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Extending earlier work by one of us, a theory of the
positive column in an arc has been developed, from con-
siderations of energy balance, from which good values of
nitrogen arc parameters are calculated from known proper-
ties of the gas. The power generation per unit volume is
obtained in terms of the potential gradient, the electron
mobility and the electron concentration. The electron
concentration is computed with the aid of the Saha equa-
tion for thermal ionization. The power loss is calculated in
terms of a generalized heat conductivity which includes the
heat transport that results from the difl'usion of dissociated
atoms. Convection is neglected, so that the theory applies
only to low current arcs in ordinary space or to arcs below
30 amperes in gravity-free space. Equating power genera-
tion and power loss leads to a differential equation that
can be solved numerically once the center temperature is

known. Without solving the equation a change of variable
is evident, which shows the potential gradient to be inde-
pendent of the total power. This gives an arc equation of
the Ayrton type. The arc is shown to be free from certain
constraints which might otherwise set the center tempera-
ture. However, the center temperature is determined by
introducing the additional consideration that the arc
operates to make the power loss a maximum. The agree-
ment with experiment is satisfactory. The inclusion of
convection in a more complete theory is discussed, and it
can be asserted that departure from the above simplified
theory, for arcs of larger currents, is qualitatively of the
type to be expected from the influence of convection.
These results supply convincing evidence that the mecha-
nism of the positive column of arcs is now understood.

INTRODUCTION

~ 'HE electric arc can be divided into three
distinct regions; one is near the cathode,

one near the anode, and one between the two.
The middle region is known as the positive
column. The present investigation is concerned
with the positive column of an arc running
steadily between electrodes placed one above the
other. The electrodes are of such a nature, or so
cooled, as to prevent vapors or gases given off by
them from being present in the positive column
in greater than negligible amounts, In the arc at
atmospheric pressure, the longitudinal potential
gradient is known to be constant throughout the
positive column; the apparent diameter of the arc
is constant throughout the column, and the tem-
peratures of both electrons and gas are several
thousands of degrees.

Evidence for these statements can be found
throughout the literature of the subject. Even for
arcs less than ten millimeters in length, voltage
es. length plots show considerable straight por-
tions for most of the current range investigated.
This can be seen from the measurements taken
by Nottingham' in air. Suits, ' from the same

' E. S. Lamar, Phys. Rev. 49, 861 (1936).'%. B. Nottingham, Phys. Rev. 28, 764 (1926).
3 C. G. Suits, Phys. Rev. 55, 561 (1939).

type of measurement and by a more direct
method applied to a wide variety of arcs, con-
cludes that the longitudinal potential gradient in
the positive column is constant.

Suits' as a result of his measurements on arcs
of various lengths states definitely that the arc
diameter is independent of length over the
positive column. Further evidence on this point
is to be found from various photographs appear-
ing in the literature on the subject. Even for
arcs as short as six millimeters, 4 as can be seen
from Nottingham's Fig. 4, an approximately
uniform portion extends over several millimeters
in the center.

A number of different methods have been
employed for the measurement of temperatures
in the positive column. Ornstein' and his co-
workers have obtained values for both electron
and gas temperatures from spectroscopic meas-
urements. The electron temperatures were de-
duced from the relative intensities of atomic
lines and of electronic bands. The gas tempera-
tures were obtained from relative intensities of
the rotational lines in the bands and of the
vibrational band heads. From these measure-
ments the indications are that, within experi-
mental error, the electron and gas temperatures

4 W. B, Nottingham, J. Frank. Inst. 206, 52 (1928).' L. S. Ornstein: His Life and S'orb (Utrecht, 1933).
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are equal. 6 In air or nitrogen the value of each
temperature is independent of current. The best
spectloscoplc measurements orl d,c. arcs give
temperatures in air ranging from 5700'K to
6700'K with an average of 6200'K.

Electron temperatures deduced from probe
measurements are in disagreement with the
spectroscopic values by as much as a factor of
three in some cases. ~ It has been shown by
Mason' that the probe constitutes a serious
disturbing factor when introduced into the arc.
Quantitative deductions from such probe meas-
urements, therefore, remain open to critirism in
the absence of further analysis.

