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In an attempt to explain the discrepancy between Mott's
theory and the observational results on the polarization of
electrons in the double scattering experiment, we have in-
vestigated the depolarizing effect of (1) multiple elastic
scattering, (2) inelastic scattering with spin change of the
incident electron and (3) exchange scattering in which the
exchanged electrons have opposite spins. Although mul-
tiple scattering actually takes place in the Au foils used in
the experiments, the depolarization caused by such scatter-
ing is negligible. For a screened Coulomb field and electrons
of 100 kv the depolarization in a 2.5)&10 ' cm Au foil is
only 2.2 percent whereas a 90—100 percent depolarization
is needed to reconcile theory and experiment. The de-
polarization caused by inelastic scattering is about 100
times smaller than that caused by elastic scattering. The
small depolarization in these two cases is due to the fact
that while there are many elastic and inelastic collisions,
most of these collisions take place with small scattering
angle 8 and for small angles the depolarization per collision

is sniall (of order H). The main contribution to the de-
polarization by inelastic collisions comes then from large
scattering angles at which inelastic scattering is relatively
infrequent. The exchange scattering contributes practically
no depolarization ( 10 "). While the depolarization per
collision in each exchange process is relatively complete,
the nuniber of exchange processes is extremely small due to
interference ( 10 '4 times the number of elastic collisions).
Therefore the absence of polarization in electron scattering
cannot be explained on the basis of the processes con-
sidered here.

A discussion of the validity of the first Born approxima-
tion is given (Appendix $2). It is shown that in the case
that the Born expansion parameter e'Z/Av is of order
unity, the first Born approximation gives a result for the
scattered intensity which is accurate to within 20 percent
or better. The depolarization is given with an accuracy of
18 percent or better.

I. INTRQDUcTIQN

~~NE of the important consequences of the
Dirac theory of the electron is the pre-

diction that an initially unpolarized beam of
electrons will become partially polarized as the
result of an elastic scattering process. If this
partially polarized beam of electrons is made to
undergo a second scattering, the intensity of the
twice scattered beam, according to the theory,
should be asymmetrical in the azimuth about the
direction of incidence on the second target.
In fact, the calculated scattering consists of two
parts: The first, independent of the azimuth, is
the product of the relativistic Rutherford intensi-
ties corresponding to the scattering angles at the
two targets. The second part arises from spin-
orbit interaction in the scattering field; it de-

pends on the orientation of the magnetic moment
with respect to the second scattering plane, that
is, it is azimuth dependent. Obviously this term
yields a nonvanishing contribution to the scatter-
ing only after the spin axes have been given a
preferential direction.

The quantitative theory of the polarization of
electrons by double scattering has been given by

27

26= (Jo —J )/JAv, (2)

' N. F. Mott, Proc. Roy. Soc. 135, 429 (1932),
'As will be seen in the following, this condition is

perhaps too stringent.
'For Au the theoretical asymmetry is negligible below

30 kv, attains a (rather flat) maximum at 130 kv and then
very slowly approaches zero for infinite energy.

Mott. ' According to his exact treatment of the
scattering in a Coulomb field the expected
azimuthal asymmetry is large enough to be
observed experimentally if the following condi-
tions are fulfilled: (1) only single scattering
should take place in the two targets, ' (2) the
atomic number of the scattering atoms of both
targets should be large (Z/137 comparable with
unity), (3) both scattering angles should be
large (of order m/2), and (4) the energy of the
incident electrons should not be too small. '

The intensity of the doubly scattered beam is
proportional to J where

J=1+8(6~, 8o) cos rp. (1)

Here 81 and 8~ are the two scattering angles,

y is the azimuthal angle and 5 is a function of
the two scattering angles which has been calcu-
lated by Mott. The asymmetry, that is, the
quantity given in the experiments is
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where the subscripts refer to the azimuthal angle.
For 6& ——62=4»/2, the scattering in Au of elec-
trons of 90 to 160 kv should be characterized by
an asymmetry of 12 to 16 percent.

Very careful experiments for the purpose of
observing the asymmetry have been carried out
by Dymond. 4 With electrons of 90, 125 and
160 kv energy scattered through angles 4»/2 at
two Au foil targets the asymmetry observed was
of the same magnitude as the experimental
error of one percent. That is, if the»e is any
asymmetry ut OlI, it is small enough to be com-
pletely masked by the one percent experimental
error due to the small deviations from ideal
geometry, etc.

In the attempt to reconcile the theoretical
results of Mott and Dymond's experiments we

may first inquire whether all the conditions
mentioned above were fulfilled. The only con-
dition the fulfillment of which may be open to
question is that of single scattering. It can be
shown (Appendix )3) that an appreciable amount
of multiple scattering (about 50 collisions) takes
place even in the thin foils used by Dymond
(2.5X10 ' to SX10 ' cm thickness). It is evident
that multiple scattering will result in some
depolarization of the beam but just how much
remains to be seen.

In addition to multiple scattering we have
investigated the depolarizing effect of other
processes. These are: (1) inelastic scattering with

change of spin of the incident electron and

(2) exchange scattering in which the exchanged
electrons are of opposite spin.

