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FIG. 7. Relations between Iy, ), and energy of exciting
electrons B, for H2. Lines of constant Iy{ ). Lines of
constant illumination of plate in quartz spectrograph
(- - - -). Data of Finkelnberg and Weizel (+ +). Intensities
n arbitrary units.

plate, and this in turn corresponds to equal
exposure, we may say that our calculations agree
with their results to within the experimental
error, estimated as 0.05 ev. Unfortunately there
is no adequate reason to suppose that the
assumed conditions are even approximately
fulfilled. It seems more than ever desirable to

FIG. 8. Lines of constant Iy for D2. For
explanation see Fig.

obtain accurately controlled experimental results
of this type also.
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wishes to acknowledge gratefully a grant from
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The precise determination of the properties of nuclear resonance levels from the capture of
slow neutrons is made difficult by. the fact that most of the substances used for absorbers and
detectors are in the solid state, so that the calculations of Bethe and Placzek for the influence
of the Doppler effect are inapplicable, since these were based on the assumption of a perfect
gas. In this paper, their calculations are generalized to include the effect of the lattice binding.
Under the assumption that the crystal may be treated as a Debye continuum, it is shown that
for sufFiciently weak lattice binding, the absorption curve has the same form as it would in a
gas, not at the temperature T of the crystal, however, but at a temperature which corresponds
to the average energy per vibrational degree of freedom of the lattice {including zero-point
energy). In cases of somewhat stronger lattice binding, the line form is found to be more com-
plicated, and may even have a fine structure. Plots are given of the absorption line in several
typical cases. An approximate formula for the cross section for self-indication is also derived.

CCORDING to the theory of the compound
nucleus proposed by Bohr and by Breit and

signer, ' the cross section for the capture of a
slow neutron with an energy near to a resonance
level of a nucleus at rest in free space is given by

~ Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University,

' N. Bohr, Nature 137', 344 (1936); G. Breit and E.
Wigner, Phys. Rev. 49, 519 (1936).

an equation of the form

4 (8—Bo—R)'+-,'I'
where 00, the cross section at resonance, varies
inversely with v, the velocity of the neutron in
the rest system, E is the kinetic energy of the
neutron, and Zo is the energy that the neutron
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would have at resonance if the atom were in-

6nitely heavy so that the compound nucleus
would take up no recoil energy. For atoms of
finite mass, the recoil energy R= (m/M)Z must
be included in the energy denominator. ' (We
assume that the mass M of the atom is much

greater than the mass m of the neutron, and
neglect terms of higher order in m/M. ) I' is the
total half-value width of the resonance level, and
is proportional to the rate of decay of the
compound nucleus; in most cases this corre-
sponds to the process of emission of a high

energy gamma-ray.
Actually, of course, it never happens that one

has to do with a free atom at rest. This somewhat

complicates the determination of the properties
of the resonance level from slow neutron data.
The atoms in a gas may be treated as free, but
at Rnite temperatures, there is a Maxwellian
distribution of velocities, and Eq. (1) must be
modi6ed, as has been done by Bethe and
Placzek' ' for this case. It is here necessary to
change the resonance energy denominator ac-
cording to the relative velocity of the neutron
and atom, and to average over the Maxwellian
distribution of velocities of the gas atoms. The
proportionality of the cross section to I/v is
thereby unaltered, as this factor arises just from
the normalization of the incident neutron wave
function to unit Aux required by the definition
of a cross section. The result of the averaging
gives

is the "Doppler" width of the level. The function

s-1$R ( g- y }2

4(& x) =, ds, (&)
2m oo 1+/

e

' As it is usually written, the capture cross section refers
to the coordinate system in which the compound nucleus
is at rest, so that no energy of recoil appears in the de-
nominator of Eq. (1).' H, Bethe and G. Placzek, Phys. Rev. 51, 462 I,'1937). .

' H. Bethe, Rev. Mod. Phys. 9, 140 I'1937).
5 We will measure temperatures in- energy units, taking

the Boltzmann constant to be unity. The results quoted
here were derived on the assumption that the Doppler
width of the level is much less than the energy B0 at
resonance of the neutron. This condition is satis6ed in all
cases of practical interest, and we shall have occasion to
assume it in our calculations also.

becomes simple in the following limiting cases:

i.e. , far enough from resonance, the line has its
normal form.

i.e., when the natural breadth is much larger
than the Doppler breadth, the line is again
nor mal.

$((I, x(&I/$', P~ ', 7r :fe -'&"—'

i.e., when the natural width is small compared
to the Doppler width, the absorption line has an
eRective width strongly dependent on the
temperature.