Values of the gas teIDpelRtule iQ the posltlve
coluIDQ hRve been deduced from lndllect meas"
urements of the gas density. Engel and Steen-
beck9 obtained the gas density from measure-
ments of the absorption coeKcient of soft x-rays
and from the range of 0. particles. '0 Ramsauer"
performed similar measurements using 100-kv
beta-rays. The values obtained from these den-

sity measurements were somewhat lower than
the spectroscopic ones but hardly more than the
probable experimental error.

The latest and perhaps the most reliable
values of gas temperature are those deduced by
Suits'~ from measurements of the velocity of
sound through the arc. His value for nitrogen is
6100'K with little or no dependence on arc
current.

Three concepts underlie the present theory of
the arc positive column. First is the theory of
thermal ionization following the Saha equation,
introduced by Compton" and found not incon-
sistent with experimental observations. Second is
the application of an energy-extreme principle,
introduced into Rl c, 8tudies by C01Ilpton RQ d

' R. Mannkopf, Zeits. f. Physik 85, 161 (1933};H. %itte,
Zeits. f. Physik 88, 415 (1934}.

~ %.B.Nottingham, J.Frank. Inst. 205, 43 (1928)", 207,
299 (1'929).' R. C. Mason, Phys. Rev. 51, 28 (1937).

9A. von Engel and M. Steenbeck, Phys, Rev. 3'7, 1554
(1931);%iss. Veroff. Siemens K. XII, 1, 81 {1g33).

'0 A. von Engel and M. Steenbeck, Kiss, Vero8. Siemens
K. XQ, 1, 74 (1933}."C. Ramsauer, Electrotech. u. Maschinenbau 51, 189
(1933).

12 C G Suits Phys~cs Q 190 196 315 (1935) ' P oc Nat
Acad. 21, 48 (1935);G. E. Rev. 39, 194 (1936).

» K.T. Compton, Phys. Rev. 21, 266 (1923);J.A.I.E.E.
45, 868 (1927).

Morse'4 who, however, applied it differently and
only to the region of the cathode, Third is the
application of heat balance, earlier applied to
the cathode reglorl, but first Rpplled with Rny
rigor to the positive column by Lamar, ' who also
applied the energy-extreme principle to this
region. Armed with further experimental evi-
dence, Ornstein and BrinkmaQn" further justified
the assumption of thermal ionization and the use
of the Saha equation.

Energy balance equations have been used by
many investigators. '6 In particular, Elenbaas by
ingenious experiments was able to obtain suffl-
cieQ.t boundary condltlons to arrive at a satis-
factory solution ln the cRse of the high pressUle
IDercury Rlc. Sult8 has en)oyed gI'eRt success ln

. correlating arc data from dimensional considera-
tions following similar treatment of heat losses
from solids. '~ At very low currents Lamar, '
using an energy extreme hypothesis and no
RI bltrRry constRnt, obtained teIDpef Rture Rnd

power dlsslpatlon pel unit length fol the nitrogen
positive column. The present paper carries
forward this type of analysis in greater detail
Rnd pl eclslon.

SIMPLE THEORV OF THE POSITIVE COI.UMN

Following Compton, " the arc current density
can be written Rs

J=J~+J =m+ep+F. +n epM (.1)

The absence of an appreriable second derivative
of the potential leads from Poisson's equation to
the equality of n+ and e . Hence, since the
electron mobility greatly exceeds that of the
positive ions, the first term on the right of Eq.
(1) can be neglected and with it the necessity
fol subscllpts ln the second. The power geneIR-
tion per unit length in the ring element between
f Rnd f+df, therefore, - cRQ be written Rs

'4 K. T. Compton and P. M. Morse, Phys. Rev, 30, 305
(1927)."L. S. Ornstein and H. Brinkmann, Physica 1, 797
(1934).

