition (13) is satisfied, Eq. (12) shows
that there is a function @(ui, u~, ~ ~ ~ ) such that
v; =B&/Bu;, and satisfying

O'P/Bu;Bu; =A (By/Bu, ) (Beati/Bu, ) (14)

for every i, j@i.The solution of 4;his is

e "'=2'f'(u*)

The functions f; are determined by the condition
P;B&/Bu; = 1, whence f; =exp [—A(u; —e;)j,
where the c,'s are arbitrary constants, and

4 = —(1/A) log P;e-"&"'- '&,

~
—A (ui—ci) /~ .g

—A (u7 —c7)
I

(16)

(17)

For a reversible specimen in which no direc-
tions are especially favored by the shape of the
specimen, the v s are equal when all the u s are
zero; the c s may then be set equal to zero, and
(17) becomes the formula for the u s of the
statistical theory. In the present theory, there-
fore, this formula corresponds to complete re-
versibility and implies equivalence of the differ-
ent types of boundary.

For a specimen capable of irreversible changes,
the integrated Eq. (17) still describes the be-
havior in reversible changes. The c s will be
zero only in the initial reversible change from

the same A;, 's, without violating thermodynam-
ics. But for such a specimen the v s would be
single-valued functions of the u, 's and the
Bv, 's would be their differentials, hence Bv;/v;
= b(log v;) would be a perfect differential, and

B(A;,v;)/Bui = B(A;&vi) /Bu;;
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the demagnetized, unstressed state. In a re-
versible change from any other state, the c s
will have values determined by the initial state,
An irreversible change takes the specimen from
one set of c s to another.

This may be illustrated by considering a
specimen subject to a held II of variable magni-
tude but fixed direction; in this case u; = —J,h;H,
where J, is the saturation magnetization and h; is
the cosine of the angle between magnetization
and held for domains of type i. It will be assumed
(this is admittedly an oversimplification) that
the v s are single-valued functions of the
magnetization J, and that these functions are the
same as if the specimen were reversible. For a
reversible specimen the functional relations may
be written parametrically in the form v;=s"'/
P;s'~, J/J, =g,h;s" /Q, s"' (s=exp (A J,H)). If'
the more general equations are to give the same
relations, .the c s must be given by c;= ch;,
where c is a constant in reversible changes and
varies in irreversible changes; then for the
actual specimen s=exp (A J,H e). Thus—

where g=A J,H —c,

The curve for a completely reversible specimen
(e =0) is that given by the statistical theory, and
passes through the origin (Fig. 1, curve 1). The
initial reversible change of magnetization follows
this curve from the origin; thus the initial
susceptibility is the same as in the statistical
theory. A reversible change from any initial point
I', I" follows a curve obtained by displacing 1 to
the left or right until it passes through the point
in question (Fig. 1, curves 2 and 3). The re-
versible susceptibility is the slope of this curve; it
evidently depends only on J, and is given as in
the statistical theory by the parametric equations
J=J,f(it), x„=A 1,2f'(g) Irreversible . changes
take the specimen from one such curve to another
(Fig. 1, cur~e 4).

If the v s are not assumed to be single-valued
functions of the magnetization, it no longer
follows that the reversible susceptibility is de-
termined by the magnetization alone. Experi-
mentally, it appears that such a functional
relation between reversible susceptibility and
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Frc. 1. Magnetization curves of specimen with poly-
crystalline domains. 1, theoretical curve of reversible
specimen (H0=0). 2 arid 3, theoretical curves for rever-
sible changes from initial states P and P' (A J,IX0 ——1 and 2,
respectively). Small reversible changes occur as indicated
by the arrows at 0, P and P'. 4, qualitative representation
of the irreversible ascending magnetization curve. 5, a pos-
sible theoretical curve for high fields. 5', theoretical Jvs. H
curve calculated with values of H0, J, and A given in the
text; solid circles are experimental values on the normal
magnetization curve of a nickel ellipsoid at room tempera-
ture. The solid circles and curve 5' of the upper figure,
plotted on a different scale and. extended. to lower fields,
give the open circles and curve 5 (A J,.II0=3.00) of the
lower figure.

