
LETTERS TO THE EDITOR

minute. The corresponding figures for scales-of-one are 60
and 1200 counts a minute for the slow and the fast re-
corders, respectively.

The writers wish to take this opportunity to correct a
misprint in reference (2) below. In that reference, Eq. (10)
reads 1/n~, x. This should be corrected to read

1/(n~ ~„xXe).
HAROLD LIFSCHUTZ

O. S. DUFFENDACK
University of Michigan.

Ann Arbor, Michigan,
February 2, 1939.
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On the Equilibrium of Massive Spheres
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It is usually stated' that general relativity sets an upper
limit to the mass and radius of a sphere of constant proper
energy density p. This result is obtained by considering

only those solutions of Einstein's field equations which

give a finite central proper pressure p; the minimum mass
and radius for which p first becomes infinite at the center
are taken as the limiting values. In his original paper'
Schwarzschild points out the existence of other solutions
with infinite central p, but dismisses them as physically
inadmissible because of this singularity without a further
discussion of their properties. However, an examination of
these solutions, which are described below, shows tha't they
lead to arbitrarily large masses and radii.

On the other hand a cold neutron gas modeP leads to an

upper limit on the size of a static sphere. It is of interest to
try to account for the difference in behavior of these two
models. If for a material consisting of particles in motion

(and which may exert forces on each other) the energy-
momentum tensors for the particles, and for the force fields

(apart from gravitation) associated with them, are additive
and have non-negative traces, then for such a material
T=p —3p~0 must always hold. The p =const. model for
suSciently high pressures has T(0. This not altogether
consistent model corresponds to the case of perfectly in-

compressible particles packed tightly together and treated
essentially nonrelativistically in that the contribution of
the forces to p is not taken into account. A negative T near

the center of the sphere, such as makes possible an ar-

bitrarily large mass for the p=const. model, may be re-

garded as analogous to a negative (repulsive) mass which

keeps the sphere from collapsing.
Both the original Schwarzschild solutions, and the new

singular solutions leading to arbitrarily large spheres, may
be obtained by a method considerably simpler than the
one used by Schwarzschild. Einstein's equations for con-
stant p and for the line-element

ds' = —e~ " dr' —r'd g' —r' sin' gd$'+e" " dP

reduce to

where x, U, P, are dimensionless quantities defined by
x=r/R, U=2u/R, P=8~R'P; u=—-'r(1 —e "), R is a char-
acteristic length determined in terms of the given constant

p by R'=3/8~p, ' and relativistic units, making c=1, G=1,
are used throughout. The radius rt, of the sphere is deter-
mined by that value x& of x where P first vanishes, and the
gravitational mass of the sphere is given by m=u&, the
value of u at x=xt, . The integral of (2) above is U=xa —K,
where K~O in order that e "=L1—r'/R'+KR/r j should
nowhere change sign. The usual procedure' corresponds to
making K=O, and then Eq. (3) may be at once explicitly
integrated, and gives the well known Schwarzschild interior
solution:

3(P,+1)(1—x')& —(P,+3)
(P,+3)—(P,+1)(1—x')&

where P, is the value of P at x=0. If P,~~, which is

commonly taken as the limiting solution, then as x~0,
P~4/x', and the corresponding radius and mass are fixed

by xb=(8/9)&, and U&=(8/9)&. This solution makes e"~0
and e~~1 as r~O.

The new singular solutions are obtained by making
E)0. Eq. (3) now can not be explicitly integrated in terms
of known functions, but it may be shown that solutions
exist which near the origin behave like P~7K/x'. Numer-
ical integration of (3) for several values of K shows that xt,

is very closely given by the largest positive root x& of
x—U=x —x'+K=0. Thus xq~x~, Ut, ——xt,' —K~x~' —K
=x&. For very large K, xr K&, so that x& K, U&~K&,

and it is seen that no upper limit on the size of the sphere
exists, if the singular solutions for the pressure are not
excluded. For these solutions both e~~0 and e"~0 as r~0.
Fig. 1 gives a general idea of the various solutions, includ-

ing the Schwarzschild limiting solution and the last one
for which p, —3P,~O (P,~1) holds,
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