"Ter Horst, Brinkmann and Ornstein, Physica 2, 652
(1935); %. Elenbaas, Physica 1, 211, 673 (1934); 2, 757
(1935);B.Kirschstein and F. Koppelmann, %iss. Vero8'.
Siemens K. XVI, 3, 56 (1937};C. G. Suits, Phys. Rev.
52, 245.(1937); G. E. Rev. 39, 194 (1936); Physics 5,
196 (1935);C. G. Suits and H. Porltsky Phys Rev. 52 136
(1937),' %.J. King, Mech. Engin. May (1932).
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The assumption of thermal ionization as the
only process contributing to the electron con-
centration n permits n to be expressed as a
function of temperature only, by the Saha"
equation. The electron mobility p is computed
from kinetic theory" and hence is a function of
temperature only. Eq. (2) can be rewritten,
therefore, as

d 5'= 2xZ'Iirdr,

where Ji=nep, a function of temperature only.
In the nitrogen positive column there are five

processes by means of which energy is lost:
(I) radiation; (2) the radial drift of ions and
electrons, each pair taking with it the ionization
energy; (3) convection; (4) the di&Usion of
atoms out from the arc, each pair taking with it
the dissociation energy of the molecule; and

(5) thermal conduction. Concerning radiation,
Holm and Lotz," from measurements of the
total radiation from the positive column of a
long carbon arc with large alternating currents
Rowing, give the radiation loss as 6ve percent at
30 amperes. Extrapolation of their experimental
curve below 10 amperes indicates completely
negligible radiation loss in this range. Hence
radiation is neglected here. As will be seen later,
the radial drift of ions and electrons accounts
for only negligible power loss and hence is
neglected. Convection within the radius occupied
by the arc, discussed later, is neglected in the
simple theory, making this 6rst treatment appli-
cable only to cases in which convection losses in
the arc are known to be small. The term repre-
senting the power loss by diffusion of atoms has
the form of a conduction term and hence is
included in a generalized conductivity 0~.

Neglecting convection, therefore, the power
loss can be written as

d ( dT't
dW= —2~—

~
rO ~dr =2~E'Iirdr, (4)

dr E dr)
which, integrated and rearranged, gives

dT/dr —(Z'/rO) J Frdr. =(5)

"R. H. Fowler, Statistical mechanics I', Cambridge, 1929),
p. 281."K.T. Compton and I. Langmuir, Rev. Mod. Phys, 2,
218 (1930).

'0 R. Holm an.d A, Lotz, Kiss. Veroff. Siemens K. XQI,
2, 87 (1934).

It is possible to integrate Eq. (5) for any
value of E to give the temperature distribution,
5' arid hence the current I. The temperature
gradient in the are center must be zero, however,
and the temperature T. known. The problem
then resolves itself into one of determining this
temperature T. along the axis of the positive
column.

In a pure conduction problem of this kind one
dif6eulty arises immediately. The boundary con-
dition (ET/dr=0 must be satis6ed when T= To,
the ambient temperature. This cannot be done
unless t/t/'is zero or 1,is in6nity. Hence, although
convection is neglected within the radius occu-
pied by the arc, it must be considered outside of
this radius in any argument for determining T,.

Further information for use in determining T,
can be obtained from consideration of a similar
thermal 'problem; namely, that of the heat losses
from sohd cylinders immersed in a Ruid.

Dimensional arguments" applied to heat losses
from solid cylinders lead to the conclusion that

FI/X =f(gn8d'/v'),

where II is the heat loss per unit length per
degree temperature excess; K, the thermal con-
ductivity; g, the acceleration of gravity; n, the
thermal expansion eoeSeient of the Ruid; 8, the
temperature excess of cylinder above surround-
ings, ' d, the cylinder diameter; and u, the kine-
matical viscosity (the ratio of viscosity to
density) .

This formula has been applied successfully to
cases 1n which 8 18 small 1n comparison with T,
with n, X and v evaluated at the average tem-
perature. A similar relation has been f'ound by
Suits and .Poritsky to hold for the arc if n is
evaluated at ambient temperature, and X and v

at the temperature of the arc.
From the plot of II/E ss. gn8d'/v' presented in

King's review" it can be seen that H/X does not
change very rapidly with cha'nges in the abscissa.
This should be true for the arc also.

