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Electrodisintegration of Beryllium

We have succeeded in disintegrating beryllium with
electrons having energies in excess of the photoelectric
threshold. It is assumed (cf. preceding letter), as is the
case with the photodisintegration of beryllium, that the
products of disintegration are Be and a neutron. The
effect was detected by means of the activity which these
neutrons produced in silver or rhodium. The activity was
observed with a G-M counter system.

A sheet of beryllium 0.04 cm in thickness (in the vacuum
system) was surrounded with a silver or rhodium foil and
the whole encased in paraffin. When bombarded with

10 pa of 1.72-Mev electrons from an electrostatic generator
for one minute the silver or rhodium gave about 90 net
counts in the first minute. Both silver and rhodium de-

cayed with the appropriate periods, 22 sec. and 44 sec. ,

respectively. Assuming that, with the geometry used, 900
neutrons per second produce one count per minute from

a silver detector (determined by using a known p-ray
source of radon and a cross section for photodisintegration
of 3 X 10 ' cm ) the cross section for the electrodisintegra-
tion process at this voltage is about 2)(10 " cm in good
agreement with the theoretical value predicted by Guth

(cf. preceding letter). The threshold for this effect was

established at about 1.65 Mev.
The possibility that the silver and rhodium activity was

produced by photoneutrons resulting from stray x-rays, or
x-rays produced in the beryllium, was eliminated; (1) by
introducing sheets of graphite in front of the beryllium
which reduced the activity essentially to zero; (2) by in-

creasing the thickness of the beryllium target. Since the
electrodisintegration should not increase for thicknesses of

beryllium greater than 0.04 cm, while the photodisinte-
gration is proportional to the thickness, it was possible to
show that the activity produced in the thin target was

essentially all due to electrons.
We wish to acknowledge our indebtedness to Dr. E.

Guth who suggested this problem and who has provided

many helpful suggestions.
GEQRGE B. CQLLINs

BERNARD WALDMAN
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Notre Dame, Indiana,

February 1, 1939.

The Advantages of Sca»~g Circuits in
Recording Random Counts

There are two distinct functions performed by a scaling
circuit when used in electrical counting systems for nuclear
investigations. The first function is that of reducing the
input rate to the mechanical recorder. The second is that
of changing the random distribution of pulses into one in

which the time intervals between pulses are more nearly

equal, before feeding these pulses to the mechanical
recorder. The great importance of this second function for
the reduction of the counting losses in the mechanical

recorder does not yet seem to be generally recognized,
although the matter has already been treated by others. i

The counting losses in a counting system, such as a
Geiger-Muller system, arise from two causes; the finite
resolving time of the components of the system and the
random distribution of counts encountered with radioactive
sources. The counting losses are determined by a function
which is extremely sensitive to the distribution of counts
and much less sensitive to the resolving times. The losses
are rather surprisingly large in nuclear work mainly be-
cause one is dealing with random distributions of counts.
For this reason, a method for the reduction of counting
losses which depends on removing the random element in

the distribution will be much more effective than a method
which depends on reducing the resolving time of the
mechanical recorder. It is this property which makes the
scaling circuit method so powerful and elegant. A scale-of-n
circuit changes a random distribution more and more
nearly into a periodic one as the scaling ratio, n, increases.
The marked periodicity of the counts is easily noted experi-
mentally. If the scaling ratio is great enough, the recorder
can be used at counting rates almost equal to its maximum
counting rate for equally spaced pulses without the occur-
rence of appreciable counting losses. Experiment shows

that a vacuum tube scale-of-eight is sufficient for counting
rates up to about 20,000 counts a minute or more if the
recorder is a Cenco counter. 2 Also it is found that the
maximum counting rate which may be recorded with inap-
preciable counting losses in the mechanical recorder (say,
one percent) increases by a factor of three hundred or more
when changing from a scale-of-one to a scale-of-eight. ~ This
is in general agreement with the theory of Alaoglu and
Smith. i

A recent proposa13 for the reduction of counting losses,
in which the method of attack is that of decreasing the
resolving time of the mechanical recorder in a scale-of-one

circuit, is thus seen to be incapable of yielding an appreci-
able increase in the counting rate which may be recorded
with negligible counting losses. Such high speed mechanical

recorders would, of course, be very useful in connection with

a scaling circuit, but cannot replace such circuits.
Some numerical results for a typical case, obtained by

means of the theory of Alaoglu and Smith, i will give a
quantitative idea of the magnitude of the scaling effect.
This theory has been accurately verified experimentally for
the case of a scale-of-one~ and additional results in general

agreement with the theory obtained by comparing a scale-
of-eight against a scale-of-sixteen. '

Let the resolving time of the G—M tube and quenching
circuit be 0.= 5 && 10 4 sec. Let us also consider two mechani-

cal recorders, a fast one with resolving time ~i=10 ' sec.
and a slower one with resolving time r2 ——10 2 sec. These
values are typical ones. Calculation shows that a vacuum
tube scale-of-two circuit using the slower recorder will be
just as accurate as a scale-of-one circuit using the faster
recorder (faster by a factor ten) up to input rates to the

system of over 1000 counts a minute. At 2000 counts a
minute the reading of the scale-of-two will only be about
two and one-half percent less than that of the scale-of-one.
For a scale-of-eight feeding the slower recorder, there will

be inappreciable losses in the recorder up to 30,000 counts a
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minute. The corresponding figures for scales-of-one are 60
and 1200 counts a minute for the slow and the fast re-
corders, respectively.

