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A self-consistent field without exchange has been calculated for doubly ionized chromium in
the configuration (3p)¢ (3d)% All integrations were carried out numerically with the aid of a
calculating machine. The difference between the final and semi-final approximations to Z,, ; is

nowhere greater than =40.003.

GLANCE at the periodic table of the

elements will show that chromium occurs
in the middle of the transition group from scan-
dium to nickel. In the elements of this group the
3d sub-shells are not full in the sense of the
Pauli exclusion principle. Classically considered
this feature may be regarded as due to the fact
that the attractive force exerted on a 3d electron
by the field of the rest of the atom is not suffi-
ciently large to balance or overcome the centri-
fugal force due to the orbital angular velocity of
the electron—with the result that the electron
finds a stable position of dynamic equilibrium in
the 4s shell. It is to be expected that the self-
consistent field for chromium will exhibit strongly
the kind of ‘“‘over-stability’ in the 3d sub-shell
that was found by Hartree.!

The method of the self-consistent field is so
well-known that a detailed description is un-
necessary here. It is assumed that the ion is de-
scribed by a simple product function of one-elec-
tron functions of the form [P, (r)/7]-S(6, ¢).
The differential equation satisfied by P, : is

d*P,, 1 [2(Z,) D I+ ‘
d" +[ —én,l—‘—“]Pﬂ,l=0. (1)
r2

r r?

When the wave functions satisfying the appro-
priate boundary conditions are known, the field
due to a particular sub-group (#, I) with N, ,
electrons is given by Z,, /7%, where

T

Zov=Nu 1| P, ldr/f Phodr. (2)
0
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(Z,)™ U occurring in (1) is defined by

(‘ZP) (ns l)=c+1+z Z?n, 1= ‘Zﬂn, 1y (3)
ny, 1

n, 1

where C is the number of electrons removed from
the neutral atom to produce the ion. Zs,, ; is
obtained by integrating

de’n, ! Zn, l’—ZPn, l
dar r '

(4)

Slater? has shown that good approximations to
the correct radial wave functions can be ob-
tained by an interpolation method utilizing
analytic approximations to wave functions al-
ready calculated for other atomic systems. This
fact suggests that a crude initial field may be
obtained by direct interpolation in the case
of Cr IIT between tabulated values of the con-
tributions to Z,, ; already determined for Cl—}!
K+ Catt4 Cut,! and Rbt+.%5 This interpolation
was done graphically. For a given value of the
radius, values of Z,, ; as ordinates were plotted as
functions of the atomic numbers of the corre-
sponding atoms. The ordinate of the intersection
of the curve drawn through the five points (cor-
responding to the five ions used for the inter-
polation) with the ordinate erected at the number
corresponding to the atomic number of chromium
was taken as the trial value of Z,, ; for Cr III
for that particular value of the radius and sub-
shell considered. Subsequent calculations showed
that this method is empirically justified for the
K and L shells but is unsatisfactory for the M
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shell, primarily because of the double ionization
of Cr III in contrast with the lower degree of
ionization of the ions compared (Catt excepted).
A table of approximate values of Z,, ; as calcu-
lated by A. Porter® was used as a first estimate
for the M electrons. (Porter’s results are ad-
mittedly inaccurate because of the methods he
used to determine the energy parameters and
the fact that the initial distributions of the core
electrons from the (1s)? to (2p)® were left un-
changed in all subsequent approximations.)
In order to integrate (1) it is necessary to choose
a trial value of ¢,, ;. Very good approximations to
the correct energy parameters are furnished by
x-ray data in the cases of the K and L electrons.

6 A, Porter, Mem. Manchester Phil. Soc. 79 (1935).
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Linear interpolation between the results for
Cut and Catt yield values of e,, ; satisfactory
as first trial values for the M electrons.