The result of these considerations may be
stated very briefly. Unfortunately, none of the
effects considered produces any appreciable de-
polarization of the electrons and the discrepancy
between theory and experiment remains —per-
haps more glaring than before.

wave number k incident along the s axis and
scattered elastically in the direction 8, p by
some field of force. The wave function describing
the electron is asymptotically

s„e'" +"-u (0, (p)e'"'/» v=1 ~ ~ 4 (3)

where s„are the components of the amplitude of
the Dirac plane wave. In particular we have

$3=A, $4=B)

where A and B are constants related to the
direction of the spin axis (xo, &oo) in the incident
beam.

—B/A =cot (xo/2) e'"4.

[A J'+ fB['=1. (6)

The differential cross section for scattering into
the solid angle dQ is then given by

C4dQ= () u(4'+ (u4(')dn.

The general solution of the scattering problem
may be obtained by a superposition of the two
waves corresponding to A = Z, B=0 and A =0,
B= Z. Mott has shown that in these two cases
the asymptotic forms of the wave functions $3
and $4 are given by:

A =z, B=o:

A =0, B=z:

~ei7cz+ f(y) s'4r/»

$4-g(6)e' e'""/»

g( y) s i»s'kr/»—
e"*+f(8)e*""/»

(8a)

(8b)

We,may further impose the normalizing con-
dition

I I ~ THE THEQRY QF PQLARIzATIoN

Before discussing the depolarizing effect of
multiple scattering it will be most convenient
to recapitulate some of the general theory of
double scattering. ' We consider an electron with

4 E. G. Dyrnond, Proc. Roy. Soc. 136, 638 (1932), 145,
657 (1934). For further references and a critical survey of
the experimental work see H. Richter, Ann. d. Physik 28,
533 (1937).

where f and g are independent of y and are the
same functions in (8a) as in (8b). By superposi-
tion we find for the scattered beam

u4=A f Bge ", u4 B—f+Age'&——

For the scattered electron the direction of the
spin axis x, ca is given by (cf. Eq. (5))

—u4/u4 =cot (X/2) e'".
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B/A = aie'~. (11a)

Choosing the scattering plane as the plane p=o,
we have

The scattering of an initially unpolarized beam
may be described by considering the beam to be
composed of two equally intense completely
polarized beams with opposing directions of
polarization. This direction is arbitrary and it is
convenient to choose it so that the direction of
polarization in each beam is the same after one
scattering as before. That is, from (5) and (10)

u4/us B/A. ——

From (9) we find

tiple scattering) plus one large angle scattering
so that the total deflection is 2r/2. The small

angle scatterings taking place before the first
large deflection do not polarize the initial beam
and, of course, we are not interested in the de-
polarizing effect of the small. angle scattering
after the second large deflection. Therefore our
problem is to determine the depolarization of the
beam between the two large deflections after it
has been polarized by the first of these large
deflections.

We define the polarization p in terms of
the probability amplitudes for the two spin
directions:

f =
I
A

I

' —
I
B

I

'. (13)

B/A = ai, (11b) Then the change of polarization per collision is

which means that the direction of polarization is
normal to the scattering plane. The two polarized
beams may now be considered separately.

The amplitude of the once scattered beam is
then

us/A =u4/B =f+ig (12)

Thus after one scattering the beam is polarized
with a polarization given by

~'=i(fg* f*g)/(I f1—'+
I g I') (»b)

The existence of a polarization therefore depends
not only on the existence of g but also on a
difference in phase between f and g.

The scattered intensity averaged over the spin
directions is from (12a)

c'o(» =
I fl '+

I g I

' (12c)

Since the two beams are treated independently
the intensity for the double scattering is obvi-
ously equal to (compare (1))

and the intensities for the two scattered beams
are given by

C ~ =
I f I

'+
I g I

'~i(f*g fg*) —(12a)

~P = —2P
I g I'/(If I '+

I g I') (15)

Multiplying by the number of collisions with
scattering angle 0 which take place in a distance
x~ in the first target and a distance x2 in the
second target, which from (12c) is 22rX(xt
+xs)(lfl'+ Igl') sin Ddt), we find for the net
polarization

P(x)t xs)

=e p —4 x(x,+x,)f ~g~' in ada. , (16)
0

if the polarization is complete initially. Here N
is the number of scattering atoms per unit vol-
ume. Averaging over the effective thickness of
epch target for 45' incidence (and emergence)
we have

&2d v'2d

l dx, I dxsP(x), xs), (17)
Zd'~ 0 0

~p= (I» I' —
I u41')/(I »I'+

I
u41') —

& (14)

From (13), (9), (7) and (12c) we find for the
change in polarization averaged over the azimuth'

where d is the actual thickness of the target. Thus
@0(~1)@0(82)[1+(5(8,) 8(82)) -' «s v']. (12d) we find for the degree of polarization

III. DEPOLARIZATION BY MULTIPLE ELASTIC

ScATTERING

t1 —e—r"y'

yd
(18)

We consider that the scattering in each target ' There is no correlation between the direction of the
consists of many small angle scatterings (mul- spin axis and the azimuth of the scattering plane.
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where in (18a) becomes

p =4v2m-X
( g (

' sin Ides.
0

(18a) f Igl'
'

0

From the above treatment it is apparent that
I' represents the ratio of the polarization of the
beam just before the second large deHection to
that just after the first large deflection. Therefore
the asymmetry is now given by

28 =P26M, tt;. (19)

In the following we shall refer to 1 —I' as the
degree of depolarization.

x=l
x= —/ —1

for
for (20)