The writers wish to take this opportunity to correct a
misprint in reference (2) below. In that reference, Eq. (10)
reads 1/n~, x. This should be corrected to read

1/(n~ ~„xXe).
HAROLD LIFSCHUTZ

O. S. DUFFENDACK
University of Michigan.

Ann Arbor, Michigan,
February 2, 1939.

~ L. Alaoglu and N. M. Smith, Phys. Rev. 53, 832 (1938).
2 H. Lifschutz and O. S. Duffendack, Phys. Rev. 54, 714 (1938).' H. V. Neher, Rev. Sci. Inst. 10, 29 (1939).

On the Equilibrium of Massive Spheres
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It is usually stated' that general relativity sets an upper
limit to the mass and radius of a sphere of constant proper
energy density p. This result is obtained by considering

only those solutions of Einstein's field equations which

give a finite central proper pressure p; the minimum mass
and radius for which p first becomes infinite at the center
are taken as the limiting values. In his original paper'
Schwarzschild points out the existence of other solutions
with infinite central p, but dismisses them as physically
inadmissible because of this singularity without a further
discussion of their properties. However, an examination of
these solutions, which are described below, shows tha't they
lead to arbitrarily large masses and radii.

On the other hand a cold neutron gas modeP leads to an

upper limit on the size of a static sphere. It is of interest to
try to account for the difference in behavior of these two
models. If for a material consisting of particles in motion

(and which may exert forces on each other) the energy-
momentum tensors for the particles, and for the force fields

(apart from gravitation) associated with them, are additive
and have non-negative traces, then for such a material
T=p —3p~0 must always hold. The p =const. model for
suSciently high pressures has T(0. This not altogether
consistent model corresponds to the case of perfectly in-

compressible particles packed tightly together and treated
essentially nonrelativistically in that the contribution of
the forces to p is not taken into account. A negative T near

the center of the sphere, such as makes possible an ar-

bitrarily large mass for the p=const. model, may be re-

garded as analogous to a negative (repulsive) mass which

keeps the sphere from collapsing.
Both the original Schwarzschild solutions, and the new

singular solutions leading to arbitrarily large spheres, may
be obtained by a method considerably simpler than the
one used by Schwarzschild. Einstein's equations for con-
stant p and for the line-element

ds' = —e~ " dr' —r'd g' —r' sin' gd$'+e" " dP

reduce to

where x, U, P, are dimensionless quantities defined by
x=r/R, U=2u/R, P=8~R'P; u=—-'r(1 —e "), R is a char-
acteristic length determined in terms of the given constant

p by R'=3/8~p, ' and relativistic units, making c=1, G=1,
are used throughout. The radius rt, of the sphere is deter-
mined by that value x& of x where P first vanishes, and the
gravitational mass of the sphere is given by m=u&, the
value of u at x=xt, . The integral of (2) above is U=xa —K,
where K~O in order that e "=L1—r'/R'+KR/r j should
nowhere change sign. The usual procedure' corresponds to
making K=O, and then Eq. (3) may be at once explicitly
integrated, and gives the well known Schwarzschild interior
solution:

3(P,+1)(1—x')& —(P,+3)
(P,+3)—(P,+1)(1—x')&

where P, is the value of P at x=0. If P,~~, which is

commonly taken as the limiting solution, then as x~0,
P~4/x', and the corresponding radius and mass are fixed

by xb=(8/9)&, and U&=(8/9)&. This solution makes e"~0
and e~~1 as r~O.

The new singular solutions are obtained by making
E)0. Eq. (3) now can not be explicitly integrated in terms
of known functions, but it may be shown that solutions
exist which near the origin behave like P~7K/x'. Numer-
ical integration of (3) for several values of K shows that xt,

is very closely given by the largest positive root x& of
x—U=x —x'+K=0. Thus xq~x~, Ut, ——xt,' —K~x~' —K
=x&. For very large K, xr K&, so that x& K, U&~K&,

and it is seen that no upper limit on the size of the sphere
exists, if the singular solutions for the pressure are not
excluded. For these solutions both e~~0 and e"~0 as r~0.
Fig. 1 gives a general idea of the various solutions, includ-

ing the Schwarzschild limiting solution and the last one
for which p, —3P,~O (P,~1) holds,

G. M. VOLKOFF
Department of Physics,

University of California
Berkeley, California,

January 28, 1939.

~ K. Schwarzschild, Berl. Ber. (1916), p. 424; A. S. Eddington, The
Mathematical Theory of Relativity (Cambridge, 1924), p. 168; R. C.
Tolman, Relativity, Thermodynamics and Cosmology (Oxford, 1934),
pp. 246-247, and others.

2 J.R. Oppenheimer and G. M. Volko8, this issue, Phys. Rev. 55, 374
(1939). Eqs. (1), (2) and (3) are Eqs. (7), (9) and (10) of that
article rewritten for constant p.