Introducing the variable 9,, ;= —P’,, 1/ Pa, 1,
we can write (1) as

I+ 2Z)
+ .

r? r

)

’
N'n, 1=0%, 1—€n, 1—

It is convenient to integrate (5) inwards from
r=c to the value of the radius at which the
last maximum of P”,, ; counted outwards from
7=0 occurs. At such a point 7,, ; can be compared
with —P’,, ;/P,, ; obtained from the outward
integration of (1). The correct value of €,, ; will
give a smooth join. When the point of join is
selected as above, it turns out that curves for

TABLE 1. Tabulation of the calculated values of Zn, 1.

r (15)2 (25)2 2p)s (35)? (3p)s (3d)4 r (15)2 (25)? 2p)° (35)? (3p)8 (3d)*
0.000 2.000 2.000 6.000 2.000 6.000 4.000 .76 006 .016 1.347% 4231 3.181
.005 1.996 2.000 6.000 2.000 .6.000 4.000 .80 .004  .010 1.240% 3.954 3.077
.010 1.975 1998 6.000 2.000 6.000 4.000 .84 002 006 1.133 3.673 2.973
.015 1.929 1994 6.000 1999 6.000 4.000 .88 .001 .004. 1.028 3.394 2.867
.020 1.859 1.988 6.000 1.998 6.000 4.000 .92 .001 .002 927 3.120° 2.762
.025 1.767 1.981 5999 1997 6.000 4.000 .96 .000%  .001 831 2.856 2.658
.030 1.660 1.973 5997 1996 6.000 4.000 1.00 .001 741 2,604 2.554
.035 1.540 1964 5995 1.995 6.000 4.000 1.04 .0005 657 2.364 2.452
.040 1.415 1956 5991 1.994 6.000 4.000 1.08 5806 2,139 2.352
.045 1.288 1948 5984 1993 6.000 4.000 1.12 5105 1,929 2,254
.050 1.165 1.941 5976 1992 5997 4.000 1.16 447 1734 2158
1.20 390 1.554  2.065
.06 928 1931 5950 1.990 5.994 4.000 1.24 3395 1,391 1.974
.07 7231925 5910 1.990 5.988% 4.000 1.28 294 1.234  1.886
.08 552 1923 5.852  1.9895 5981 4.000 1.32 256 1.115  1.801
.09 415 1923 5.776  1.989% 5972 4.000 1.36 221 993 1.718
.10 .308 1922 5.680 1.989 5.960 4.000 1.40 191 882 1.639
A1 225 1919 5.564 1.989 5.947 4.000 1.44 164 782 1.561
A2 163 1912 5430 1987 5.931 4.000 1.5 130 652 1.453
13 L1175 1,898 5.277 1985 5914 4.000 1.6 .088 478  1.283
14 .084 1878 5.109 1.982 5.896 3.999 1.7 .059 348 1,130
15 .059 1850 4,928 1.978  5.876 3.999 1.8 .040 251 992
.16 042 1,815 4735 19725 5.857 3.998 1.9 027 179 .869
' 2.0 018 128 .760
18 020 1.723 4.324 1960 5.818 3.997 2.1 .011 .091 .663
.20 .010 1.607 3.896 1.945 5.782 3.995 2.2 .008 .064 577
22 005 1473 3.467 1929 5750 3.992 2.3 .005 .0455 501
24 .001 1329 3.052 1915 5.725 3.988 2.4 .003 .032 423
.26 L0005 1.,182° 2.658 1.902 5.707 3.982
28 1.038 2,294 1.892 5.695 3.975 2.6 .001 .016 322
.30 897 1.964 1.885 5.688 3.966 2.8 .008 229
32 7730 1.667  1.880 5.685 3.955 3.0 .004 175
3.2 .002 123
.36 554 1,179 1.877  5.684% 3.927 3.4 .085
40 384 814 1877 5.6775 3.889 3.6 .060
44 262 552 1.872 5.650 3.842 3.8 .042
48 167 368 1.857 5.5925 3.785 4.0 .030
.52 110 241 1.827 5498 3.719
.56 072 157 1780 5.364 3.644 4.4 .015
.60 .044 100 1.7175 5.193 3.562 4.8 .007
.64 028 064 1.640 4988 3.473 5.2 .004
.68 017  .040 1550 4.755 3.380 5.6 .002
72 010 .025 1.452 4.501 3.282 6.0 .001




SELF-CONSISTENT FIELD

which values of 7,,; and —P’,, ;/P,,: at the
point of join are plotted as functions of e, ;
closely approximate straight lines over a sur-
prisingly large range of values of ¢,, ; as long as
Zn, 1 1s left unchanged. The solution of (1) is
completed by integrating

loge P,, z] = —f N, 107, (6)
1

71

where 7; is the value of the radius at which the
join is made.

