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In the theory of the electrical conductivity of metals, the conservation theorem of Peierls
establishes the invariance of the sum of the electron wave numbers and a function of the lattice
vibrations. This is shown to be accompanied by other related conservation theorems based on
the periodicity of the system. One of these refers to the difference between Peierls' integral and
the total momentum of the system, The connection between Peierls' integral and the integral of
momentum has usually been obscured by the use of electron states that do not represent a
de6nite value of the momentum. When the system is treated as a whole it can be shown that the
transfer of momentum from the electrons to the lattice need not- be a process involving one
electron at a time, but may involve a large number. One can say that the urnk4pprosesse involve
a whole group of electrons rather than a single one. As a result one can understand the estab-
lishment of a steady state in a conducting metal without considering the Nmklapprosesse of single
electrons as introduced by Peierls.

1. INTRODUcnoN

INCE the work of Peierls' the theory of the
electrical conductivity of metals has been

marred by the presence of a conservation theorem
whose physical significance has not been clearly
understood. It has been interpreted as indicating
that the conductivity of a metal should be very
much larger, at low temperatures, than is ob-
served, unless the electron energy as a function
of wave number is restricted to a closely pre-
scribed form. This seems an undue restriction,
especially in the case of the alkalis. It is proposed
to show here that this interpretation of the
theorem is not justified, and that Peierls' con-
servation law presents no real obstacle to the
understanding of the processes of conduction and
resistance.

The theorem in question is that, in the ab.ence
of an external electric field, the quantity

~i= (1/G) f Z&~+ Zf~xI

is a constant of the motion, or can change by
integral amounts only. Eq. (1) is written for the
special case of a one-dimensional lattice in which
d is the distance between the equilibrium posi-
tions of the ions, 0 is the number of ions in one
cycle, f is the integer characterizing a lattice
vibration, and my is an integer associated with
the excitation of the vibration f Apositive.
value of mj. represents a wave traveling through

I R, Peierls, Ann. d. Physik 12, 154 (1932).

the lattice in the positive direction. The quanti-
ties k; are integers that characterize the wave
functions of the individual electrons. These
functions are of the form u(x;) exp (2~i/Gd)k;x;,
where u(x;) is periodic with the period d. To
satisfy the Pauli exdusion principle the k; must
be different for different electrons. Since the k;
for each electron changes under the infIuence of-

an electric field, and since an electric field
cannot directly set up vibrations in the lattice,
there has seemed to be no way to prevent I1
from increasing indefinitely during the fIow of a
current. For the same reason, after a current
has been started and the electric field removed,
there has seemed to be no way in which the
interaction with the lattice could stop the cur-
rent without establishing a value of Zfm~ far
different from the equilibrium value of zero.

To avoid these difficulties, Peierls invoked the
processes by which a single k; changes by the

(l) amount G. Such transitions are not prohibited by
the conservation theorem, and since they may
represent a reversal in the direction of motion,
Peierls called them Nmklupprosesse. However, he
also showed that the effective intervention of
such processes at low temperatures requires a
prescribed form of the electron energy as a func-
tion of the wave number k. That all metals, and
in particular the alkalis, should have this par-
ticular form seems quite improbable.

It will be shown here, however, that the
restriction imposed by Peierls' theorem applies
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to all of the electrons together and not to each
one by itself. In addition to the umklapprosesse
of Peierls there can take place processes by which
a number of electrons change their total Zk; by
the amount G. Such a process does not require
the presence of a lattice vibration, but is due to
the interaction with the undisturbed lattice.
This provides a tremendous number of processes
in which different numbers of electrons take
part. Included in them are the processes in which
each electron present changes its k; by a
single unit.

Transitions involving two or more electrons
might be regarded as very improbable if the
interaction between the lattice and the electrons
were really a small perturbation. It is, however,
a very large interaction, and conclusions charac-
teristic of only the first-order perturbation treat-
ment are not necessarily valid. The fact that the
theorem of Peierls imposes a restriction on only

'

the sum of the k; can be shown by consideration
of the properties of the Hamiltonian function.

The treatment of the complete problem shows
other integrals of the motion in addition to Ij.
One of these is trivial since it expresses merely
the cyclic boundary condition. It is that

Ii=k; (2)

can change by integral amounts only. Since k; is
restricted from the beginning to integral values,
this is of little importance. The origin of this
integral, however, is very similar to that of the
others. The third is that

Ig (1/G) (s —Qf——my)

can change by integral amounts only. In this,
s is an integer that represents the momentum of
the lattice as a whole. The last is the sum of
two others,

I4 Ig+ Is ——(1/——G) (Qk;+s), (4)

and is associated with the motion of the system
as a whole. The presence, in this sum, of both
Zk; and s indicates that all of these integrals are
closely connected with the momentum integral.

