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A Self-Consistent Field for Doubly Ionized Chromium*

RouERT L. MooNEvf
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A self-consistent field without exchange has been calculated for doubly ionized chromium in
the configuration (3p)6 (3d)4. All integrations were carried out numerically with the aid of a
calculating machine, The difference between the final and semi-final approximations to Z„', i is
nowhere greater than &0.003.
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GLANCE at the periodic table of the
elements will show that chromium occurs

in the middle of the transition group from scan-
dium to nickel. In the elements of this group the
3d sub-shells are not full in the sense of the
Pauli exclusion principle. Classically considered
this feature may be regarded as due to the fact
that the attractive force exerted on a 3d electron
by the field of the rest of the atom is not suffi-
ciently large to balance or overcome the centri-
fugal force due to the orbital angular velocity of
the electron —with the result that the electron
finds a stable position of dynamic equilibrium in
the 4s shell. It is to be expected that the self-
consistent field for chromium will exhibit strongly
the kind of "over-stability" in the 3d sub-shell
that was found by Hartree. '

The method of the self-cohsistent field is so
well-known that a detailed description is un-
necessary here. It is assumed that the ion is de-
scribed by a simple product function of one-elec-
tron functions of the form [P„,~(r)/r] S(9, p).
The differential equation satisfied by I'„, ~ is

d2P -2(z ) (n, I)

, + E—
dr'- r

t(t+1)
P. , (

——0. (1)

Z„, ) ——X„, g I"„)dr P'„, (dr. (2)

When the wave functions satisfying the appro-
priate boundary conditions are known, the field
due to a particular sub-group (n, f) with N„, ~

electrons is given by Z„, &/r', where

(Z„)'" '& occurring in (1) is de6ned by

(z„)&" '& = c+1+p z „, — z „,
N„, g

where C is the number of electrons removed from
the neutral atom to produce the ion. Zp„, ~ is
obtained by integrating

d~fn, & Zn, &
—ZPn, &

(4)

Slater' has shown that good approximations to
the correct radial wave functions can be ob-
tained by an interpolation method utilizing
analytic approximations to wave functions al-
ready calculated for other atomic systems. This
fact suggests that a crude initial field may be
obtained by direct interpolation in the case
of Cr III between tabulated values of the con-
tributions to Z, g already determined for Cl, '
K+ ' Ca++ 4 Cu+ ' and Rb+. ' This interpolation
was done graphically. For a given value of the
radius, values of Z„, ~ as ordinates were plotted as
functions of the atomic numbers of the corre-
sponding atoms. The ordinate of the intersection
of the curve drawn through the five points (cor-
responding to the five ions used for the inter-
polation) with the ordinate erected at the number
corresponding to the atomic number of chromium
was taken as the trial value of Z„, ~ for Cr III
for that particular value of the radius and sub-
shell considered. Subsequent calculations showed
that this method is empirically justified for the
E and I shells but is unsatisfactory for the 3EI

* Part of a dissertation presented to the faculty of the
Graduate School of Brown University in candidacy for the
degree of Doctor of Philosophy.

t Now at Georgetown University, Washington, D. C.
' D. R. Hartree, Proc. Roy. Soc. A141, 281 (1933).

2 J. C. Slater, Phys. Rev. 32, 339 (1928).
3 D. R. Hartree, Proc. Roy. Soc. 143, 506 (1934).
4 D. R. Hartree and W. Hartree, Proc. Roy. Soc. 4149,
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shell, primarily because of the double ionization
of Cr III in contrast with the lower degree of
ionization of the ions compared (Ca++ excepted).
A table of approximate values of Z„, i as calcu-
lated by A. Porter' was used as a first estimate
for the M electrons. (Porter's results are ad-
mittedly inaccurate because of the methods he
used to determine the energy parameters and
the fact that the initial distributions of the core
electrons from the (1s)' to (2P)' were left un-

changed in all subsequent approximations. )
In order to integrate (1) it is necessary to choose
a trial value of e„, &. Very good approximations to
the correct energy parameters are furnished by
x-ray data in the cases of the E and L electrons.

'A. Porter, Mem. Manchester Phil. Soc. V9 (1935).