At large distances r from the scattering atom
G has the asymptotic form

Calculation of degree of depolarization

The calculation of g may be carried out by
formulating the scattering problem in terms of
the phases of the scattered (partial) waves at
infinity. We denote the radial wave functions of
the third and fourth components of the Dirac
wave function by G~. For the two types of solu-
tions of the wave equation, that is, for the total
angular momentum quantum number j=l+-',
and l —-'„x is given by

=2/O'P(l(I+1)/(2l+1)) sin' Aqua, (23)
l

~pl Ql Q—l—1 ~ (24)

To determine the phase difference by~ we con-
sider the differential equation obtained for G~ by
eliminating the radial function of the first and
second Dirac components from the well-known

pair of simultaneous first-order equations. ~ The
equation obtained may be written in the form

d'G'/dr'+ Q(r) G' =0, (25)

G = (2mc'+E —U) lG'/r. (25a)

x(x+1) 2 U(E+mc')
Q(r) =k'—

k cr2

m+1 d U/dr+-
r 2mc'+E —V

1 (dV/dr)'+2(2mc +E—V)d V/dr
+—— (26)

(2mc'+E —V)'

E is the kinetic energy of the electrons and V is
the scattering potential.

For the scattering potential V we must use a
screened Coulomb field since at the small angles
in which we are interested, the scattering by the
atomic electrons is just as important as the
nuclear scattering. We shall take

G~ 1/r cos (kr —(I+1/2) 7r+s~). (21)

Defined in this manner, the phase g~ vanishes for
the free particle. '

Mott' has shown that superpositions of the
partial waves, G multiplied by a suitable
spherical harmonic, may be found which have the
asy

(2&)U= —(e'Z/r)e "'~

where

mptotic form (8) with g(8) given by where k is the screening length (see Eq. (39)
below).

We may solve (25) by the W. K. B. method.
If r& is the (largest) root of Q(r) we have for
r)ri,

const.
P~'(cos 8)=sin 6(d/d cos 6)P~(cos 8) (22a) G, = (2mc'+E —V)

and P& is the ordinary Legendre polynomial.
With this expression for g the integral occurring

' For the free particle G ~r &J~„+$((kr), where J is the
Bessel function

r

&(cos 'dr —m 4 . 28
'r 1

' Cf. e.g. , H. A. Bethe, Ha&zdbmch der Physik, Vol. 24i1,
p. 311.
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In order to evaluate the integral in (28) we note first of
all that the last two terms in (26) are small compared to
the third term. As is evident from (26) the relative magni-
tude of the small terms will be largest for small r. In this
case we have

d V/dr U/r, d' V/dr' 2 V/r' (29)

Then in the last term the important part is that involving
d'V/dr' viz. :
(d V/dr)'/4mc'd' U/dr'~ V/8rr/c'

~(Z/137) (kk/mc) 1/8l«1, (29a)

since for 100 kv kk/mc 1. In (29a) we have evaluated V
at the minimum r, i.e. , r1 l/k. (See Eqs. (33a) and (34a)
below. ) The ratio of the fifth to the third term is

—4(k/rr/cr)'~ —,'(kh/mc)'1/l' &1/l'. (29b)

Similarly, the ratio of the fourth term to the third is less
than 1/l which is also small compared to one.

The third term is therefore the leading term of those
involving the potential V. This term will be comparable
with the free particle terms k' only for the smallest
values of l, viz. :

third term 2Ze' m 2 B~ &—e
—l/kb~ e

—l/kd (29c)
first term r 1 flak' l E

where E~ is the ionization potential for the E shell;
E~=40 kv for Au.

We may now expand Q in powers of the small
terms. We set

we have
~ql=~7/jl ' +~gl ' (32)

l+-', e'Z "dr /'1 1) e—""
. (33)

E+2rnc' k ., r t r bJ (r' —ro')l

In the following we shall replace x(x+1) by
(l+—')' for both values of x, this procedure being
appropriate for the W. K. B. solutions. Then

r o (l+-', ) /k. —— (33a)

first integral to the phase difference by 6p&&'&

and that of the last two integrals by by&("; the
latter will be important only for small / (cf.
above). When the last two integrals are
considered together, the difference between the
integrands is appreciable only when the term
2koe '~o/r is important compared to the free
particle terms in (30a). This is the case for
r ri ro. Then, since we consider / small, in
I—Io we may set the exponential e "/'=1 and
neglect the term 1/b in d U/dr since these two
neglections partially compensate each other and
the error thus induced is (ro/b)' (f/kb)'
(l/20)' for energies of the order 100 kv, (cf. (33a)
below).

With

where

Then

Q=q+q

q =k' —x(x+ 1)/r'+ 2koe '+/r, —

ko =e'Z(E+ mc') /k'c'.

