ROTATION AND OSCILLATION INTERACTION

since the direction of r, is not significant. From
(43b) we find

|a| =hc[q*— (AE/kc)? ] /2(E+mc?). (118)
With a, given by (45) we find
a-J AE
<p= . (117a)
aoFn E sin ¢

The right-hand side of (117a) is appreciable only
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for

I<AE/E~3,2, (118)

where 9, is the angle introduced in (50b). In
the average ¢, ~1/kb so that p~1 for

9~1/400=0.14°.

For scattering angles ¢>9,% a-J<aoF,.
Therefore over practically the entire range of
integration over ¢ the current term need not be
considered at all.
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The unsymmetrical broadening of the Q branch toward higher frequencies in the parallel type
bands near 1100 cm™ in the absorption spectrum of deutero-formaldehyde is taken as a mani-
festation of convergence toward lower frequencies rather than, as is usual, in the case of infra-red
bands, toward higher frequencies. This phenomenon is accounted for by taking into account an
interaction between rotation and oscillation of the Coriolis type arising from the accidental
degeneracy of the three vibration frequencies, belonging to three different symmetry classes,

falling near 900 cm™, 1000 cm™ and 1100 cm™.,

I. INTRODUCTION

HE absorption spectrum near 10u in the

deutero-formaldehyde spectrum consists of
three bands which badly overlap. Two of these
are characteristic of oscillations of the electric
moment normal to the axis of symmetry of the
molecule, while the third is characteristic of a
vibration parallel to the axis of symmetry. The
first two of these consist essentially of a group of
prominent lines protruding above a background
which at present cannot be resolved spectro-
scopically, and the third contains P, Q and R
branches. It has already been pointed out else-
where! that the spacings between the prominent
lines in the perpendicular bands in this region are
noticeably greater than the spacings between the
lines in a similar band near 4.6u and it has been
suggested that the explanation for this is un-

LE. S. Ebers and H. H. Nielsen, J. Chem. Phys. 6, 311
(1938).

doubtedly the same as that for the similar effect
observed in two overlapping perpendicular bands
in the spectrum of ordinary formaldehyde near
8.0u.2 The effect is here quite satisfactorily ex-
plained by taking account in the energy of a
Coriolis interaction between the two frequencies.
In the third of the above bands referred to in the
spectrum of deutero-formaldehyde the con-
vergence is in the direction of lower frequencies

2H. H. Nielsen, J. Chem. Phys. 5, 818 (1937). The
type of interaction between rotation and oscillation
discussed recently by W. H. J. Childs and H. A. Jahn
(Nature 141, 916 (1938)) in connection with the methane
spectrum is entirely similar to the one discussed in this
work relative to H,CO. The formaldehyde case is especially
interesting in that both perturbing frequencies are optically
active so that the convergence in opposite directions in
the two bands, described by C. and J., can here actually
be observed. In the case of the methane molecule the
perturbing frequencies are two- and three-fold degenerate,
respectively, while in this case they are nondegenerate.
The importance of such terms in the interpretation of
spectra was already emphasized by E. B. Wilson, Jr., in
one of his early papers on this subject.
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rather than in the direction of higher frequencies
as is usually the case for bands in the infra-red.
Although the P and R branches are too incom-
pletely resolved to satisfactorily study the con-
vergence it may be established that this is true
by observing that the Q branch is unsymmetri-
cally broadened toward higher frequencies. For
this to be so, what corresponds to the classical
moment of inertia of the molecule must be smaller
in the upper state than it is in the ground state.
An explanation suggests itself when one reviews
the case of ordinary formaldehyde. Here, due to
Coriolis forces, the two nearly coincident fre-
quencies which, however, belong to different
symmetry classes, suffer perturbations to their
accompanying rotational levels in such a manner
that the band of lesser frequency is strongly con-
vergent toward higher frequencies while the
other band is strongly convergent toward lower
frequencies. In this case we have, not two, but
three different oscillations of nearly coincident
frequencies, and belonging, here also, to three
different symmetry classes. We shall investigate
in this note what the nature of the interactions
may be here between rotation and oscillation to
see whether or not they may give rise to effects
in the spectrum such that the Q branch of the
parallel type band will be unsymmetrically
broadened toward higher frequencies and at the
same time the type of convergence retained
which is characteristic of the overlapping perpen-
dicular type bands in the spectrum of ordinary
formaldehyde.