2. THE HAMII. ToNIAN FUNcTIGN

The most satisfactory treatment of the theorem
of Peierls was given by Bloch, ' and is based on

~ F. Bloch, J. de phys. ct rad. 4, 486 I', 1933).

the invariance of the Hamiltonian function to
various transformations. His general procedure
will be followed here.

The problem cari be treated adequately in one
dimension as the other dimensions add only non-
essential complications. Let the lattice be com-
posed of G ions of mass no~, arranged in a straight
line, and separated by a distance d, in their
equihbriurn positioris. These equilibrium posi-
tions will have the coordinates ed, with n an
integer. Only displacements that lie in the line
of the ions will be considered. Transverse waves
need not be treated since they are of little
consequence in the resistance. Let u be the
displacement of the nth ion. from its equilibrium
position, and assume that the interaction be-
tween the ions can be represented by 'springs
connecting them. It is immaterial whether this
interaction is restricted to adjacent ions or
whether it extends also to those more distant.
It is essential, however, that the lattice as a
whole be free to move. This interaction, which is
represented by springs, is in addition to that
produced by the interaction with the conduction
electrons, and it can be regarded as caused by
the electrons in the closed shells. Such a specifica-
tion makes, of course, a very much idealized
model of a metal crystal, but it contains the
elements essential to the present discussion and
it is desirable to be very specific as to the model
that is under consideration. In particular it is
to be emphasized that only harmonic forces
between the ions are being considered. It is also
to be understood that the problem is treated as
cyclic, and that the G ions constitute one cycle.

If p; and x; are respectively the momentum
and the coordinate of the jth electron, the
Hamiltonian function for the system in the
absence of any external field, is

II= (nag/2) P u„'+ P b..u.u„

+Q V, (x;—xp) I. (5)

The b „are constants that can be expressed in
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terms of the force constants of the springs.
V(x, —nd —u„) is the potential energy of inter-

.action between the jth electron and the nth ion.
The use of a general function, instead of the
6rst few terms of a power series expansion, is
necessary to give a Hamiltonian function that
guarantees the conservation of momentum.

Following Bloch we may introduce new coordi-
nates Pr and re defined by the equations

placed by —Z20$;. With these coordinates the
Hamiltonian function becomes

6'/9 —1

II=(~/2) Iio'+(2) 2 LLrP+Pr'~f'+~Ref'j
f=l

+p'gym+ &'egmu'ay~+ (Grn/2) X'

+ (ni/2)

ZIP+�

(ni/2) (2 ti)'

u„=g Ifr cos (2xfn/G)+qz sin (2fn/G) }. (6) 7', 7' 7 f Q

+ P V (( —$')++V(X+( —nd

The apparent presence of G+2 coordinates for
the specihcation of the positions of G ions need
not overdetermine them, since qo and qo/2 are
always multiplied by zero coefficients in Eqs. (6).
They may therefore be set equal to zero without
imposing any restriction on the motion of the
ions, Expressed in these coordinates the Hamil-
tonian function is

~=(~/2) f 6'+(k) 2 L6'+6'+~i'(6'+n~') j

—2 pr «» L(2xfn/G) —s f7) (8)

This is not strictly the Hamiltonian function
since it contains the velocities instead of the
momenta, but the transformation is easily made
and does not affect any of the conclusions to
be drawn.

In the presence of a uniform electric 6eld
there is the extra term

+5'em+~'«~Pm~}+ 2 I (PP/2ni)
7=1

+P V(x; nd —g[—&; cos (2s fn/G)

+gr sin (2s fn/G) j)+PV.(x;—x; ) I, ('I)

with M=Gm~.
Now let

with the special provision that F0=0, and @0~2

is an integral multiple of m. These provisions
preserve the zero values of go and q0~2. It will

also be convenient to introduce the center of
mass of the electrons. Hence let

X= (1/G)gx;, and g;=x;—X.

where Z = po —X. .

Peierls' conservation theorem is associated
with the invariance of H under the transforma-
tion

x;~x+0, yr~yg+ (27rf/G), Ti

for all values of j and of f The incr. ease of all of
the x; by the amount d is equivalent to the
increase of X by d with all of the P; unchanged.
The terms in the Hamiltonian that are affected.
by this transformation are those comprising the
interaction between the electrons and the lat-.
tice. Their invariance under lj is due to the
cyclic boundary conditions which provide that
V„, ;= V„+g, ;. With this provision, the trans-
formation r~ e8'ects a rearrangement of the
terms in the sum.