(30)
The contribution to the phase difference by~~'&

is given by
(30a)

l+-', "dr
(30b) 8g~&'& =——e'Z

I

—q '(ko)
2+2mc' ~, , r'

~pl l '—/ —1 «
&'1

dr—q '(ko ——0)
r3

Tp

(34)

f q *'(q'( q'
~ ~)—dr (31)

1

l+-'
q '(d U/dr)dr/r,

B+2mc' „,

since g is the same for both values of x.
Denoting the integrand in (31) by Iwe use the

identity

It may be noted that r& differs very little from ro.

r&=ro(1 ko/k'ro) =ro[1——(Z/137l)kk/mc] (34a).
The integration in (33) is carried out in

the following manner. With the substitution
r=ro cosh x the integral in (33) becomes

1
sech' x(1+X cosh x)e ~ "'"*dx

ro 0
2

where ) =yo/b=(l+ ,')/kb Integra-ting t. he first
term by parts we findIdr = Iodr+

~
Idr Iodr ~, (31a)—f /'

'r1 7p E. „,

where Io=I(ko=0) and ro= ri(ko=0) is the root
of q for ko ——0. We denote the contribution of the

) k e'Z
by~"' ————— — cosh xe ~ "'"*dx. (33b)

t+-,'a+2 .
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From Heine's integral representation of the
Hankel function, ' the integral in (33b) is equal
to —m/2H~~'~(/X). Then we obtain

XHg &"& (iX)
s, = ——p —— —0,

(/+-') 2
(38b)

m e'Z Hg&'&(iX)

2 b E+2mc'
(35)

S2 ——QO'(/+-') '.
1

(38c)

The sums S& and $2 may be evaluated numeri-

The integral (34) may be evaluated in terms cally. For k we use the Thomas-Fermi atomic
of elementary functions. We find radius

1 /'e'Z) ' E+mc'
0~

(/+~)' L kc ) E+2nsc'
(36)

5=jP/me'Z =1.23X10 ' cm for Au. (39)

Then for E=100 kv we have kb= 21, /=1.05,
S~=1.98 and S2 ——1.76. Then

tan 0 = —(/+-', )k/ko, m/2 (0 (m. (36a) y=890 cm ' (40)

From (35) and (36) we note that the phase
difference 8g~ is small for all l. Since both 8g~(')

and by&~') decrease monotonically with increasing
l; the largest by~ will be by~. For energies of the
order 100 kv and for any reasonable screening
length b the argument of the Hankel function in

(35) is small for small /.

e'gt E q
-' 1

8$[t '=
!

— = ! . (Small /) (37)
kc E.E+2nsc') l+-,'

For /=1 and E=100 kv (37) and (36) give
bg&&'& =0.116 and 5q&~') =0.176 so that 8g~ ——0.29.
Therefore we may replace sin hs& in (23) by 8g~

for all /. For very large I, I»kb the phase differ-
ence behaves like e "~'. For small l, l((kb the
summand in (23) is comparatively small because
of the factor /(/+1)/(2/+1). For the important
values of l, l kb the summand varies very slowly
and we may replace summation by integration.

For the quantity p occurring in the polariza-
tion factor P (compare (18)) we find from (18a),
(23), (35) and (36):

( s'Z
!y =442~%!

&E+2mc')

For the thickest foil used by Dymond, d=2.5

X10 5 cm and
yd=2 2X10 ' (41)

Since the main contribution to the sum S& (and
to S2 as well) arises from small' / where H&"'(iX)

2/n. lI, it follows that Sq and therefore y is

practically independent of the screening length b.
In addition, for the energies of interest, y is
insensitive with energy and ~n general pd milk be

of the order 10 '. For such small values of yd the
degree of depolarization 1 P(Eq. (18—)) is just
yd. Hence multiple elastic scattering produces a
negligible depolarization of the electron beam.
To resolve the discrepancy between theory and
experiment a degree of depolarization of about
95 percent or more is necessary, i.e. , pd should
be &4. It is very unlikely that the approxima-
tions made in the above derivation can introduce
an error of more than a factor two or three,
certainly not a factor 100.

The explanation of the small depolarization we
have found lies in the fact that while several
small angle collisions occur the depolarization in
each collision is too small to give an appreciable
total depola, rization. (Comps, re further Ap-
pendix $1).

X (log 2kb C——,'+2/'S—~+ /'S2), (38)

where C is Euler's constant=0. 577 and

IV. INELASTIC SCATTERING

In this section we shall investigate the effect
of inelastic scattering on the azimuthal asym-

e'Z E+mc'

kc E**(E+2mc')i

' Jahnke-Emde, Tables of Functions, p. 218.

(38a) 9 In the sum S1 the first term contributes about half
and the first five terms about 90 percent of the total value
of the sum. In S2 the contribution of the first term is
75 percent and of the first five terms about 99 percent
of the total value of the sum.
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metry of the doubly scattered electron beam. In-
elastic scattering may reduce the asymmetry in
two ways: (1) a simple reduction of the energy
before the large deflections take place and (2)
depolarization caused by change of spin of the
incident electron in the inelastic collision.

The first effect would reduce the asymmetry
since the large deflections would then occur at
lower energies at which the polarization is indeed
smaller (cf. reference 3). However, the rate of
energy loss" in Au is two Mev per g/cm~ and
with Dymond's foils the total energy loss is only
one kv. Therefore this reduction in the asym-
metry is entirely negligible.

We consider now the inelastic scattering in
which the incident electron changes its spin. If
we denote the differential cross section for this
process by C„'sin 8d8, the depolarization per
collision is 2C'„ /I „where C „is the total scattering
cross section for excitation of the nth atomic
state. In a manner similar to that used in the
derivation of (18) we have for the degree of
depolarization

where now

f 1 —e-&'y '

yd )
(42)

y=4W2~XP C„'(8) sin Bdd. (42a)
n

The summation in (42a) is to be taken over all

excitations.
To calculate the differential cross section we

may use the Born approximation. That this pro-
cedure will yield a sufficiently good result may
be concluded from the fact that the values of the
angular momentum of the incident electron for
which the inelastic scattering is important are
larger than the corresponding momenta for
elastic scattering. Since larger angular mo-
mentum implies smaller phases of the scattered
partial waves, it follows that the Born approxi-
mation is better for the inelastic scattering than
for the elastic scattering —and for the latter the
Born approximation is quite accurate even for
the values of atomic number and energy with
which we are concerned (see Appendix f2).