The arc differs from the solid cylinders just
considered in that it has no sharp solid boundary.
Hence it may be possible to 6nd a diameter d,
which includes the arc and at which the dimen-
sional relationship is satis6ed, for a wide range
of assumed values of 1, rather than for only one.
This seems to be true of the atmospheric arc
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where /t8 is in cm'/sec. ~olt, P is the total gas
pressure, and I' the partial pressure of atoms;
both pressures are in atmospheres.

Fowler" writes the Saha equation for a single

gas as

88 88+ /0 /0+ //2/rmkT) 1

e—7;e/kr

88 0/ ( /'8' ) (8)

where n-, n+ and n are the concentrations of

and hence so far as external conditions are
concerned, this arc is free to select any value of
T, within the allowed range. It is by no means
certain that arcs hm ing small values of gn8d8/v8

at pressures other than atmospheric can be
treated without regard for the boundary con-
dition at T0.

In order to fix the value of 1, within the
allowed range it is assumed that the arc will

adjust itself so as to operate with extreme
power dissipation. The adjustment is possible
because the outer boundary condition does not
constitute a constraint. The integration indicated
by Eq. (5) was carried out numerically for each
of a number of assumed values of T,. The values
of 8' resulting from these integrations were
plotted as a function of T,. Within the range of
temperatures permitted by the absence of con-
straints, there is one maximum and one mini-

mum. The maximum provides better agreement
with experiment than does the minimum. Before
carrying out the integration it was necessary to
compute the two functions P and e occurring
in Eq. (5).

The function Ii = neIJ, is a function of tempera-
ture only. The mobility p, occurring in I', was
computed by means of Eq. (107) in Compton
and Langmuir's paper. ' For molecular nitrogen
the value of ) 0, given on page 208 of that article,
was used. The kinetic theory mean free path for
atomic nitrogen is not known. It seems reason-
able to suppose, however, that the ratios of
atomic to molecular mean free paths should not
differ greatly from gas to gas. For hydrogen this
ratio is known to be 1.183. If this ratio is used
and each gas is weighted according to its partial
pressure in obtaining ) 0, the mobility of a mixture
of atomic and molecular nitrogen turns out to be

/8= I4.52(108)T8/P} I1+0.183P,/P}, (7)

electrons, ions and neutral gas, respectively. The
co's are the respective statistical weights, V; is
the ioriizzation potential, and the other symbols
have their usual meanings. The derivation of
Eq. (8) invol~es the assumption that the neutral
gas has no excited states below ionization and
that the positive ions have only a ground state.
With nitrogen over the temperature range con-
sidered here, the population of the ground state
greatly exceeds the combined populations of the
other states for both neutral gas and positive
ions. Eq. (8), in which the &0's are the multi-
plicities of the respective ground states, can then
be used.

Substituting for the various statistical weights
and introducing subscripts for the molecular and
atomic gases, we obtain

n I + (—27/rr/k Tq &

4} } &
vs/5T—

a i

n—n.+ (2~mkT) &

I '

g
—'t/ae//sT

N. & I8

If we remember that n ++n,+=n, and drop
the superscript,

)28/9/8k T) *'

T8=} } (4T/ e r'"'/" + ne "-/5T)9 (9)
a )

Both n + and n,+ are known to be small in com-
parison with n and n, . Hence the latter two
can be computed directly from the partial
pressures of atoms and molecules, respectively.
The ionization potentials U =16.5 volts" and
V = 14.5 volts" were selected. Numerically,
therefore,

e =3 006(10")T:
y (P s— /88800+/T( 8PP )s—J 59/0T0)/1 (]0)

and finally,

P=2.1'l (10')T*'

X [P s—3 88800/+T(8P P )s— /9/500}/T8

X (1+0.183P /P)/P. (11)

Jevoos, Bend Spectra of Diatomic Molecules
(Cambridge, 1932), p. 81.". R. F. Bacher and S. Goudsmit, Atomic Energy States
(McGraw-Hill, 1932), p. 293.
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The partial pressure I', was computed from
the data of Giauque and Clayton, " a plot of
which yields the equilibrium constant

Z=P '/P =1.36(10')s """.