The total activation induced in a thin detector
by a beam of neutrons distributed smoothly in
energy is proportional to the area under the
absorption curve

J~d+0Olk($, x) = 2'7rI 0'0,

independently. of the temperature of the gas.
Another quantity of experimental interest is 0„
the cross section for self-indication'

a, = Jfo'dZ . J)ada= —',0,$(&V2, 0)

where C is the Gaussian error function.
The above results are valid, however, only for

free atoms. Most of the experiments, of course,
have been performed with solid. absorbers and
detectors in which the atoms are bound in a
crystal lattice of some sort with a characteristic
Debye temperature of the order of room tem-
perature, and if the chemical binding is of impor-
tance, as we shall see is the case, it is clearly not
permitted to apply the free atom theory of the
Doppler broadening, as was done by Bethe, 4 to
such cases as silver at ordinary temperatures.

We shall want, therefore, to calculate the
shape of the absorption line for an atom which is
bound in a crystal lattice. We do not expect that
the chemical binding will cause any difference in

' See reference 4, Fq. (520),
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the 1/s variation of the capture cross section.
This has been shown analytically for the case of
capture by bound protons, but the result is much
more generally valid, following in every case just
from the normalization of the neutron wave
function. The calculation will be made without
detailed assumptions about the crystal model,
but in using the 6nal result, for simplicity, we
will treat the crystal. as a Debye continuum, and
hence the results will not admit of an exact
application to experimental cases. Nevertheless,
the general features of the dependence of the
absorption line on the characteristics of the
lattice and on the temperature may be expected
to be fairly independent of the detailed model.
For just as in the theory of speci6c heat, there
are several limiting cases in which the results
may not depend on the model of the lattice as-
sumed, so that any fairly smooth interpolation
should approximate the rigorous result fairly
closely. For example, let us consider a crystal
lattice at the temperature absolute zero. If the
lattice binding is su%ciently strong (as defined
below), the absorption line will be normal in
form, but centered about B=Eg, while for very
weak binding, as for instance might be the case
with a difkrent substance containing the atom in

question, the absorption line will again be
normal in form, but centered about an energy
E=EO+R. Since in practice, this shift R is often
of the order of F, the half-width of the absorption
line, this change in the curve can be experi-
mentally important, even though the recoil
energy is numerically quite small. It might thus
be possible to detect the effect of the chemical
binding, especially at low temperatures, by use of
different crystals, containing in common an
element with a slow neutron resonance capture
level, but in which the remaining elements do
not appreciably capture or scatter slow neutrons
of the resonance energy.

In the intermediate cases, the shape of the
absorption line is in general much more compli-
cated. However, in the case of.weak binding, as
de6ned below, it will be possible to treat the
bound atoms as if they were in a gas, not however

with a temperature T, but at a larger tempera-
ture corresponding to the average energy per

' K. E. Lamb, Jr., Phys. Rev. 51, 187 (1937).

vibrational degree of freedom (including zero-
point energy) of the crystal.

We must now ask for the probability W(IP. };
In. })for the capture of a neutron of momentum

p by a de6nite lattice atom I. of nudear type A
to form a nucleus B with emission of a gamma-
ray of wave vector k when the crystal undergoes
a transition from a state [a,} to a state }P,}.
Here the set of numbers denoted by }n,} gives
the numbers n,

' of quanta (phonons) in the
various modes s of oscillation in the lattice. We
must consider that the 6nal state is reached
through an intermediate state in which there is
neither neutron nor gamma-ray, but a compound
nucleus' C with the lattice in a state In, }.The
usual dispersion theory gives, apart from a
trivial constant factor,

~(}p. };I~.})

(Bp,kiII'i Cn, )(Cn, jII'iAn, p)
(g)"' ~o —~+~( .) —~( .)+('/2) ~( .)

where 1'(n, ) is the total half-value width of the
intermediate state (C, n,).' Because of the short
range of nuclear forces and hence the inde-
pendence of the motion in tEe crystal of the center
of gravity and the internal degrees of freedom
of the nucleus, the matrix elements of the
perturbation JI' which appear in the numerator
of (8) can be factored into

(Cn, ~II'~Aa, y)

(n, ~exp (ip xi,/5) ~u, )1VI,. „
(BP, i

II'
i
Cn, )

= (P, ~
exp ( —~k xi,/5)

~
n)cV, d(k, ).

where lV»q(k) and M., i, are the matrix elements
for radiation and compound nucleus formation,
respectively, for a free nucleus, and, for example,