The differential cross section (per solid angle)
in Born approximation is given by"

4e4

L(k —k') '+ (E E'/k—c)']'

M„=~tdru„*g exp (iq r;)(ao+a n;)u, (43a)

ao ——s(k) s*(k'), a = —s*(k') es(k) (43b)

and q=k —k', q=2k sin 0/2. (43c)

M =apF„, (44)

where F„ is the "generalized form factor"

f
F„=) rd.u*P exp (iq r;)u„. (44a)

With
1 E

Cp= —— sin Be'~
2 E+ saic

(45)

the differential cross section (43) becomes

1( e'
C.'= —

(
— —

)
cot' (8/2) i

F„i
'. (46)

4 4Z+2mc')

Here E, k and E', k' are the energies and wave

vectors before and after the scattering; s(k) and
s(k') are the amplitudes of the Dirac plane waves

for positive and negative spin, respectively; I
and I are atomic wave functions for the initial

and final state, respectively, the components

being Schrodinger-like wave functions since very
little energy is given to the atom; the Dirac
operator n; acts on the spin coordinate of the jth
electron. In (43) and (43c) we have used the fa.ct
that the energy loss is small: 0=k', E=E'.

In Ci4 of the appendix it will be shown that the

second term of (44a) is much smaller than the

first term over practically the entire range of
integration over 8. Then the retardation term in

the denominator of (43) may be neglected and

the matrix element (43b) becomes

"See e.g. , H. A. Bethe, reference 7, p. 522. "H, A. Bethe, reference 7, p. 495.
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Summing over all excitations we have, using the is the contribution to the scattering from small
Hartree model" angles and

(47) sin 6 /2=1/(2kb ). (50b)

The contribution from the large angle scatter-
where I' is the atomic form factor for the mth
electronic state

F„,=j dr exp (iq r) Ip„(r) I',
I~ = cot' 8 2 sin Id'. (50c)

wherein P is the wave function of a single
atomic electron in the mth state. The integration
in (47a) is now to be taken over the coordinates
of a single electron. The summation on the right-
hand side of (47) is to be taken over all occupied
states.

For large q the atomic form factor I' is neg-
ligible due to interference. We may set

for q) 1/b„,

where b is the radius of the mth electron shell.
For smaller g we may expand the exponential in
(47a) and obtain

Carrying out the integrations in (50a) and (50c)
we find

I0+II ——41og 2kb . (50d)

P(Io+Ii) =4Z log 2kb.

For the quantity y we obtain from (42a)

p =4&2vrNZ(e'/E+2mc')' log 2kb (51).

In carrying out the summation over m occurring
in (50) we obtain the geometric mean of the shell
radii b which we may replace for order of mag-
nitude purposes by b, the screening length intro-
duced in Section III (cf. Eq. (39)). That is,

where r, is the component of r in the direction
of q. The term linear in r, vanishes from sym-
metry. The matrix element of r,' may be set
equal to b '. Thus we have

g'b ' q(1/b„
1 —

I
F„I'=

1 g&1/b„

Actually 1 —
I
F

I

' is less than the smaller of the
two values on the right-hand side of (49).

For the evaluation of the total cross section for
excitation of the atomic electron in initial state
m we have

For E=100 kv and the foil thickness d=2.5

X10 ~ cm we find

y =5.0 cm —' yd = 1.3&(10—'. (52)

Ke see then that the depolarization by inelastic
collisions is negligible. We observe that the de-
polarization caused by inelastic scattering is
smaller than that caused by elastic scattering by
about a factor 1/Z (cf. Eqs. (38) and (51)).This
can be understood from the fact that the small

angle scattering gives a small contribution (cf.
Eqs. (50a), (50c)) to the depola, rization. At large
scattering angles, it is well known that the total
elastic scattering is about Z times larger than the
inelastic, and the depolarization in one scattering
process is the same for elastic and inelastic
collisions at a given scattering angle, (see Ap-

pendix, Eqs. (107), (107a)).

I0 ——b ' cot2 8 2 q~ sin Pd8 50a
0

» The transitions which are forbidden by the exclusion
principle (state n initially occupied) have not been sub-
tracted. Therefore the cross section is Overes/ima/ed.

V. ExcHANGE ScATTERIÃ6

A change in the polarization of an electron
beam can take place as a result of exchange
scattering only if the exchanged electrons have
opposite spins. Since the spin forces are weak for
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the atomic electrons the spin of each electron will

not change in the capture and emission processes.
This also has the important consequence, that
such exchange processes as we are considering
can take place only with atomic electrons in in-
complete shells. Exchange between the incident
electron and an atomic electron of opposite spin
in a closed shell will result in two atomic elec-
trons having the same set of quantum numbers
and this is forbidden by the Pauli exclusion
principle. Thus in Au only the 6s valence electron
can participate in the type of exchange scattering
which leads to depolarization.