However the Hamiltonian function is also
invariant under the transformations

X—&X+1, $;~$;—d, (j Wi),

»~~o+d ~~~a r (2~f/G)—
X~X+I, p,~p, +d. T4

These coordinates are not all independent since
Zi $;=0. When it is necessary to guard against The transformation Ts is equivalent to x;-+x,
any ambiguity due to this fact, $i will be re- +Gd. The invariance of the Hamiltonian func-
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tion, as well as all wave functions, under this
transformation is due to the cyclic boundary
conditions and is merely an expression of them.
The transformation T3 represents the displace-
ment of the lattice through the distance d in
one direction, and. the displacement of all the
elastic waves the same distance in the opposite
direction. It can be seen from the forms of the
transformations that

T4 —T$T3)

and that T4 is associated with the total mo-
mentum of the system. To understand the full

signihcance of these transformations it is helpful
to examine the behavior of the wave functions
under them.

3. INTEGRAI. S OF THE MOTION

Let the wave function for each electron be of
the usual form indicated above. The total elec-
tronic wave function can be built up out of
products of these of the form

U(xg, . , xg) = II exp [(2wi/Gd)k;x;70, ;(x;)

following equations:

TgU(k;, 'mg, s/, s)

=exp f(27ri/Gd)(gk;+Pfmr)5U(k;, m f sf s),
i f

T2 U(k;, mf, sr, s) = U(k;, mr, sr, s),

TsU(k;, mr, sr, s) =exp D27ri/Gd)(s P—fmg)5
f

X U(k;, mg, sf, s),

T4U(k;, my, sg, s) =exp L(2'/Gd)(s+Pk;)5

X U(k;, mf, sf, s).

Since these operators commute with the Hamil-
tonian function, any stationary state that is
a product of the functions (10) and (12) can
be speci6ed by a characteristic value of each
of these operators. Furthermore, if the system
is in a state represented by any one of the
above products, it will make transitions to
only those other states that have the same
characteristic values of the above four operators.
In such transitions the integrals II, I2, Is and I4
either do not change at all or change by integral
amounts.

=exp L(2vri/Gd) Pk;xQIIN;(x;). (1.1)

The wave function of the lattice can be written
in terms of the normal coordinates introduced
into the Hamiltonian function .

U(pf, q g) =exp L(2~i/Gd)sp07

6/2
XII R(py, sy) exp (im fp f), (12)

where the R(pr, sf) are the radial functions for a
two-dimensional harmonic oscillator, and the
sf and mf are integers. The Pauli exclusion
principle requires that all of the k; in the electron
function be different, but this fact is unim-
portant for the present considerations. The set
of products of these two functions provides a
basis for the representation of any state of the
combined system.

The above functions have been selected to be
characteristic of the operators T&, T2, Ta and T4.
The characteristic values are evident from the

4. DISCUSSION OF THE CONSERVATION LMVS

It is important to notice that the integra1s
II and I4 contain the sum of the k;, and not the
individual k; themselves. The Hamiltonian func-
tion is not invariant to the operation which
increases one of the x; by the amount d, changes
the q

's by the amount indicated in T&, and leaves
the other x; unchanged. The same thing is true
of the operation on the angles yf. It is only when
they are all changed that the Hamiltonian
function is restored to its original condition.
This is not due essentially to the presence of a
term giving the interaction between the electrons
but is due to the form of the interaction between
the eIectrons and the lattice. It is because all
of the electrons interact with all of the modes of
vibration. It is true that this interaction consists
of a sum over the electrons, so that if the inter-
action is treated as a perturbation and only the
6rst approximation is considered, the electrons
act independently. Since the interaction is really
a large one, this apparent independence may be
quite misleading.
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The original derivation of the integral Il was
based upon this independent treatment of the
electrons and so suggested that changes in Il
by the amount G must be made up of a change in
one mf and one k; only. Such an interpretation
is not at all required by the general treatment
given above. Nevertheless it remains to be
shown that transitions involving two or more
electr'ons actually do occur. For this purpose it
will suffice to treat a special case.

Consider the situation in which all of the sf and
mf are zero and do not change, and let the
electron functions be those for free electrons.
The second-orde'r treatment will involve the
square of the interaction energy and this will
contain terms which are products of the inter-
action with two electrons. Such matrix elements
have the form

(ki', ko', s'
i V'ski, ko, s)

"exp ((2iri/Gd) {(ki —ki') xi
nl, n24

Let xf = pf cos yf, and yf = pf sin pf. In the state
of the oscillators for sf ——0,

R(pf, 0) =exp L
—nf(xf'+yf')/2j.