' R. Gans, Physik. Zeits. 12, .1053 (1911); Ann.
Physik 61, 379 (1920).

magnetization holds approximately, but not
exactly. "

For a polycrystalline specimen in which the
domains are larger than the crystals, the direction
of magnetization of each domain is a direction
that minimizes its total free energy. This energy
is due partly to the external held, partly to
crystalline anisotropy forces (which cancel to
some extent but not completely if the crystal axes
are oriented at random), and partly to internal
helds and stresses. All but the hrst of these are
taken account of as internal forces, and therefore
in the statistical theory such domains were
treated as "isotropic, " iti the sense that every
direction is a direction of easy magnetization, and
the sums over directions of easy magnetization
were replaced by integrals over the unit sphere.
The corresponding limiting case in the present
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theory would be one in which a domain may be
magnetized in any direction, and may absorb a
portion of an adjacent domain without under-
going any change of its direction of magnetiza-
tion. The first of these conditions is satisfied if the
domains are polycrystalline, but the second is
not; for if the boundary moves, the crystalline
forces and internal stresses in the absorbed region
may be expected to change the direction of
magnetization of the absorbing domain. Rotation
of the magnetization vector should occur simul-
taneously with boundary displacement. The
"isotropic domain" formulas are therefore a
trifle difficult to justify in the present theory,
although some of the best agreement between
theory and experiment has been obtained with
these very formulas, applied to polycrystalline
nickel. ' It is clear, however, that these formulas
result' from either of two simplified theories: one
in which boundary displacement is allowed,
without change in the directions of domain
magnetizations, and one in which changes in
these directions are allowed, without displace-
ment of the boundaries. If the actual process is a
combination of these, the formulas that follow

equally well from either alone should hold at
least approximately when they are combined.

In this limiting case, Eq. (18) becomes

where

J=J,(coth S —1/S) =J.L(rI),

rI=A J,(FI+FIO).

(18')

(19')

Here c has been written —A J,HO. The initial
susceptibility is

xo ——A J,'I, '(0) =-', A J,2, (20)

"Unpublished data.

and the reversible susceptibility is A JpL'(rI). The
experimental verification of the formula for the
reversible susceptibility (originally proposed by
Gans), " and of its dependence on J alone, has
already been discussed. ' Additional confirmation
of the theory may be obtained from the mag-
netization curve at high fields, where the
magnetization process is practically reversible
and should therefore follow a curve like 5, given

by Eq. (18') with a positive value of IIO and with
A=3xo/JP. The points in the upper part of
Fig. 1 are experimental values obtained at
19.4'C by Kirkham" on the ellipsoid he used for

magnetostriction measurements. " The theo-
retical curve 5' has been calculated with J,=487
gauss, obtained by extrapolation of the J vs. 1/H
curve at high fields (L(rI) =: 1 —1/rI, H»HO), and
with the. following values of the other constants,
chosen to fit the curve to the data as well as
possible: IIO ——21.1 oersteds, and xo =23.2 or
1/A =3.52&&10~ erg cm '.

A physical interpretation of Ho must await a
more complete analysis of irreversible processes.
The initial susceptibility is not known for this
specimen, but a rough check of 1/A, which should
be of the order of magnitude of the free energy
density associated with .the internal forces, may
be made if these are assumed to be chiefly internal
stresses of magnetostrictive origin. The energy
density should then be of the order of magnitude
of ) 'E, where X is the saturation magneto-
striction and E the saturation value of Young's
modulus" Since" " ) =3.99X10 ' and E
2.22 && 10"dynes/cm' this gives 1/A =3.54)& 10'.
The numerical agreement is, of course, fortuitous;
the agreement in order of magnitude, however, is
significant. An experimental determination of the
initial and reversible susceptibility of this speci-
men is being undertaken in this laboratory.

I%4. MODIFICATIONS OF THE THEORY

The assumptions on which the formulas of the
statistical theory are based have now been stated
clearly. If any of these assumptions are modified,
the theory must be modified accordingly. Several
such modifications will now be considered.