In contrast to the case of depolarization by
elastic and inelastic scattering, the depolarization
per collision due to exchange scattering will not
be small but the net depolarization will be ex-
tremely small because very few exchange col-
lisions of the type considered will take place. This
is due essentially to the strong interference be-
tween the wave functions for the valence state
and the continuum.

To obtain a quantitative estimate of the im-
portance of exchange scattering we make the
following (necessarily) rough calculation of the
exchange cross section. The differential cross
section is given by"

4'. (D) sin 2M@=(822'a2') 'l~ I' sin ada, (53)

where ao ——h2/222e2 is the Bohr radius. A factor 22

has been inserted in (53) because the spin of the
incident electron must be opposed to that of the
valence electron and this is true in half the cases.

The matrix element for exchange is essentially
given by

k and k' representing the initial and final wave
vectors.

Because of the rapid oscillation of y the
contribution to the matrix element will be small
in the region where fz is slowly varying, but
will be appreciable near the nucleus where Pz
also varies rapidly. We therefore represent the
valence state wave function by

Pz(r) =4'z(0)e ~", P=Z/ao (56)

With the wave functions (55) and (56) the
matrix element (54) may be evaluated to give
approximately

327r2 P
l gz(0) l'

k' (p2+g2) 2
(57)

where q=k —k' (cf. Eq. (43c)).
The value of the 6s wave function Pz at the

nucleus may be obtained from considerations of
the type used in the theory of hyperfine struc-
ture. '4 For s electrons we find

Pz'(0) =z, (t+z) "(-,', z,)

zap'n*3

p'~
(58)

7rZ'n*'

where z is the degree of ionization (here =0),
Z, the effective nuclear charge (here =Z), 22* is

the effective quantum number and «(22, Z) is a
relativistic correction factor given in Eq. (246)
of reference 14. For the 6s state of Au, n*=1.21

and ~=2.0.
From (53), (57) and (58) we find for the

differential cross section

3E JI dT dTzfz (r)X« *(rz)

x lr —rzl Vz(rz)»(r) (54)

where r, rz denote the coordinates of the elec-
trons initially in the continuum and valence
state, respectively. Pz is the wave function for a
single electron in the valence state and moving
in the field of the rest of the atom. Xk and Xk

are the wave functions of the incident and out-
going electrons, respectively. We take

x«(r) =exp (ik r), x« (rz) =exp (ik' rz), (55)

"See e.g., H. A. Bethe, Ann. d. Physik 5, 325 (1929).

pR„q ' a2'
c,„(a)= i28

l

—~, (»)
Z4n*' ( R ~ (1+$2)4

where p= (2ka2/Z) sin 0/2 and R„=e'222/2k' is

the Rydberg energy.
From (59) we obtain for the total cross section

32~ «2 pR„q ' )a2i '

3 22*20 E I LZ)

X L& —(&+4&'/P') '7 (6o)

'4See e.g. , H. A. Bethe and R. F. Bacher, Rev. Mod.
Phys. 8, 82 (1936), Chapter VIII.
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For energies of order 100 kv, k//=1 and the
square bracket in (60) is practically equal to one.

For the degree of depolarization we have
(compare (42a) )

values of z (compare (30))'"

~" dr e'Z m.i
v =ko —e-""Qop= —II "&(iX). (103a)

r Av 2

yd = 2%2%de

64v2v- a' (R„) '
t apq '

(61)
3 n*'E El EZ)

For K=100 kv, d=2.5&&10 ' cm we find yd=2
&& 10 ", an entirely negligible depolarization.
This result is due to the rarity of exchange
collisions. Since most of the collisions are elastic
we see by comparison of (60) and the total
cross section for elastic collisions (Appendix,
Eq. (112)) that the fraction of collisions which
are of the exchange type is

C,„"' 8 ~' f'R„q ' ( tv y
'
z—«3.

e 3 n* (6E I EeaZ)

Thus for E= 100 kv only one in 4&&10"collisions
is of the exchange type.

f= (i/2k) P(2l+1)P&(cos 6) (e"'t' —1),
0

(104)

g= —(1/k) PP~'(cos 8)Spate'*
0

(104a)

Now since most of the collisions take place
for small scattering angles we are interested in
the values of f and g for 8 small. Making the
appropriate expansions we have from (22a)

For the sake of simplicity we first eliminate

p & &. We can see very easily that the phase
difference g$ g ) y=8'g[ is small compared to g&

for all I Th. e ratio by~/rl~ is largest for /=1.
From (103a) and ((37) et seg) we find for the
usual values of the. constants, 8v~/v~ ——0.10.
Therefore in (102) and (22) we expand e"'&' and

f and g become

APPENDIX

)1. Depolarization per collision at small angles f= (i/2k) P (2l+ 1)(e"&' —1),
0

(105)

In order to see that in each elastic collision
only a small depolarization occurs, it is ad-
vantageous to consider the angular dependence of
the depolarization. The depolarization in a de-
flection at angle 8 was given in Eq. (15) as

—8'/&=2(g('/((fj'+ (g(') (101)

The function g is given by (22). The Faxen-
Holtzmark expression for f is

f(6) =i/2k+P~(cos 0)
0

X[(I+1)(s»« I) +I(s—~'9 —
&
—

& —1)j. (102)

From (21) and (28) the phase vM is given by

g = (8/2k) Pl(l+1) bv)e "&'.
0

(105a)