Linear interpolation between the results for
Cu+ and Ca++ yield values of ~„, & satisfactory
as first trial values for the M electrons.

Introducing the variable g„, i= P'„—
, ~/P„, i,

we can write (1) as

I(I+1) 2(Z„)(" '&

+
r2 r

It is convenient to integrate (5) inwards from
r= ~ to the value of the radius at which the
last maximum of P"„,i counted outwards from
r =0 occurs. At such a point g, i can be compared
with P'„, i/—P„, i obtained from the outward
integration of (1). The correct value of e, , g will

give a smooth join. When the point of join is
selected as above, it turns out that curves for

TABLE I. Tabulation of the calculated values of Z„ I.

0.000
.005
.010
.015
.020
~ 025
.030
.035
.040
.045
.050

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

:.18
.20
.22
.24
.26
.28
.30
.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

(1s)'

2.000
1.996
1.975
1.929
1.859
1.767
1.660
1.540
1.415
1.288
1.165

.928

.723

.552

.415

.308

.225

.163

.1175

.084

.059

.042

.020

.010

.005

.001

.000'

(2s)'

2.000
2.000
1.998
1.994
1.988
1.981
1.973
1.964
1.956
1.948
1.941

1.931
1.925
1.923
1.923
1.922
1.919
1.912
1.898
1.878
1.850
1.815

1.723
1.607
1.473
1,329
1.182
1.038

,897
.773

.554

.384

.262

.167

.110

.072

.044

.028

.017

.010

6.000
6.000
6.000
6.000
6.000
5.999
5.997
5.995
5.991
5.984
5.976

5.950
5.910
5.852
5.776
5.680
5.564
5.430

277
5.109
4.928
4.735

4.324
3.896
3.467
3.052
2.658
2,294
1.964
1.667

1.179
.814
.552
.368
.241
.157
.100
.064
.040
~ 025

2.000
2.000
2.000
1.999
1.998
1.997
1.996
1.995
1.994
1.993
1.992

1.990
1.990
1.989'
1.989'
1.989
1.989
1.987
1.985
i.&82
1.978
1.972'

1.960
1.945
1.929
1.915
1.902
1.892
1.885
1.880

1.877
1.877
1.872
1.857
1.827
1.780
1.717'
1.640
1.550
1.452

6.000
.6.000
6.000
6.000
6,000
6.000
6.000
6.000
6.000
6.000
5.997

5.994
5.988'
5.981
5.972
5.960
5.947
5.931
5.914
5.896
5.876
5.857

5.818
5.782
5,750
5,725
5;707
5.695
5.688
5.685

5.684'
5.677'
5.650
5.592'
5.498
5.364
5.193
4.988
4.755
4.501

(2P)' (»)' (3t)' (3d) 4

4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000

4.000
4.000
4.000
4.000
4.000
4.000
4.000
4.000
3.999
3.999
3.998

3.997
3.995
3.992
3.988
3.982
3.975
3.966
3.955

3.927
3.889
3.842
3.785
3.719
3.644
3.562
3.473
3.380
3.282

, 76
.80
.84
.88
,92
.&6

1.00
1.04
1.08
1.12
1,16
1.20
1.24
1.28
1.32
1,36
1.40
1.44
1.5

1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

2.6
2.8
3.0
3,2
3.4
3.6
3.8
4.0

4.4
4.8
5.2
5.6
6.0

(3d) 4

3.181
3.077
2.973
2.867
2.762
2.658
2.554
2.452
2.352
2.254
2.158
2,065
1.974
1.886
1.801
1.718
1.639
1.561
1.453
1'.283
1.130
.992
.869
.760
.663
.577
.501
.423

.001 .016 .322
.008 .229
.004 .175
.002 .123

.085

.060

.042

.030

.015

.007

.004

.002

.001

(&s)' (2s)' (2P)' (»)' (3P)'

.006 .016 1.347' 4.231

.004 .010 1,240~ 3.954

.002 .006 1.133 3.673

.001 .004. 1.028 3.394

.001 .002 .927 3.120'
,000~ .001 .831 2.856

.001 .741 2.604

.0005 .657 2.364
.58052.139
.5105 1.929
.447 1.734
.390 1,554
.339' 1.391
.294 1.234
.256 1.115
.221 .993
.191 .882
.164 .782
.130 .652
.088 .478
.059 .348'
.040 .25 1.