(a) Inequality of the A; s; grouping of domains

If the condition (13) is not satisfied, the
reversible properties of the specimen are not ones
that a reversible specimen could possess, and the
equations describing these properties are not
integrable. Nevertheless they are still useful.
The case that will be considered is the one treated
by Kondorsky: an iron crystal with two values of
the A, s, a value A for oppositely magnetized
domains and a value 8 for domains magnetized
at right angles to each other. Let I;, v; refer to the
positive cubic axes and u;, 8; to the corresponding

D. Kirkham, Phys. Rev. 52, 1162 (1937).
M. Kersten, Zeits. f. Physik 12, 665 (1931).

~0S. Siegel and S. L. Quimby, Phys. Rev, 50, 1165
(1936).
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negative axes. If the crystal is subjected to a 6eld
of variable magnitude II in a Axed direction
(lq, l2, ls), u;. and u; becomes HJ,—l, and +HI, l;,
respectively, and Eq. (10) becomes

integration leads to the following results:
Without grouping,

[100] j' =x' —(1/9) [-'(1—x) ]"'~,

bx;/bII =P (l;y; P x, —x; Q l;y;),
2'W i 2'g i

by„/bII = ul, (x,' y,')—
(21)

bj/bH = (~/9) [-;(1—x)]"~t'+px(1-x)
(26)

[110] j'= 2x' (2—/9) [3(1 2x—)]&-+»~~,

bj /bII= (n/9) [3(1—2x)]& +»'&
+p(l,.;Z. ;-y, Zl...), (22)

where x„=v,+v, , y;=v; —v„, n=A J„p=BJ,.
From (22), if j is the ratio of the magnetization I
in the 6eld direction to its saturation value J„

bj /bH = p;l;by, ;/bII

=nQ;l (x —y,')

+P Ix(1 —2x)

+(1/9) [3(1—2x)]'"""I.
With grouping,

[100] j'=x' —(1/9) [(1—x)/2x]' '&,

bj/bH= (~/9x) [(1—x)/2x]'-«

+pZ 2 I(l"+l ')x'x —21*i y'y I (23)
[110]

+px(1 —x);
(27)

j2 = 2x2- s(1-2x)[(1-2x)/x]2-~~,
If, as is supposed by Kondorsky, oppositely

oriented domains are grouped together in the
crystal, the relation 5;,=av, v; must be replaced
by the relations"

5, , ; =av„.8;/(v, +v;),

5;, ;=bv,v;, 5,, ; =bv;v;, etc. (25)

The n-term in (22) must therefore be divided by
x;; (23) then becomes Kondorsky's formula for
reversible susceptibility.

To complete the calculation in the more
complicated cases, Kondorsky substituted in this
formula the values of the v s and v, 's (as func-
tions of j) given by the statistical theory. It is
clear from $3 that this is inconsistent with the
assumption A/B. This inconsistency may be
avoided by assuming merely that the v s and 8 s
are single-valued functions of j, and that these
functions are the same as if the specimen behaved
reversibly for changes of H alone. The x s and

y s are then to be obtained as functions of j by
eliminating bH from (21), (22) and (23) and
integrating. For H along [100] or [110], the

"Equation (24) follows from the fact that the pre-
vious analysis holds throughout the region v;+8;, in
which boundaries of type i, i—exist, if 5;; is replaced by
S;, ; /(vi+8i) and if v;, v; are replaced by vi/(vi+8;),
8i/(vi+8i), To obtain Eq. (25), it must be assumed that
the total area 5; separating domains of types i and i-
from domains of types j and j—is made up of portions
5;;, 5;, ;, S;, ;, 5;, ; whose ratios are given by
5;, ;/.5;', ; =v;/f7;, etc, Then 5;, ;=Si viv;/tL(vi+vi)(v;+v;) J,

1- 5&2 vi~7/Dvi+8 ) (v7'+82') j, etc. By the previous anal-
ysis, 5; =b(vi+8i)(v;+v;); (25) follows at once.

bj /bEI = 3m[(1 2x)/x]("—&&)+'

+P(i —2x){x+-',[(1—2x)/x]' ~&I

The parameter x =v~+8~ runs from 3 to 1 in case
[100], from 3 to ~~ in case [110]. The case
H~~[111] was solved by Kondorsky without use
of the statistical theory.