Since g~ and Rgb behave like e ""'for large l, the
series (105a) converge and we find from (101)
that at small scattering angles the depolarization
per collision is small of order H. This result is,
therefore, true for any scattering field for which

the scattered intensity is finite for small angles.
For scattering in a pure Coulomb field, the
series (105a) will, of course, diverge. In this
case, for small 6,"

~ f ~

= (2e'Z/kv) (1/8'k) (106)

~ g (
= (e'Z/kv) (E/E+ mc') (I/8k), (106a)

g =Lim~ Q'dr Qoldr ~, (10—3)r~E. „,

where the subscript 0 refers to Z=O. We can
expand the integrand in terms of the most
important potential term and find for both

'~ The error incurred by this expansion is small for the
important values of l(~kb). The error is greatest for l = 1;
with 2=100 kv the phase gi from (103a) is 2.62 whereas
a numerical integration of (103) gives the exact value
g1 = 2.87. The difference between the exact value of
and the value given by (103a) decreases rapidly with
increasing l.

"Reference 1, Eq. (6.8).
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so that the depolarization per collision for small
deflections is of order 8' for all scattering fields.

For the numerical value of the depolarization
in one elastic collision we find for 100 kv (see
Eqs. (109) and (109a) below)

f = —
& kb'(e '2/')«&)f ) II, &'&( &&)dk

1/kb

7r(—e'Z/Av) bH& &'&(i/kb)

= 2 (e'Z/kv) kb' (109)
2

i g/f i'=0.013&7'. (107)
since kb))1;

For inelastic collisions we have, of course, the
same result. The depolarization per inelastic
collision is from Section IV (cf. (45) and remarks

preceding Eq. (42)),

e'Z ( E
gs = ——kb'

4 kc EE+2mc' j
VH) &'&(i&&)d&&

/ Irb

The small depolarization found in the fore-

going may now be understood as follows. The
depolarization depends on the product of the
scattering cross section and the depolarization
per scattering (101).The former is large only for
small 8 and just in this region the latter is
small.

f2. Validity of the Born approximation

In the foregoing the statement has been made
that the Born approximation is accurate for the
elastic scattering even though the Born expansion
parameter e'Z/kv =1 for the energies and atomic
number in which we are interested. We shall now

show that this is so not only for the scattered
intensity ~f ~'+ ~g~' but also for the depolariza-
tion ~g~'. For large scattering angles the Born
approximation is known to give a result for the
scattered intensity which is in agreement with
the exact formula of Mott (nuclear scattering).

In the Born approximation the phases q~ and

b»& are assumed small and for f and g we have
from (105) and (105a)

fs= —(2/k) Q(l+ ', )r&&,
-

0
(108)

(108a)

Replacing sums by integrals and using (103a)
and (35) we find"'

7 It is obviously consequent in the first Born approxi-
mation to use for the phase and phase difference the
limiting forms for small scattering potential, hence
Bg) ——Bq)(0).

2C„'/C„=2(ao~'= '(E/E+m-c')'sin'&7

=0.013&72. (107a)

7&i e'Z
&c E

—H &'&(i/kb)
4 kc & E+2mc') k

= (e'Z/kc) (E/E+ 2mc') 'kb'0 (109a)

Of course g» and f» depend on the screening
length b, but their ratio is essentially inde-

pendent of the screening and in agreement with

(106) and (106a) as it should be, cf. Sauter. "
In order to test the Born approximation for

our problem, the exact value of the sums

occurring in (104a) were found numerically. "
For kb=100 and e'Z/kv=1 corresponding to E
about 100 kv we find

I f ~

=1.81X104/k,
I g I

=0 167X10'0/k. (110)

The Born approximation yields

f» ——2.0 X 104/k, g» ——0.182X 104&1/k. (110a)

The use of the Born approximation therefore
overestimates f by only ten percent and g by
9 percent. For the scattering the error is 21

percent and for the depolarization 18 percent.
The screening radius b has been taken rather
large in the above example. For smaller screening

lengths the phases for a given l are smaller and

the, Born approximation better.
This result is perhaps not surprising insofar as

it is well known that the condition for the
validity of the Born approxima. tion e'Z/hv«1 is

"F.Sauter, Ann. d. Physik 18, 61 (1933).
"For the calculation of these sums the part Bqi(') of

the phase difference may be neglected since this part of
8q~ contributes to g the amount

1 e'Z 'B+mc' 8
gl~— g Q~g2irf)

2 kc E+2mc' k i
The absolute value of the supe is of order or less than ~kb
and for the numerical case considered in (110) g1~308 jk
as compared to g~17008/k from 6q~(')-
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a sufficient but not a necessary condition. In the
problem considered here it is possible to see
qualitatively the reason for the fair agreement
between (110) and (110a). In (104) and (104a)
the main contribution to each of the sums arises
from those values of I for which the phase q ~ is m /2
or smaller and in this region the assumption of
small phases is sufficiently well fulfilled.

It may be pointed out that the Born approxi-
mation is not accurate for the calculation of the
polarization of the electrons, but only for the
depolarization (or scattered intensity). The
polarization as was mentioned in the foregoing,
depends on the relative phase of f and g whereas
the depolarization depends on the value of g
itself. The relative phase of f and g is in fact
zero in the first Born approximation" (in con-
trast to the value of g itself) and at least the
second approximation is necessary for the calcu-
lation of the asymmetry.