.027 .179

.018 .128
,011 .091
.008 .064
.005 .0455
.003 .032
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which values of q„ i and P'—
, i/P, ~ at the

point of join are plotted as functions of e„, &

closely approximate straight lines over a sur-
prisingly large range of values of e„, & as long as
Z„, g is left unchanged. The solution of (1) is
completed by integrating

(6)

where ri is the value of the radius at which the
join is made.

In integrating (4) and in normalizing P„, i, a
method of mechanical quadrature based upon
the interpolation formulae of Stirling and Bessel
and perfected by Milne' proved to be quite
satisfactory. Eq. (5) is best solved by the Runge-
Kutta method, 7 which has an inherent error
smaller than that characteristic of Milne's
method. A modification of Milne's method for
first-order equations can be applied to second-
order equations in which the first derivative is
absent. ' The formulae used in both the Milne
method and the Runge-Kutta method involved
ordinates instead of differences. If at most only
two figures are involved in taking differences, it
is perhaps advisable to use difference methods,
as has been done by Hartree. Even though the
calculations at each step in going from one
interval to the next in the ordinate methods are
more complicated than in the difference methods,
whenever a calculating machine is available, it
seems strongly advisable to use ordinates. A
larger number of significant figures can usually
be carried throughout the entire integration
using ordinates instead of differences.

Tabulated values of Z„, i were used as bases
for further approximations. A strict iterative
process does not in every case lead to the fastest
rate of convergence to self-consistency; and,
indeed, in the case of the 3d electrons such a
process actually led to a divergence from a self-
consistent distribution. In the present calcula-
tions the following facts were empirically
determined. It was found that the actually
calculated values of Z„, i offered the best
estimates for a new approximation for the (1s),

0.000
.005
.010
.015
.020
.025
.030
.035
.040
.045
.050

.06

.07
,08
.09
.10
.11
.12
.13
.14
.15
.16

.18

.20

.22

.24

.26

.28

.30

.32

.36

.40
44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96

1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44

1.50
1.60
1.70
1.90
2.0
2.1
2.2
2.3.
2.4

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

4.4
4.8
5.2
5.6
6.0

(is) 2

0.000
.443
.786

1.046
1.2375
1.373
1.463
1.516
1.539
1.538
1.5 18

1.439
1,327
1.199
1.067
.938
.817
.706
,606
..S 17
439
.372

.263

.184

.127

.086

.057

.036

.020

.0075

.000

(2s)'

0.000
.4425
.781

1.031
1.204
1.312
1.364
1.370
1.336
1.269
1.175

.925

.620

.284—0.064—0.410—0.745—1.060—1.352—1.617—1.854—2.063

—2.396—2.626—2.765—2.828—2.829—2.780—2.693"—2.579'

—2.3005—1.993—1.689—1.407—1.155—0.938—0.755—0.600—0.478—0.377—0.296—0,231—0.180—0.139—0.108—0.084—0.064—0.050—0.038—0.029

(2P)'

0.000
.0235
.089
.188
.316
.465
,633
.8135

1.004
1.201
1.402

1.806
2.203
2.580
2.931
3.250
3.536
3.787
4.002
4.183
4.330
4.446

4.501
4.637
4.600
4.501
4.351
4.165
3.954
3.726

3.251
2.781
2.343
1.949
1.604
1.309
.1.0605
0.854
.684
.545
.433
.343
.270
.213
.167
.131
.103
.080
.063
.049
.038

(3s)2

0.000

.781
1.030
I.201
1.306
1.354&
1.355
1.316
1.243
1.142

.877

.556.
,205—0.155—0.509—0.847—1.160—1.443—1.692—1.905—2.081

—2.325—2.432—2.417—2.297—2.090—1.813—1.483—1.113

—0.306
0.528
1.329
2.061
2.701
3.240
3.675
4.011
4.255
4.417
4.507s
4.536
4.514
4,449
4,350
4.225
4.079
3,919
3.748
3.571
3,391
3.211
3.029
2.852
2.680
2.513
2.352
2.198