Kondorsky gives reasons for supposing that
n«P. In this case, both (26) and (27) become

[100] j2=x' —-' bj/bH=Px(1-x) .

[110]j =2x —-', (1—2x),

bj/bEI=P(x+ —',) (1 —2x).

The statement that n((p implies not: that
boundaries between oppositely oriented domains
do not move, but that they move irreversibly.
Since this irreversible process proceeds rapidly, it
may be a better approximation to evaluate the
v s by assuming that the 180' reversals are
completed before the volume oriented perpen-
dicular to the 6eld has changed appreciably. "
This gives

[100] bj /bH =2P/9, (0—j——',),
=pj(1-j), (l=j=1);

(29)
[110] bj/bH= (2P/9)(1 —9j'/4),

(o—j—3&2)

=P2(1/~&~ 2), (-:&2=j=1/~2)-
"N. Akulov, Zeits. f. Physik 69, 78 (1931}.
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for j as a function of x together with' "
X/happ = 4x —I. (3o)

0.7

0.6—

04—

0.2

0
0 O. l 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 I 0

FIG, 2. Magnetostriction of iron crystal magnetized in
L100) direction. Curves have been calculated theoretically
by formulas (26) and (30); the number next to each curve
is the corresponding value of n/P. Curve 1 coincides with
Heisenberg' s, curve ~ with Akulov's. Circles are Web-
ster's experimental values.

The curves obtained by either method agree
with Kondorsky's and differ from those of the
statistical theory (Q. =P in (26)) in that the [100]
curve rises initially to a maximum equal to 9/8
the value for j=0. Measurements of the re-
versible susceptibility of crystals should therefore
show whether the relation n«P holds.

None of these formulas are applicable to the
specimens measured by Williams. " The initial
susceptibilities in directions [100], [110],[111]
for these specimens were in the ratios 6:3:2, a
fact that can be explained only by assuming that
every domain is magnetized along one of the
[100]directions nearest the specimen axis. If this
assumption is made, the observed ratios can be
explained by assuming either no grouping and
a =P (statistical theory)' or grouping and n))P."
Kondorsky, accepting the grouping hypothesis,
explains the large o. in this case as measuring an
irreversiMe initial susceptibility. Until measure-
ments of the reversible susceptibility have been
made, no conclusion seems possible. The two sets
of assumptions give identical curves for reversible
susceptibility as a function of j.

The magnetostriction may be calculated as a
function of magnetization for the [100] and
[110]cases considered before, from the equations

For n =P, with no grouping, this gives Heisen-
berg's' curves; for a)&P it gives Akulov's, "which
are also obtained if the 180' inversions are
assumed to be completed first by an irreversible
process. These and several other cases are plotted
in Fig. 2, together with Webster's'4 experimental
values (with J.= 1750, Xioo=19.5X10 ', the
values used by Heisenberg). The curve n=10P
follows the experimental data more closely than
either Heisenberg's or Akulov's, but the data are
not sufficiently precise to make this of much
significance.

Data on reversible susceptibility, taken if
possible on crystals with a large enough demag-
netizing factor to insure distribution of the
domain magnetizations among all possible direc-
tions, are highly desirable. The reversible sus-
ceptibility curves for a«P, u =P, and n)) P
differ much more than the magnetostriction
curves.