Since I' +I' =I', we have

(12)

8,= (Z/2) I (1+48/Z) & 1 I . — (13)

The functions Ji, I', and e are given in Table I
computed for a total pressure of one atmosphere.

The generalized conductivity 0 is the sum of
two terms, one the ordinary thermal conductivity
and the other a term contributed by atomic
diffusion with its accompanying energy transfer.
The gas under consideration is, of course, a
mixture of molecules and atoms. With regard to
the ordinary conductivity, a sufficiently good
approximation for the mixture is given by an
average of the separate conductivities of the two
gases in the mixture, each weighted in proportion
to its partial pressure. ' The diffusion term will

. be considered later.
Measurements of thermal conductivity are

not available at extremely high temperatures.

"W.F. Giauque and J. D. Clayton, J. Am. Chem. Soc.
55, 4887 (1933).

'4 E.H. Kennard, Einetic Theory of Gases (McGraw-Hill,
1938), p. 183.

Furthermore, there are difficulties inherent in the
experiments which limit the reliability of thermal
conductivity measurement in gases even at
easily available temperatures.

'

Hence, following
Langmuir" the conductivity is obtained by
means of the kinetic theory relationship con-
necting conductivity and viscosity, i.e., X= &AC&.

Here q is the viscosity, Cy is the specific heat at
constant volume, and e=-', (9y —5), where y is
the ratio of speci6c heats. "

Viscosity measurements are available for mo-
lecular nitrogen up to about 1000'K. Two
di8'erent formulas have been considered for use
in extrapolating these data to higher tempera-
tures: the familiar Sutherland formula, and that
due to Hasse and Cook."The first of these has
been employed here, since its use provides
better agreement with experiment than does the
second. Constants obtained from Landolt-Born-
stein give the formula,

q=138(10 ')T&/(5+104. 7). (14)

The values of g given by the Sutherland
formula are lower than those given by Hasse

~~ I. Langmuir, Phys. Rev. 34, 401 (1912).
'6 J. H. Jeans, Dynamical Theory of Gases (Cambridge,

1925), p. 302.
~' H. R. Hassle and %. R. Cook, Proc. Roy. Soc. A125,

196 (1929).

TABLE I. Values of the current density per unit potential gradient Ft T); atomic nitrogen pressure I'„electron concentration
n; and generalized conduct~rity O.

ToK

2900
3100
3300
3500
3700
3900
4100
4300
4500
4700
4900
5100
5300
5500
5700
5900
6100
63OO
6500
6700
6900
7100
7300
7500

~(R
AMP. /VOLT-CM

1.160X10 '
1.065 X10-8
7.612 X10 8

4.437x10 '
2.160X10-6
9 144X10 '
3.390X 10-~
1.132X10 4

3.382 X10 4

9.293 X10 4

2.358X10 3

5.532 X10 .'
1.221 X10~
2.520 X10~
4.890 X10-2
8.987 X10-2
1.563X10»
2.595 X10 '
4.135X10»
6.369X10-»
9.309X10»
1.383 X10'
1.967 X 10o
2.743 X100

+a
ATMOSPHERE

2.99 X10 4

8.454 X10-4
2.170X10 '
4.906X10 '
1.O15 X1O-2
1.949 X10-~
3.496X10 '
5.922 X10 2

9.454X10 2

1.438 X 10-»
2.086X 10-»
2.888 X 10-»
3.822 X10-'
4.835 X 10-»
5.860X10»
6.811X10»
7 633X10 '
8.293X10 '
8.791X10 '
9.154X10-»
9.409X10»
9.581 X 10-»
9.702 X10-»
9.786 X10-»

(CM) -3

2.987 X105
2.653 X106
1.846 X107
1.039y, 108
4.916X 108
2.023 y, 100
7.299 X109
2.368 X 10'0
6.873 X10"
1.832 X 10»»

4 500 x101»
1.024 X10»
2.174X10»
4.329 X 10»
8.114X 10»
1-441 X10»
2.435 X10»
3.937 x10»
6.127 y, io»
9.243 X10»
1.326 X1014
1.936X1014
2.711X 10'4
3.726 X 10»4

o(&)
WATT/CM"DEG ~

1.235 x io-3
1.309X10-3
1.418X10-3
1.579X10 '
1829X10 '
2.205 X10-3
2.750 xio '
3.504 X10-3
4.473X10 '
5.646 X10-3
6,940 X10-3
8.218X 10-3
9.276 X10-3
9.894 X1O-3
9.952 X10 8