1.970
1 645
1.363'
.922
.733
.613
.497
.403
.325

.210

.135
~ 108
.084

.049

.188

.315

.465

.631

.810
999

1.193
1.390

1.783
2.162
2.515
2.835
3.115'
3.353
3.552
3.702
3.807
3.870
3.891

3.821
3.617
3.300
2.892
2.412
1.878
1.306
.711

—0.506—1.697—2.810—3.811—4.684—5.421—6.024—6.498»—6.855—7.105—7.262
71337—7.342—7.290—7.189—7.049—6.877—6.681—6.466-6.237—5.999—5.755—5.481—5.228—4.981—4.740—4.5 12—4.264

—3.871&—3.414'—2.922—2.156—1.789—1.563—1.32 1—1.1175—0.943

-0.656—0.442—0.309—0.258—0.214—0.178-0.148—0.122

—0.083

(3d) 4

0.000

.001

.003

.007

.013

.021

.033

.047

.06S

.086

.138

.204

.285

.379

.487

.607
~ 739
.882

1.036
1.198
1.369

1.733
2.119
2, S225
2.937
3.357
3.778
4.197
4.609~

5.403
6.141
6.809
7.402
7.915
8.351
8.7135
9.007
9.237
9.411
9.536
9.617
9.660
9.67 1
9.654
9.613
9.553
9.475
9.383
9.279&
9.166
9.044
8.915
8.780
8.641 .

8.498
8.3515
8.203

7.977
7.594
7.210
6.451
6.081'
5.722
5.373
5.036
4.744

4.105
3.554
3.059
2.625
2.232
1.897
1.600
1.340

.932~

.645

.441

.299

.201

TABr.E II. Values of the unnormalized nave functions P„; I.
Values of the normalization constants aPPear

at the bottom of the table.

7 J. B. Scarborough, Numerical M'athematical Analysis
(Johns Hopkins Press, Baltimore, 1930).

"Bull. Nat. Research Council, No. 92 (1935).
f P'„, ~ dr 0.1871 2.1877 5.9898 15.3101 46.095 142.115



560 ROB ERT L. MOONEY

(2s), and (2P) groups. For the (3s) and (3P)
groups best rates of convergence were obtained
by adding to the results of the preceding ap-
proximation two-thirds of the difference between
the results of the preceding and immediate ap-
proximations to obtain an estimated table for the
immediately following calculations. In the case
of the (3d) electrons, only one-half the difference
between successive approximations was added in
the above manner to obtain the best results.

25"

20

and the results of the immediately preceding
approximation differ by more than &0.003. A
tabulation of the unnormalized wave functions,
P„, ~, is given in Table II with the normalization
constants given below the table. P„, ~ was
calculated throughout to at least five significant
figures, and it is probable that the values of P„, ~

are everywhere correct to at least two units in
the third decimal place. The energy parameters
(in atomic units) which characterize the self-
consistent field are given in Table III. The
radial charge distributions for the individual
sub-shells (from (3s) to (3d)) are plotted along
with the total radial charge distribution (the
full-line curve) in Fig. 1. A greater accuracy
than is customary in self-consistent field calcu-
lations has been aimed at here, since, as has
been pointed out by Hartree' the exchange cor-
rections can be rather accurately estimated from

0" I
/p t I

0 0.5 I.O l.5 2,0 2.5 30 3.5 4.0 4.5

FIG. 1, Radial charge distributions for individual sub-shells
and total charge distribution.

TABLE III. Energy parameters in atomic units which char-
acterize the self-consistent field.

442.11 50,845 44.242 6.972 4.946' 1.797
x-ray 441.1 42.6

In all, three approximations were made for the
(1s), (2s) a,nd (2p) sub-groups, and seven for the
outer electrons; the distributions of the inner

groups were left unchanged from the results of
the third approximation for those sub-shells.

EsULTs

Table I gives a complete tabulation of the
finally calculated values of Z„, &. Nowhere does
the difference between the calculated results

accurate solutions of the self-consistent field with-
out exchange with the aid of Fock's equations.
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Lindsay for proposing this problem and Dr. A. O.
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' D. R. Hartree and W. Hartree, Proc. Roy. Soc. A15'7,
490 (1936).