II. SoLuTiON TO THE QUANTUM MECHANICAL
PrOBLEM

The three oscillations which give rise to the
three bands in question are the following ones
given in the order of ascending frequencies: the
deformation frequency of the molecule in and out
of its own plane; the frequency caused by the
deformation in the plane of the molecule of the
O—C—D bond angle and the frequency caused
by the deformation in the plane of the molecule
of the CD; bond angle. The first two of these will
give rise to changes in the electric moment per-
pendicular to the axis of symmetry, while the
third will produce an alteration of the electric
moment parallel to this axis. As a simplified
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F1G. 1. The three modes of oscillation which the molecular
model may execute.

model of the molecule which will approximate to
the actual case when it is oscillating in these
three modes we shall adopt one where the C and
O atoms and the C and D atoms, respectively,
are rigidly joined together, an assumption which
is justified when further we adopt force fields of
the valence force type, bearing in mind that the
frequencies in which we are interested are all
deformation frequencies where no changes in the
interatomic distances take place. This simplifica-
tion is in reality tantamount to suppressing the
other three modes of oscillation of the molecule.
The xz plane has been taken as the plane of the
molecule, the z axis having been made to lie
along the axis of symmetry and the origin of the
system to coincide with the center of gravity of
the molecule. In this system the coordinates of
the C, O and D particles when they are at rest,
will be respectively, (0,0, z4), (0,0, z), and
(x1% 0, 2,°) and (x¢% O, 25°) where x°= —x,° and
21°=29". The three modes of oscillation which this
model may execute are described in Fig. 1 and
are respectively identified with the frequencies
of the molecule, vs, vs and v¢ where v, > s> vs.

The quantum mechanical equation for this
molecular model, oscillating harmonically in
these three modes and rotating, has been de-
veloped with the neglect, however, of all terms
in the moments of inertia which arise from de-
formation of the molecule. This can be justified
on the basis that these will almost certainly con-
tribute amounts to the energy small in compari-
son with the interaction terms in which we are
interested, namely those arising from the Coriolis
forces. The derivation of the quantum mechan-
ical equation will be omitted here since the
method is a perfectly straightforward one. The
equation which is obtained may be divided into
zeroth and higher order terms of which only the
two first sets will here be set down:
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(Ho— Eo)¥o= (hv/2) {2Eo/hv+(vs/v)(8*/9n* —17)
+(v4/9)(9%/0¢% = {2) + (ve/v) (9°/ 08° — £7)
+u?(2r/h)*[(P*+Py%) + (21 /h)*(Ao/ Co) P.7]
—2\qu*(A o/ Co) [ (ve/vs)ind/ 3k

— (vs/v6)¥0/n](273/h) P2} =0,

Hi= —uhv{\[(va/vs)¥£0/9¢

— (ve/v4)19/08(2mi/h) JPo+ N[ (vs/v4)}50 /0
— (va/vs)d/9¢ J(2ni/ ) Py}, (1b)
In the above u?= (h/4n*4v),

(1a)

M= [2m(M,+ M,) tan «

+4m(Moo— Mop) tan aJ[(Me+ Mo)utoust 1,
Ne=[—4m(M,+ My)e tan «

T dm(Moe— Mod) tan o J[ (Mot Mo)uituat T,
Ns= (2m+4M.eo+4Modp) (urtus?) 1,

P,, P, and P, are the usual angular momentum
operators® (functions of the eulerean angles 8, ¢
and ¥) conjugate to the x, v and z axes, 4o, Bo
and C, are the principal moments of inertia. In
the above m, M. and M, are respectively the
masses of the deuterium, carbon and oxygen
atoms, o, p, € and § are constants defined as
follows :

(M2 —m(2:°—2L)) (Mo(280 —259) + 2m (2" —25°)) 2
(m/ Mo)(Mzs®— (Mo+2m)(2,° —25"))
X (Mc(zi’.— 23%) +2m (2.0 — 25°) ) !
m (20— (2:°— 20 +x1° tan @) (M.(2 —2°)
+2m (2" — 25"+ x,° tan a))!
(m/) Mo) (M 25" — (Mo~ 2m) (2.° — 22+, tan o))
X (M (202 —25°) +2m (2, — 22+ x:,° tan «)) .

The variables 7, £ and { are related to the dis-
placements of the D, C and O atoms from equi-
librium in the x, ¥y and z coordinates in the
following manner:

n=(4n2urws/36k) (x1+xs — (x3/€) + (x4/9)),
£= (4nugws/36M) (y1+y2— (v3/0) +(¥s/p)),
¢ = (472ugrs/4h)¥ (214 22) cot a,

3E. C. Kemble, Fundamental Principles of Quantum
Mechanics (McGraw-Hill Co., 1937), p. 232.
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where :
wr=(2m~+4M e*+4 M%)

+2m(1+4e+4€?) tan? o),
we=2m(M,~+ M,)(14+tan? o)

+4m? tan? o) (M, + M),
us=(2m=+4M.0*+4Mp?)

and may be regarded as reduced masses respec-
tively to be associated with one of the three
modes.