In integrating (4) and in normalizing P.,, 4 a
method of mechanical quadrature based upon
the interpolation formulae of Stirling and Bessel
and perfected by Milne” proved to be quite
satisfactory. Eq. (5) is best solved by the Runge-
Kutta method,” which has an inherent error
smaller than that characteristic of Milne’s
method. A modification of Milne’s method for
first-order equations can be applied to second-
order equations in which the first derivative is
absent.® The formulae used in both the Milne
method and the Runge-Kutta method involved
ordinates instead of differences. If at most only
two figures are involved in taking differences, it
is perhaps advisable to use difference methods,
as has been done by Hartree. Even though the
calculations at each step in going from one
interval to the next in the ordinate methods are
more complicated than in the difference methods,
whenever a calculating machine is available, it
seems strongly advisable to use ordinates. A
larger number of significant figures can usually
be ‘carried throughout the entire integration
using ordinates instead of differences.

Tabulated values of Z,, ; were used as bases
for further approximations. A strict iterative
process does not in every case lead to the fastest
rate of convergence to self-consistency; and,
indeed, in the case of the 3d electrons such a
process actually led to a divergence from a self-
consistent distribution. In the present calcula-
tions the following facts were empirically
determined. It was found that the actually
calculated values of Z, ; offered the best
estimates for a new approximation for the (1s),

7J. B. Scarborough, Numerical Mathematical Analysis
(Johns Hopkins Press, Baltimore, 1930).
8 Bull. Nat. Research Council, No. 92 (1935).
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TaBLE I1. Values of the unnormalized wave functions P, 1.
Values of the normalization constants appear
at the bottom of the table.