$3. Total number of collisions

a. Elastic collisions. —The average number of
elastic collisions taking place in a foil of thick-
ness d is

of the ionization potential and v„ the number of
electrons in the nth shell. For Au we may take

A„= 6 volts for the 6s shell
20 l( ll $l 5d (i

=100 " " " 5s, Sp and 4f shells.

The contributions to the sum in (113) from
the 6s, Sd and the Ss, Sp and 4f shells are 1.85,
4.95 and 1.7 reciprocal volts, respectively. The
contribution from the remaining shells will be
about 0.5. The total number of inelastic collisions
is then n, 16. This number may be in error by
a factor 3 or so in either direction but in any
case it is indicative of the fact that several
collisions can take place in the foils under
consideration.

f4. Relative magnitude of transition "current"
and "density" terms

In Section IV it was stated that the current
term in (43a), vis:

a J=a ~tdru„*P exp (iq r;)n;u (114)

n. =2v2+Nd C,~(8) sin Ides,

where a factor K2 has been inserted because of
the obliquity of the path. With C = If ~

' and

f given by (104) we have in the Born approxi-
mation

4,("'——2s C,((6) sin ad@
p

where

J „=iq r„, (115)

makes a contribution to the inelastic scattering
which is much smaller than that due to the
density term aoF„(cf. (44), (44a)). Since the
relative magnitude of the current term is largest
for small scattering angles we may expand the
exponential and obtain

=47r(e'Z/fiv) 'b'. (112) r„=) Pr;u *u„dr
7

(115a)

With d=2.5X10 ' cm and b=k' /me'Zi we find
that on the average 40 elastic collisions take
place in each foil.

b. Inelastic colhsions. —The total number of
inelastic collisions in each foil is"

is the dipole moment corresponding to the
transition u,„~u„.For the current term we have,
with a;= —r';/c

J=i(AE/kc) r„, (116)
e4 v„2m''

n; = 2v2z Nd Q log —,
mv'

where A„ is an energy of the order of magnitude
a J AEar hE ~a~

1

apF„heap q r„leap g
(117)20 N. F. Mott, Proc. Roy. Soc. 124, 425 (1929). Also

F. Sauter, 'reference 18.

(113)
where AE is the energy loss. Therefore the ratio
of the current to density term is
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since the direction of r„ is not significant. From for
(43b) we find hZ/Z (118)

kcL&2 (gg/k~)~j-', /2(g+~c&) (118) where 8 is the angle introduced in (50b). In
the average 8 1/kb so that p 1 for

With ao given by (45) we find 1/400=0. 14'.
a.J AE(p=—aoF„Esin 8

For scattering angles 6 )8 ', a J«aoF„.
Therefore over practically the entire range of
integration over 8 the current term need not be

The right-hand side of (117a) is appreciable only considered at all.
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The Interaction Between Rotation and Oscillation in Deutero-Formaldehyde

HARALD H. NIELSEN
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The unsymmetrical broadening of the Q branch toward higher frequencies in the parallel type
bands near 1100 cm ' in the absorption spectrum of deutero-formaldehyde is taken as a mani-
festation of convergence toward lower frequencies rather than, as is usual, in the case of infra-red
bands, toward higher frequencies. This phenomenon is accounted for by taking into account an
interaction between rotation and oscillation of the Coriolis type arising from the accidental
degeneracy of the three vibration frequencies, belonging to three different symmetry classes,
falling near 900 cm ' 1000 cm ' and 1100 cm '.

I. INTRoDUcTIQN

'HE absorption spectrum near 10p, in the
deutero-formaldehyde spectrum consists of

three bands which badly overlap. Two of these
are characteristic of oscillations of the electric
moment normal to the axis of symmetry of the
molecule, while the third is characteristic of a
vibration parallel to the axis of symmetry. The
first two of these consist essentially of a group of
prominent lines protruding above a background
which at present cannot be resolved spectro-
scopically, and the third contains P, Q and R
branches. It has already been pointed out else-
where' that the spacings between the prominent
lines in the perpendicular bands in this region are
noticeably greater than the spacings between the
lines in a similar band near 4.6p, and it has been
suggested that the explanation for this is un-

' E. S. Ebers and H. H. Nielsen, J, Chem, Phys. 6, 311
(1938).

doubtedly the same as that for the similar effect
observed in two overlapping perpendicular bands
in the spectrum of ordinary formaldehyde near
8.0p.' The effect is here quite satisfactorily ex-
plained by taking account in the energy of a
Coriolis interaction between the two frequencies.
In the third of the above bands referred to in the
spectrum of deutero-formaldehyde the con-
vergence is in the direction of lower frequencies

' H. H. Nielsen, J. Chem. Phys. 5, 818 (1937). The
type of interaction between rotation and oscillation
discussed recently by W. H. J. Childs and H. A. Jahn
(Nature 141, 916 (1938)) in connection with the methane
spectrum is entirely similar to the one discussed in this
work relative to H2CO, The formaldehyde case is especially
interesting in that both perturbing frequencies are optically
active so that the convergence in opposite directions in
the two bands, described by C. and J., can here actually
be observed. In the case of the methane molecule the
perturbing frequencies are two- and three-fold degenerate,
respectively, while in this case they are nondegenerate.
The importance of such terms in the interpretation of
spectra was already emphasized by E. B. Wilson, Jr., in
one of his early papers on this subject.