9.393X10-3
8.417 X10-3
7.287 X10-3
6.205 X10 3

5.320X10 ~

4.664 X 10-3
4.178X 10-~
3.862 X 10-3
3.653 X 10-~
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and Cook, and undoubtedly the truth is some-
where between. The use of the Sutherland
formula together with a high estimate of the
conductivity of 'atomic nitrogen leads to a
reasonable value for the net conductivity.

The specific heat Cy was obtained from the
values of C~ given by Giauque and Clayton'3 up
to 5000 K. A plot of the data shows little curva-
ture at that temperature. No great error was
anticipated, therefore, in extrapolating to higher
temperatures.

Using subscript 1 for quantities characteristic
of atomic, and 2 for those characteristic of
molecular, nitrogen, we may write

Eg 9yg —5 gg Cvi
~ ~

Eg 9'y2 —5 gg CV2
(15)

The ratio d22/dP, as before, is taken as 1.183.
Putting in the remaining constants gives Zq/Xm
=1.33. The argument, however, does not justify
use of more than two significant figures. As was
stated earlier, the ordinary conductivity arrived
at by using the Sutherland formula does not
increase with temperature with sufficient ra-
pidity to conform with experimental data. This
deficiency can be approximately compensated
for by increasing the ratio of atomic to molecular
conductivities. This is done and the ratio is
reasonably taken as 1.5 instead of the 1.33
computed from kinetic theory. Hence

X=Em(1+0.5P,/I'). (16)

The number of atoms diffusing across unit
area per second is given by Chapman" as XD
grad. (n, /N) in the absence of gradients of tem-
perature or total pressure. In this formula N is
the total gas concentration, D the coefficient of
ordinary diffusiori, and n, the atomic concentra-
tion. In the present case n, is a function of tem-
perature only and hence the diffusion term can
be written as XD(d/dT)(n /Ã) Td/ r.dOn sub-
stituting for ~ and for n, in terms of I' and P,

Simple kinetic theory relationships were used in
evaluating this ratio, i.e. , yq=5/3; y2=7/5;
Cr, =3R/2M~, Cr, ——5R/2352, and

'Vl/'92 (~1/~2) 'd2 /dl ~

respectively, this becomes

[73.85(102O)P/T jD(d/d T) (P,/P).

This term does not include so-called thermal
diffusion, which is neglected here for reasons to
be presented later. Each pair of atoms diffusing
carries with it the dissociation energy 2g. Hence
the generalized conductivity (the coefficient
which multiplies the temperature gradient)
becomes

73.85 (10")P d
0=Z+ gD (P /P). (17)

T dT

Of the quantities appearing in Eq. (17) X has
been discussed already. The dissociation energy
2q was taken as 7.90 electron volts per molecule. "
The coefficient of diffusion has been calculated
by Amdur" for the case of hydrogen, following
Enskog and Chapman. The formula given
there is

3R'T& ( 1 1
+

8(2~)&Kg{-',(dg+d2) }'E3I& Mu&

1 f'1.0364 —0.0303ni
x—

{ I. («)
P 0 1+Cgg/T )

where N~ is Avogadro's number; R is the gas
constant; d~ and d2 the atomic and molecular
diameters, respectively; 3f& and M2 the cor-
responding atomic weights; P the total pressure,
and Ot the degree of dissociation. The constant
C~~ is the Sutherland constant for the mixture
and is given by

(C&Ca) &

Cpm=--
{2[(d~/dm)'+(dm/di)'3}'

Equation (18) is applied here to obtain the
diffusion coefficient of nitrogen. From viscosity
data Landolt-Bornstein give d2 ——3.90A. The
atomic diameter is not given but is computed
here on the assumption that the ratio dg/d~ is the
same for nitrogen as for hydrogen. As was
mentioned earlier, the ratio is given by Amdur
as 1.088. An average value of -,'is taken for o..
Since o. goes from 0 to 1, the maximum error thus
introduced is 1.5 percent. Assuming that C&/Cm