4 (1s)? (25)? (2p)8 (35)2 (3p)8 (3d)¢
0.000 0.000 0.000 0.000 0.000 0.000  0.000
.005 443 4425 0235
.010 .786 781 .089 781 049 .001
015 1.046 1.031 .188 1.030 .188 .003
.020 1.237s 1.204 316 1.201 315 .007
025 1.373 1.312 465 1.306 465 013
.030 1.463 1.364 633 1.3545 631 021
.035 1.516 1.370 8135 1.355 810 .033
.040 1.539 1.336  1.004 1.316 999 047
.045 1.538 1.269 1.201 1.243 1.193 065
050 1.518 1.175  1.402 1.142 1.390 086
06 1.439 925  1.806 877 1.783 .138
07 1.327 .620 2.203 .556, 2.162 204
08 1.199 284 2.580 .205 2.515 285
09 1.067 —0.064 2931 —0.155 2.835 379
10 938 —0.410 3.250 —0.509 3.1158 487
11 817 —0.745  3.536 —0.847 3.353 .607
12 706 —1.060 3.787 —1.160 3.552 739
13 606  —1.352  4.002 —1.443 3.702 .882
14 517 —1.617 4.183 —1.692 3.807 1.036
15 439 —1.854 4.330 —1.905 3.870 1.198
16 372 —2.063 4.446 —2.081 3.891 1.369
18 263 —2.396 4.501 —2.325 3.821 1.733
20 184 —2.626 4.637 —2.432 3.617  2.119
22 127 —2.765 4.600 —2.417 3.300  2.5225
24 086  —2.828 4.501 —2.297 2.892 2937
26 057 —2.829 4.351 —2.090 2.412  3.357
28 036 —2.780 4.165 —1.813 1.878  3.778
30 020 —2.6935 3954  —1.483 1.306  4.197
32 0075 —2.5795 3.726 —1.113 711 4.6095
36 .000 —2.3005 3.251 —0.306 —0.506  5.403
40 —1.993 2.781 0.528 —1.697  6.141
44 —1.689 2.343 1.329 —2.810  6.809
48 —1.407  1.949 2.061 —3.811  7.402
52 —1.155  1.604 2.701 —4.684 7915
56 —0.938 1.309 3.240 —5.421  8.351
60 —0.755  1.060% 3.675 —6.024  8.713%
64 —0.600 0.854 4011 —6.4985  9.007
68 —0.478 684 4.255 —6.855  9.237
72 —0.377 .545 4.417 —7.105 9.411
76 —0.296 433 4.5075 —7.262  9.536
80 —0.231 343 4,536  —7.337 9.617
84 —0.180 270 4.514 —7.342  9.660
88 —0.139 213 4.449 —7.290 9.671
92 —0.108 167 4350 —7.189 9.654
96 —0.084 131 4.225 —7.049 9.613
1.00 —0.064 .103 4.079 —-6.877  9.553
1.04 —0.050 080 3.919 —6.681  9.475
1.08 —0.038 063 3.748 —6.466  9.383
1.12 —0.029 049 3.571 —6.237  9.279%
1.16 038 3.391 -5.999  9.166
1.20 3.211 —5.755  9.044
1.24 3.029 —5.481 8915
1.28 2.852 —5.228  8.780
1.32 2.680 —4.981  8.641
1.36 2.513 —4,740  8.498
1.40 2.352 —4.512  8.3518
1.44 2.198 —4.264 8.203
1.50 1.970 —3.8715  7.977
1.60 1.645 —3.4145 7,504
1.70 13635  —2.922  7.210
1.90 922 —2.156  6.451
2.0 733 —1.789  6.0815
2.1 613 —1.563  5.722
2.2 497 —1321 5373
2.3 403 —1.1178  5.036
2.4 325 —0.943 4.744
2.6 210 —0.656  4.105
2.8 135 —0.442  3.554
3.0 108 -0.309  3.059
3.2 084 —0.258  2.625
3.4 —0.214 2232
3.6 —0.178  1.897
3.8 —0.148  1.600
4.0 —0.122  1.340
4.4 -—0.083 19326
4.8 .645
5.2 441
5.6 299
6.0 201
@
J; Pzp,1dr| 0.1871 2.1877 5.9898 15.3101 46.095 142.115
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(2s), and (2p) groups. For the (3s) and (3p)
groups best rates of convergence were obtained
by adding to the results of the preceding ap-
proximation two-thirds of the difference between
the results of the preceding and immediate ap-
proximations to obtain an estimated table for the
immediately following calculations. In the case
of the (3d) electrons, only one-half the difference
between successive approximations was added in
the above manner to obtain the best results.
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and the results of the immediately preceding
approximation differ by more than =40.003. A
tabulation of the unnormalized wave functions,
P, 1, is given in Table II with the normalization
constants given below the table. P,,; was
calculated throughout to at least five significant
figures, and it is probable that the values of P,, ;
are everywhere correct to at least two units in
the third decimal place. The energy parameters
(in atomic units) which characterize the self-
consistent field are given in Table III. The
radial charge distributions for the individual
sub-shells (from (3s) to (3d)) are plotted along
with the total radial charge distribution (the
full-line curve) in Fig. 1. A greater accuracy
than is customary in self-consistent field calcu-
lations has been aimed at here, since, as has
been pointed out by Hartree?® the exchange cor-
rections can be rather accurately estimated from

TABLE 111, Energy parameters in atomic units which char-
acterize the self-consistent field.

30 35 4.0 4.5

F16. 1. Radial charge distributions for individual sub-shells
and total charge distribution.

In all, three approximations were made for the
(1s), (2s) and (2p) sub-groups, and seven for the
outer electrons; the distributions of the inner
groups were left unchanged from the results of
the third approximation for those sub-shells.

REsuLTS

Table I gives a complete tabulation of the
finally calculated values of Z,, ;. Nowhere does
the difference between the calculated results

44.242 1.797

42.6

442.11 6.972  4.946°

441.1

50.845

€n, 1
x-ray

accurate solutions of the self-consistent field with-
out exchange with the aid of Fock’s equations.
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