(b) More general relations

Assumption (10a) seems a, thoroughly reason-
able one, even if (10b) does not hold. The fact
that one of these necessitates the other is a result
of the previous assumptions, some of which-are
much more arbitrary tha, n (10a). In particular,
assumptions (5) to (9), leading to the relation

p;;=2;,viv;, are open to question. If these are
abandoned and (10a) is retained, (10b) no longer
follows, but Eq. (8) now gives

bv;=p p;;f(u; u, ), — (31)

v; = —(1/A P)a&/au, , (32)

where the p, s are functions of the n, 's, with

p;; =p, ;. Hence Bv;/Bu; = Bv, /Bu;, and there is a
function @ such that 8@/Bu, =v;. This function
is arbitrary except for the one condition
P;Bp/Bu;=1. If @=—(1/A) log f and u;
= —(1/A) log $;, where A is any convenient
constant of the proper dimensions, this becomes
Q,$;BP/Bg; = P, showing that f is a homogeneous
function of degree 1 in the $,'s. Thus

"H. J. Williams, Phys. Rev. 52, 1004 (1937). 24 W. L. Webster, Proc. Roy. Soc. A109, 570 (1.925).



J, H. HO WRY

where P is a, homogeneous function of degree 1 in

the quantities e ""'. The result obtained in f3
corresponds, with proper choice of A, to the case
of a linear function.

These examples illustrate the greater flexibility
of the present theory as compared with the
statistical model.

)5. CONCLUSION

It has been shown that the equations previ-
ously obtained by means of an artificial model
may also be obtained by a detailed analysis of the
process of reversible boundary displacement. The
necessary assumptions have been stated ex-
plicitly, and it is now possible to investigate the
effect of modifications in these assumptions. The
agreement with experiment is surprisingly good
in view of the large number of assumptions that
must be made in order to make the mathematics
manageable.

Although more theoretical work will be neces-
sary in the future, it may be fairly asserted that
the immediate need is for more and better

experimental data rather than for further refine-
ments of the theory. " Measurements of the
reversible susceptibility of crystals are par-
ticularly desirable.

The writer wishes to express his appreciation to
Professor E. P. Wigner for a number of very
helpful discussions.

Note added in Proof: Preliminary measure-
ments have now been made on the specimen of
Fig. 1. The specimen has become slightly harder
magnetically; analysis of the magnetization curve
at high fields now gives xp=19.7, and the value
determined by measurements at very low fields
is 20.3. The difference is well within the precision
of the high field value. The writer is indebted to
Mr. J. L. Fowler and Mr. W. M. Woodward for
assistance in these measurements, and to Pro-
fessor S. L. Quimby of Columbia University for
the loan of the specimen.

'~There is need, however, for further theoretical study
of irreversible boundary displacement. Some progress in
this direction has been made by W. D(iring, reference 14,
and by E. Kondorsky, Physik. Zeits, Sowjetunion 11, 597
(1937); Comptes rendus Acad. Sci. U.R.S.S. 20, 117
(1938).
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The Noncubic Growth of Single Crystals of Silver by Condensation from Vapor

J. H. HowEv
Georgia School of Technology, Atlanta, Georgia*

(Received January 16, 1939)

The condensation of silver vapor upon solidified, spherical drops of silver has been found to
produce straight, thin, single-crystal needles of silver under certain conditions. The formation
of the drops and the subsequent growth of the needles was a continuous process accomplished
by condensing the vapor in vacuum upon an iron surface as that surface was cooling from above
the melting point of silver to an equilibrium temperature just below the melting point. The
shape and crystalline orientation of the needles indicate that they are the result of a nucleus
growing by condensation much more rapidly in a certain (110) direction than in other
directions, including other ( 110 ) directions.

T is known that certain metals such as copper
- - sometimes crystallize in the form of filaments
or dendrites although the solid form of the metal
possesses cubic symmetry. ' The growth of small

*The work here reported was done at Sloane Physics
Laboratory, Yale University, New Haven, Connecticut.

' A photograph showing evidence of dendritic growth in
a single crystal of copper is given by A. B.Greninger, Am.
Inst. Min. and Met. Eng. , Tech. Pub. 596 (1935).

single-crystal silver needles or spikes by con-
densation in vacuum as here described is of
interest because it furnishes an additional test
for any theory that may be advanced to explain
the filamentary growth of cubic crystals.

The procedure by which the crystals here de-
scribed were grown may be made clear by
reference to Fig. 1 which shows a part of the