The last term in (1a) is an interaction term
between rotation and oscillation. Normally it
would be retained as a part of (1b) with the other
similar terms. Because of its coefficient (4,/Co),
which for D;CO is of the order six, this term will,
however, be considerably larger than the other
interaction terms so that for values of the rota-
tional quantum numbers up to about ten it will
be actually of the same order of magnitude as the
rotational energy. It is therefore included as a
part of H,. The second-order terms of H, which
are not given here, consist of terms which are
essentially the squares of the oscillational angular
momentum components along the x, y and z axes.
Their contributions to the energy of the molecule
will be entirely independent of the rotational
quantum numbers. Since they are therefore not
an interaction energy we shall not compute their
value.

Following the procedure suggested in the
earlier work referred to herein we take as a solu-
tion to the zeroth-order Hamiltonian for the
ground and first excited states vy, »s and g, the
functions:

¢(0) = { (64 prpsusvavsve/ B3

Xexp— (n*+£2+¢%)/210(6, 7, K, M)

Xexp (1K o+iMy),

Y (vs)=N(vs) { —th[(vs—r5)/2

+ ((ve—r5)?/4+ (K\sh/4m*Co) 1)} ]

X (2¢ exp— (n*+£2+¢%)/2)

+ (K\3h?/4n2C0) (vs/vs)?

X (21 exp— (n*+£2+¢%)/2)}

X0, J, K, M) exp (iKo+iMy),

(2a)

(2b)
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Y(ve) = N(ve) { (KNsh* /472 Co) (ve/vs)?

X (2& exp— (n*+£241%)/2) +h[ (ve—vs)/2

+((r6—v5)?/4+ (KNsh/472Co)?)t]

X (20 exp— (n*+£°4-¢2)/2)}

X 06, 7, K, M) exp (iKo+iMe), (2)
where
N2 = {(KNsh?/4x2Co)*(vi/v;) +h*[(ve—v;)?/4

+ (Ksh /472 Co) )3 I} 1 (167 urpsusy avsve/ B2

7 and k taking the values 6 and 5 and 5 and 6,
respectively.

Y(ve) = {(1677'3#1#2#31/41/5”6/}13)%
X (2f exp— (n*+£+4¢%)/2)}

X0, J, K, M)exp (iKe+iMy). (2d)

0, J, K, M) exp 1Kp+iMy) in the above
functions is the normalized eigenfunction for the
symmetric rotator problem ; K and M are integers
less than, or equal in the limiting case, to J. The
functions (2) give the energies of H, as diagonal
matrices except for a small contribution arising
from (Av/v) which may be regarded as a left over
from the term representing the Coriolis inter-
action. This term may actually be included as a
part of H, and its contribution to the energy
taken into account at a later point if this is
desirable.

The zeroth-order energies for the molecules in
the corresponding states are readily found to be:

E(0)=(h/2)(vs+vatve)+(J(J+1)—K?)
X (h?/8mw2A o)+ K*h?/8mw2Cy
E(g) = (h/2)(vs+3vs+ve) +(J(J+1) = K?)
X (h?/87%4 (1 —a—pB))+K2h?/8x2Co
E(vs) =h(vs+vs/24ve) +h((ve—vs)?/4
+ (KNt /4m2Co) )i+ (J(J+1) —K?)
X (h?/872A o(1+8)) +K2h?/872C,
E(ve) =h(vs+vs/2+4ve) +h((vs—vs)?/4
+ (K\sh/4m2Co)?)i+ (J(J+1) — K?)
X (h?/8724 o(1+a)) +K2h?/872C,

(3)

where @ and 8 may be regarded as correction
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terms to A, which to this approximation are,
however, both equal to zero.

To evaluate the corrections to the energy con-
tributed by H; we may without hesitation make
use of the nondegenerate perturbation theory and
proceed in the usual straightforward manner to
evaluate E, and E,, the first of which vanishes.
We shall include in E, only the second-order
contributions from H; as already suggested, and
of these we may actually neglect all the terms
except those where the frequency differences
(va—vs) and (v4—vs) occur in the denominators,
since all others will be small when compared to
these. The term (Av/v)n¢ of which we have al-
ready made mention will contribute an amount
entirely too small to justify its evaluation and it
also will be omitted. The remaining terms of E,
when computed and added to E, change the
expression (3) only in this respect that now «
and B are no longer zero but take the values:

a=(h/8m%4¢) N (K Nsh?v; /472 Cove)
X ((vatve) /vidve) 2 +N"h2[ (vs—5) /2
+ ((ve—vs)*/4+ (KNsh /47 Co)?)} *
X ((vatvs)/vivsh)*H { (va—vs) (B[ (ve—v5) /2
+((vs—35)2/4+ (KN\sh/4m?Co)?)} ]?
+ (B \sh?/472Co) (ve/vs)) } 7
and
B=(h/8m*A o) (N[ (ve—vs) /24 ((vs—ws)?/4
+ (BNsh/4m2Co)) J((vst+va) /vatved)?
+N2(KNsh2 /42 Co) (ve/vs) (vatvs) /viivsh)?)
XA (W[ (ve—s) /24 ((rs—vs)?/4
+ (KN\sh/472Co)?)4 ]2
+ (K \sh? /472 Co)*(ve/v4)) (va—re) } 77,

both of which are quantities greater than zero.

We shall not here consider it necessary to ob-
tain the selection rules, these having been dis-
cussed elsewhere, but shall be content with stat-
ing what these are. The transitions which may
take place and which are of interest to us in
this discussion are the following ones: from
the ground state to the states v; and g with
AJ= =1, 0and AK= +1; from the ground state
to the state vy with AJ= 41, 0 and AK=0.
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11I. Tag EFFECT OF THE INTERACTION
ON THE SPECTRUM

We are now in a position to inquire into what
will be the effect on the spectrum caused by these
interaction terms. We may accomplish this by
obtaining expressions for the frequency positions
of lines in the spectrum using the above energy
relations and selection rules. For the frequencies
vy and ve only those lines arising from the
transitions AJ=0, AK= +1 are of interest, the
other lines being at present spectroscopically
unresolved. The frequency positions of these lines
in the two bands are given by:

v=(vs+ve)/2— (h/87%)(1/Co—1/4,)
[ (rs—r5)2/4+ (B \sh/4n2Co)2 ]t
+(J(J+1) =K ah/8724,
+(Kh/47%)(1/Co—1/40), (5)

a relation which, except for the presence of a
small term ah?/87%A4,, confirms the one used by
Ebers and Nielsen in their work on ordinary
formaldehyde.

For the frequency »4 we obtain as frequency
positions of the permitted lines, according as
AJ=+1, AK=0 and as AJ=0, AK=0, re-
spectively, the two expressions:

v=v4+(Jh/8724 ) (2+a+B)
+ (2= K2)(a+B)h/87%4
and y=vs+(J(T+1)—K2) (a+B)h/87240.  (6)

Equation (5) has already been used by Ebers
and Nielsen to explain the structure of the two
bands »; and v in the spectrum of formaldehyde,
and as we have pointed out, a structure analagous
to this is found in the corresponding two bands
in deutero-formaldehyde. Our endeavor from the
outset was, however, to account for the unsyms-
metrical broadening toward higher frequencies
of the Q branch of the parallel band in this region.
We are therefore particularly interested in the
second of Egs. (6) which sets forth the com-
ponents comprising the Q branch. Since « and 8
are both positive quantities it becomes clear at
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once that, consistent with measurement, the Q
branch must spread out toward higher frequen-
cies. The lines of Eq. (6) have been plotted with
their relative intensities for comparison with the
branch as actually observed. This diagram is not
reproduced here, but is in reasonably good agree-
ment with experiment both in shape and in
breadth.

In determining the values of the moments of
inertia of the formaldehyde molecules, it has
always been assumed that the spacings of the
perpendicular C—H and C—D vibrations near
2875 cm™! and 2160 cm™! are the correct ones to
use, an assumption which has been justified
principally on the basis that this vibration is a
single perpendicular oscillation. While this is
indeed true, it may be pointed out that the other
CH and CD vibrations, parallel to the axis of
symmetry, and therefore normal to the first ones,
lie near 2780 cm™! and 2056 cm™!, respectively.
One may then advance the argument that these
frequencies might interact so as to perturb the
accompanying rotation levels to such extent that
also these spacings are unsuitable directly for
determining the values of the moments of in-
ertia. The extent of this perturbation can be de-
termined by referring to Eqgs. (3). Since there is
only one perpendicular frequency in this region,
any other perpendicular frequencies which the
molecule may have must lie so far away that the
difference vs—vs will be large compared to
(K\3h/87%Cy). The term under the radical may
therefore be expanded and E(ve) takes the form:

E(e)=(h/2)(va+vs+3ve) +(J(T+1)
—K2)h?/8n24 (14 ) + K22 /872Co(1+7), (7)

where v is equal to A\23%/87%Co(vs—ve). v will
under these conditions be small and we have
already seen that « is not large. To a fair ap-
proximation then 4, and Cp remain unchanged
as the molecule makes a transition from the
ground state to this excited state so that these
spacings may safely be used in making numerical
determinations of the moments of inertia of the
molecule.