(n,
~
exp (ip. xz, /h) j n, )

is the matrix element for transfer of a momentum

8 We will ignore throughout the circumstance that the
compound nucleus C is heavier than the atom A. This
neglect is certainly valid if m&(3f, as is t:he case in practice,
and may be seen to subject our results to a limitation on
the effective width of the level analogous to that met by
Bethe and Placzek I'reference 5) for free atoms. As there,
this limitation is of no importance experimentally.' The curly brackets denoting a set of numbers will be
dropped when it will not cause confusion.
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p to the crystal through the I.th atom with ex-
citation of the lattice from a state {n,} to a state
{n,}.In practice, the lattice is in thermal equi-
librium, therefore not in a definite state {n.},
and further, because of the high energy of the
gamma-ray, the experiments will give only the
total probability of capture, i.e., not

~({&.}' {~ })

~(&)=Z Zg({ .})II'({&}' { })
Ps axe

factor IM., „M„aI', by use once more of the
completeness relation would reduce just to

since

1/L(Z —Z,) '+-,'I"'],

& g({~.})=1.

We now turn to an evaluation of the matrix
elements in Eq. (11). In terms of the wave
functions'

Pn, (xi, ' ', xiit)

where the sum over the initial states of the lattice
is weighted according to the Boltzmann factor
g ( {n, }) for each state when the temperature of
the lattice is T. Because of over-all conservation
of energy, the magnitude of the wave vector k
in (8) is a function of the final state of the lattice
{r3,}. In all cases of importance, however, one

may neglect a variation of k of the order of the
zero-point energy of oscillation in the lattice,
and perform the sum over the final states of the
lattice by use of the completeness relations,
6nding

w(P. ) = IM„gI'I M.. .I'Q (gn, )
As

I
(n,

I
exp (ip xi, /l'i)

I
cx,) I

'
xp (11)" LZ —P.—P(n, —,)a,] + —,(r(n, ))

'

of the crystal, which is assumed to be periodic in
a large volume containing N atoms whose posi-
tions are denoted by xI, . ~ ~, x~, this matrix
element is

({&.} I
exp (~p x~/&) I {~.})

' ' '
J

dxliIx2' ' 'dxN'IPn& (xix2' ' ' xy)

)&exp (ip xr/k)P, (xi .xi„). (l2)

We introduce normal coordinates for the crystal
in the usual form:"

xg=xg +ug
(13)

1
ug= —Pgeqj(Aqj exp (iq. xGO/5)+conj. ),

N& q

where the energy of the lattice has been ex-
pressed in terms of the frequencies cv, of the
lattice oscillations. Thus one sees that the prob-
ability of gamma-ray emission is proportional
just to the probability of formation of a com-
pound nucleus C irrespective of the state of the
lattice, and this despite the fact that very often
a gamma-ray may be emitted in a time short
compared to the periods of oscillation of the
lattice, giving the atom a recoil energy of the
order of a hundred volts. Eq. (11) will be much
less complicated if one may neglect the depend-
ence of I'(n, ) on the state {n,} of the lattice. This
will be so except in the case, unimportant for our
purposes, that the main contribution to F comes
from the emission of slow neutrons, i.e. , in case
of a large elastic scattering cross section instead
of a large capture cross section. If one were also
to neglect the energy given to the lattice, the
expression (11), from which we will now drop the

where xg' is the equilibrium position of the Gth
atom, ug its displacement from equilibrium, eq;
is thi' unit polarization vector for the wave
characterized by the propagation vector q and
polarization j. The spectrum of eigenvibrations
is determined by the periodic boundary condi-
tions, and it is cut off at an upper frequency limit
such that the number of degrees of freedom agrees
with the number 3X belonging to the N atoms
in the fundamental volume of the lattice. The
single index s will often be used to denote the
pair of indices (q, j). In terms of the quantities

Q, =A, +A,"

P, =MQ, =3',(A, A,*), —(14)

where ~, is the frequency belonging to the sth
normal mode, the Hamiltonian of the crystal

' See for instance, A. Sommerfeld and H. Bethe,
IIandbnch der Physik, vol. 24/2, second edition {1933),
p. 500.
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takes the form appropriate for a system of linear will enter the final result only linearly in sums
harmonic oscillators with coordinates Q, and like
momenta P,

Pg '=R/S
II= PH„

H, = ', M-;Q-, '+P, '/2M.