The integrals over x& and yf can then be carried
out. The constancy of I4 is evident from the
coefficient of po in the exponent. The integral
over po vanishes unless

(k, '+ko'+s') = (ki+ko+s).

If this condition is satisfied the integral can be
evaluated to give

(ki', ko', s'} V'ski, ko, s)

exp [—(x/Gd)'{ (ki —ki')'+(ko —ko') }j
6/2

2 (1!4nf) 2 exp L(2~i/Gd)
f=l n1, n2

X {(ki —ki')ni+(ko —ko')no}

6/2—(ir/Gd) 'P {(ki —ki') (ko —ko')/2nf }

+(ko —ko')xo+(s —s')Po}3 & l&(pf, 0) I'
Xcos (2'/G)(ni —no) j. (16)

X V(xi —nid —ppf cos t (2' fnl/G) 'Ipf j)
0

6/2
X V(xo nod —Qpf c—os ((2irfno/G) —

oofj)

Since nf increases with f, the sum in the last
exponent decreases rapidly with the absolute
value of (ni no) —For n. i ——no there remains the
sum

X pfdpfdyfdx, dx, . (14)

For ease in computation take the special case in
which the interaction between an ion and an
electron is limited to a very small region and
let it be approximated by a 8-function. Then
integration over xl and x2 gives

(ki', ko', s'
i
V'ski, ko, s)

t exp P(2iri/Gd) {(ki —ki')

6/2

X (nid+ po+ Q pf cos L(2irfni/G) —oofj)

6/2

+ (ko ko') (nod—+po+P pf cos [(2irfno/G) —sif])

6/2

+(s s') po} 3 &
i
&(p—fi O) I

'pfd pfd pfd po (15)

Z exp L(2~i/G)(ki —ki'+ko ko)nj,

which vanishes unless (ki'+ho') —(ki+ko) =wG,
with m an integer. The same is true for any
fixed value of (ni no) T—his re. presents the con-
servation of Il when there is no change in the
state of vibration of the lattice. When the
conservation laws are satisfied, the above matrix
element is not generally zero, and such tran. si-
tions can be expected to take place.

The change of a single k; by the amount G has
often been compared to Brygg reHection from
the undisturbed lattice. This is true for a single
particle. The change of the sum of the k; for a
group of electroIis may be likened to the Bragg
reflection of an atom or molecule from the
lattice. In the case at hand, however, the inter-
action between the electrons need not be con-
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sidered as due to their Coulomb fields, but
merely as taking place through their interaction
with the lattice.

Some of the difficulty in understanding the
significance of Peierls' conservation theorem has
been associated with the fact that the electron
functions ordinarily used, u(x)e" ~ "~"&"*,are not
characteristic of momentum. The conservation
law involves the k, which represents momentum
for a free particle but not for a particle in a
periodic held. However, it must be remembered
that even though the function used is not
characteristic of momentum, it is a sum of
momentum characteristic functions whose mo-
menta differ by just the amount k/d. Such a sum
is just the ordinary Fourier expansion,

n(x) exp (2xi/Gd)kx

A„exp (27r~/Gd)(k+nG)x.

Since all of the conservation t&eorems apply to k

modulo 6, 'the distinction between the k and
the momentum is not really significant. The
distribution of the momentum over the various
values is not at all restricted by the integrals.

The connection of Zk; with the momentum is
demonstrated by the existence of the integral I4.
Any change in Zk; (modulo G) is accompanied
by a corresponding change in s, and s clearly
represents the momentum of the lattice. Accord-
ing to Ia, s and Zfmq must increase together so
that the conservation of momentum can be
expressed in the form of I~. It is the integral I3
that gives the connection between Zfmy and the
momentum of the lattice. This integral shows
that it is impossible for the electrons to excite
a~ elastic traveling wave without a transfer of
momentum to the lattice.

When the whole interaction between the elec-
trons and the lattice is treated as a perturbation
it is quite clear that the magnitude of the inter-
action is such that a first-order treatment is
inadequate. However, the usual procedure has
been to consider the unperturbed system as
including the interaction between the electrons
and the lattice in its equilibrium configuration.
The departures from regularity were then treated
as the perturbation. This procedure tends to

obscure the momentum relations, since the lattice
is usually treated as fixed.

Another difficulty with the usual method is
that the contribution, to the perturbation, of the
term proportional to the first power of the dis-
placement of the ions is very small. Because of
the symmetry of the interaction between an ion
and an electron, the average of the first deriva-
tive will vanish. If the second derivative is
considered, terms in the square of the displace-
ment must be included. This leads at once to
processes in which two of the m~ change together.
As a matter of fact it can be shown that unless an
infinite series is used to express the interaction
between one electron and one ion, the Hamil-
tonian function cannot have the proper peri-
odicity and at the same time provide for the
conservation of momentum.