The eigenvalues of this Hamiltonian are

Z, =(n,+ p)Pico, ; n, =0, 1, 2, ~ ~ ~

and the wave functions normalized in terms of

where 0 is the Debye temperature of the sub-
stance. Any sums of the form P,g,', etc. would
vanish as the transition to the continuum is
made, which provides a justification for neglect
of the higher powers of the gP in Eqs. (17).

Consider now the expression

are

&, =Q, (Pi/2Mco, )

Pp, (Q,) =(2m) ''(n, .) '*e ''~'hn, ($,),

II, iX(n„a„'g,) i'
W(a, ) =Q . (18)

[E—Ep —P (n a—)h(o ]'+-,'I'

where h„,($,) is the n, th Hermite polynomial. If,
for convenience, we take the rest position of the
capturing atom XI' ——0, as may be done without
loss of generality, the matrix element (12) with
the help of Eq. (13) takes the form

df, lcm ($,) exp (ip eP, /(2Mb(u, N)-')P-, ($,),
(16)

This is macle dificult to evaluate only by the
presence in the denominator of the term
P, (n, —a, )hen, . This suggests that it will be con-
venient to group together the terms in the
expression for which this quantity has the same
value. One may accomplish this most easily by
the introduction of a delta-function, writing
(18) as

where the product is to be extended over all dpi' p — n, —0, Itchy,

the normal modes. Integrals of the form CO

zz, iz() [p

XQ ', (19)
n, (Q Q p)2+11'2

CO

b(x) =— dye'"
2'

(2o)

(p e,)'
gf

2

2M"ho), N Thus one finds

where for the delta-function, use is made of the
are readily evaluated" by use of the generating usual representation
formula for the Hermite polynomials. In our
case,

and is arbitrarily small if we take the funda-
mental volume of the crystal large enough, so
that only terms to the first order in g,' need be
kept in Z(n„a. ; g,), as will be seen more clearly
below. Then there are three possibilities:

CO CO gspp

W(a.)=— dp dp
(& &p p)'+41—'—

Xgn(~Z( „nga, )~
fls S

~X(a„a„g,) ~'=(1 —2a,g, ')e-",
l&(a.+1 a. g.) I'=(a.+1)g.'e "'
~X(a,, —1, a„g,) ~'=a,g, 'e-"',

Xexp ( ip(n, a,)—k&u, ) I. —(21)
(17a)

From Eqs. (17), one finds
17b

(17 )
I,=Q ~X(n. , a„g,)~' exp —ip(n, —a,)ha),

As

as all the other X's are of higher order. The q, '

» F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

=e—p '{1+g '[—2a, +(a,+1)e-'"""
+aef'pkragjI (22)
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The integral over p in (26) may be done at once
by residue formation, and one has the generally
valid final result

W(Z) = 2/I' Real f dp
0

Xexp Pip (E Eo—+Zr/2) +g(p) j. (28)

At this point it is most convenient to carry out
the average over the values of the initial quantum
numbers a„since now each n, appears at most
linearly. The result of the averaging is that each
o., above is replaced by its average value o,, at
thermal equilibrium, where

As=
gkOls /AT

(23)

FIG. i. Plot of the ratio of "effective temperature" and
real temperature of a crystal as a function of the real
temperature measured in units of the Debye temperature
of the substance.

Naturally, it would be most difficult to evaluate
S'(E) exactly. One may however easily obtain
simple expressions which are valid in the various
limiting cases. The function g(p) is the cause of
the complication, and it is possible to evaluate
the integral (28) analytically only in cases
where the values of p, given by pg 1 do not
play a dominant role. For p8((1, one may expand
in powers of p and obtain

g( ) = —fpZg. '&~.

—p'ZV. '(n. +k)(&~.)'+ . (29)

The sums may be evaluated under the assump-
tion of an isotropic crystal, i.e., the velocity of
a wave is assumed to be independent of its
direction of propagation, although not necessarily
of its polarization; and one finds

The product over the various oscillators s is
then of the form

g(p) = ipR —p'Re, — (30)

II(1+X,g, ') =1+QX,g, '

+QQX,X„g,'g, '+ (24)
s(r

and if one remembers the smallness of the g,2,

the series may be summed to give exp (P,X,q,2),
so that

I= III,=exp Qq 'I(n +1)e '&""

where R is again the recoil energy and ~ the
average energy per vibrational degree of freedom
of the crystal (including zero point energy).
If the condition

—',I'+ (RE) 2))0 (31)
("weak binding" )

is met, only small values of p in g(p) in the
integral (28) need be considered, and one finds

00

+n,e'I'""* 2n, }. (25) —W(E) =— dp cos p(E Ep R)——
r 0

Thus one has

&'~.+g (~&co

W(B) f Af =dy— (26)
2~ (E—Eo —p) '+ ~r'

)&exp ( —-', rp —p'Re)
(32)

4 co

dy cos yx exp (—y —y'/P)
r2

where the function g(p) is given by

g(p) = Pg. ' {(n, +1)e '"S"- where P((, x),"x, and P are as defined by Eqs.
~' Equation (32) gives Reiche's form of the P-function.

+s& " ' 1 2~s j ~ k2") See Born, OPtik (1933), p. 482.
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B, O I I I I ( i J / I I I [ J / I

e= T+8 O(8/T) T»8 (34a)

(34b)e=g33(8(+28,)+T O(T'/8').

and transverse waves. One has the limiting
values

In Fig. 1, a plot is given of e(T)/T as a function
of T/8 for the case that the various charac-
teristic temperatures are equal.

The other limiting case is p,8»1. Here one
finds

gyystal

g(")= —2Zg. '(~.+3) =

where

—-'LG(T/8 )+2G(T/8 )j, (35)

0 B B 3 I I B B B I
-36 -tg I -S -V O O 8 Bk

with

2R p'~
t 1

G(x) = x'
il

T ~3 (e' —1 )

G(x) =xR/T x«1,

(36)

(36a)

(5) and (3), but now with an elfective Doppler
width

6=2(Re)B, (33)

which involves ~ instead of l. Thus we see that
provided only the condition 6+I'»20 is met,
the atoms in a crystal at a temperature T give
the same absorption line as they would in a gas
at a temperature c equal to the average energy
per vibrational degree of freedom of the crystal.
This quantity is well known from the theory of
specific heats

B= 3(e~+2BB), (34)

where

3 B IT (
e;(T) =3( — T dt t'

~

+-', ~, (34j)
0 0 () E.e' —1

where the indices l and t refer to the longitudinal

FIG. 2. Plot of the neutron resonance absorption curve in
cold solid silver for an assumed value of F equal to 8/4.
The curve one would obtain with free atoms is shown for
comparison. The abscissa measures the distance from
resonance in units of —,F. If the lattice binding were very
strong, the curve for the crystal would have the same
form for the gas, except that it would be centered about
the point shown by the arrow.

2R
G(x) = x' x»1.

T
(36b)

For special ranges of values of E—Eo, one may
obtain a good approximation to W(E) by
splitting the range of integration in Eq. (28) at
@0=1,and in each range, using the appropriate
expansion for g(t3). One Ands in this way that
for very strong binding of the atoms in the
crystal (8~~),

W(B) =
(E—EB)3+-,'I'3

(37)

i.e. , the normal absorption line centered about
0 ~

In general, however, a certain amount of
numerical integration is required to find the
shape of the line. To illustrate the possibility
of using the general Eqs. (28) and (27) except in

the two limiting cases of Eqs. (31) and (37),
we give plots of a 2-,'-volt resonance energy
absorption line in a substance at a temperature
much lower than the Debye temperature of
8=210'K (Case of cold silver if one abstracts
from the difference between 8~ and 83), for
several assumed values of F. In each case, the
curve for free atoms at the same temperature is
also shown. One sees that for these cases of inter-
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mediate binding, there is a rudimentary fine
structure in the probability of capture which is
suggestive of the neutron absorption /ines that
one would obtain from an atom harmonically
bound, say in a molecule with energy levels
separated by 8. (See Figs. 2 and 3.)

The area under the general absorption curve
(28) may be evaluated immediately, again under
the assumption of footnote (4), and one finds

oo 2
dBW(B) =—

0 r (38)

which, of course, agrees with the result for free
atoms. The expression for the cross section for
self-indication, which involves the integral of the
square of W(Z) is more complicated, but may
be reduced to

0 ~ I I
V Cs s IO

In the case I'+A&&8, this integral may again be
evaluated by expanding g(p) for small p, and the
cross section for self-indication has the value
corresponding to that for a gas at an eAective
temperature e instead of T. In the general case
of arbitrary 1, 6 and 0, however, one may
derive an approximate formula by splitting the
range of integration at F0=1,

+exp L2g(~) —F/8j, (40)

FiG. 3. Same as Fig. 2 except that the assumed value of
F is now equal to P. For values of F~48, one is already
in the domain of applicability of Eq. (32}. The precise
value of F for silver is not well. known experimentally.

which may be used provided the result does not
depend too much on the precise value of 8.
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