The principal consequence of the above con-
siderations is that it is not necessary to give a
special treatment of the Nmklapprozesse of a
single electron in computing the resistance of a
metal. Since, as Peierls showed, such processes
require very special circumstances for their
effective occurrence at low temperatures, they
will be very rare, and will be replaced by
processes in which a number of electrons make
transitions at the same time. Most of the treat-
ments of resistance have not included the
umklapprosesse of a single electron in a very
satisfactory way at the low temperatures where
they would be of importance. In his original
work Bloch' neglected them entirely. Peierls4
criticized this neglect and undertook to estimate
the effect of their inclusion. This was not very
precise, but he showed that their inclusion, with
the special circumstances under which they
might be expected to occur, would not seriously
change the temperature 'dependence of the re-
sistance from that otherwise estimated. In a
recent treatment by Peterson and Nordheim4
they were neglected on the ground that they
would be unimportant at high temperatures,
although still later they were considered by
Bardeen' at the same high temperatures. Since
the last two papers were principally devoted to

3 F. Bloch, Zeits. f. Physik 52, 555 (1938);59, 208 (1930).
4 E.L. Peterson and L. W. Nordheim, Phys. Rev. 51, 355

(1937).
~ J. Bardeen, Phys. Rev. 52, 688 (1937).
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the determination of the proper form for the
lattice-electron interaction energy, their results
do not throw much light on the role played by
the single electron Nmklapprozesse

Another consequence of these considerations
is the suggestion of a different approach to the
problem of computing the resistance. It would
seem that the treatment of the electrons as

independent, and the inclusion of the Pauli
exclusion principle in the integral equation for
the electron distribution, might not be the best
procedure. It might be possible to treat the
motion of the center of mass of all the electrons
and to compute the probability of a change of its
motion under the inHuence of the electric field
and of the lattice interaction.
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and p the meson mass. Besides (1), there will be a
spin-dependent force,

v= v, +v„
Vy= 3gm lip'IFg z /7,

(3)

(3a)

e» ~ f a2 1'
V2 ———g2' 3 2

—O» 02r'

X (1+mr y-', ~'r'), (3b)
)2gs

where a» and e2 are the spin operators of the two
heavy particles, and r the vector from one to the
other. The constant g2 has the same value in

(3a) and (3b) but is independent of g& in (1).
' For the name "meson" and the arguments in its favor,

see H. J. Bhabha, Nature 143, 276 (1939).
~ H. Frohlich, W. Heitler and N. Kemmer, Proc. Roy.

Soc. 166, 154 (1938); H. J. Bhabha, Proc. Roy. Soc. 166,
501 (193S).' N. Kemmer, Proc. Camb, Phil. Soc. 34, 354 (1938).

HE meson» theory of nuclear forces' ' pre-
dicts two kinds of interactions between

heavy particles (protons and neutrons). The
first kind does not depend on the spin of the
heavy particles and has the form

f/ g 2z )r/r—
where r is the distance between the two interact-
ing heavy particles, g» is a constant, ) the re-
ciprocal 'Compton wave-length of the meson,

The spin-dependent interaction has been split
into one part, V», which does not depend upon
the relative position of the two particles (direc-
tion of r), and another part, V2, whose average
over all directions of r gives zero. It is usually
argued' ' that the latter part has no influence on
spherically symmetrical states such as the ground
state of the deuteron so that only the spherically
symmetrical interactions U and V» are consid-
ered. In order to obtain agreement with the
observed positions of the singlet and triplet
states of the deuteron, it is then necessary3 to
choose g» =0.6g2.

The neglecting of U2 cannot actually be
justified. This interaction destroys the spherical
symmetry of nuclear states and makes the ground
state of the deuteron a mixture of an S and a D
state. Quite generally, the orbital momentum I
of the nucleus will cease to be quantized when a
"tensor" interaction of the type V2 is present.
U2 vanishes identically only for singlet states of
the two-body problem; for any triplet state,
including the ground state of the deuteron, it
must be considered.

In fact, V2, as it stands, will give an infinite
binding energy for the ground state of the deu-
teron, for it represents an inverse cube potential
which is attractive for a certain linear combina-
tion of an S and a D state, and for such a poten-
tial the Schrodinger equation does not possess a
lowest eigenvalue. The only remedy seems to be
to "cut off" the interaction potential at a small