' S. Chapman, Phil. Trans. 21'7, 158 (1918). "I.Amdur, J.Chem, Phys. 4, 339 (1936).
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1S thc saIlM foI' Qlti ogcn Rs for hydrogen, Rnd

using C2 ——104.7, we obtain CI =87.8. Thus,
C&a=96.0 from Eq. (19). Putting in the other
numerica. l factors gives, finally,

44.1(10-')T&D-
P(1+96/T}

Tk
0=X+0.205 — (I'./P}. (21)

1+96/T d T

Values of 0, computed with the aid of Eq. (21)
for P= 1 atmosphere, are presented in Table I.
Eq. (21) is a Sutherland, type of equation. As
was mentioned earlier, the Sutherland equation
gives values of the viscosity too low at high
temperatures. Since the diffusion coefficient is
proportional to the viscosity, the diffusion co-
efficient also should be too low at high tempera-
tures. Thermal diffusion is opposite in direction
to ordinary diffusion and is neglected here de-
liberately to compensate approximately for the
diffusion deficiency known to exist.

The radial di, ffusion of electrons and ions is
limited by the rate at which ions diffuse out. The
coefficient of diffusion for the ions is about the
same as for the atoms. The ionization potential
1s of the same order of magnitude as the dissocia-
tion energy expressed in electron volts, so that
each pair of electron and ion carries with it about
the same energy as does a pair of atoms. The
concentration gradient of electrons and ions is
small in comparison with that of the atoms, as
can be seen from Table I. Hence the power
carried out by electrons and ions can be neglected
in comparison to that lost by generalized
conduction.

Instead of, carrying out the integration indi-
cated by Eq. (5) a change of variable was intro-
duced, namely, x=Er. With this change Eq. (5)
becomes

dTiCh —(1/xO)f Fade=

and 8', the power input per unit length, becomes

Hence Eq. (23) leads to the arc characteristic
E=const/I, an equation of the Ayrton type, for
cases in which convection heat losses within the
arc are small in comparison with those due to
conduction.

Equation (22) was integrated numerically in
ordc1 to evaluate thc constRnt occurring 1Q Eq.
(23), starting with a number of different as-
sumed values of T„ the center temperature. In
the calculation of dT/dx, the values of x and F
characteristic of the center of a zone of width
dx were used, in the numerator of Eq. (22). In
the denominator of Eq. (22) the values of x and
O~ were characteristic of the edge of the zone.
The resulting value of d T/dx referred to the edge
of thc zone, Rnd lts usc 1Q computing thc tem-
perat:urc of thc ccntcI of thc next Pone amounted
to a three-term Taylor expansion of 5T.

REsULTs AND CQNcl UsIONs

The values of 8'resulting from the integrations
described above are presented as a function of
1, 1Q Flg. 1. Any 1QRccuIRcy 1Q thc function O~

a,ppears directly as an inaccuracy in 8'. In-
accuracies in P appear in lV to some power
sma. lier than the first. This is easy to see, since
R dcclcRsc 1Q F both decreases thc contilbut1on
of each zoQc to thc powe1 1ntcgIR1 Rnd lnc1cRscs
the number of zones contributing by altering the
temperature distribution.

There are two extremes represented in Fig. 1,
one maximum and one minimum. Of these the
maximum provides the better agreement with
cxpcr1ment.

The results of the simple theory should apply
to cRscs 1n which convect1on 1S ncgllg1blc, 1.c.,
when gned'/v' is sinaii. This variable can be made
small by decreasing the arc diameter, which is
done by going to low currents. In Fig. 2 t/t/' is
plotted as a function of I. The horizontal line,
curve A, is the theoretical curve and the other,
curve 8, is experimental. The solid line was
obtained from Suits" data for pure nitrogen. The
vertical lines represent unpublished data taken
by Mr. J. J. Hopkins in this laboratory. The
length of each vertica1 line indicates the probable
error. In the figure the experimental curve ap-
proaches the theoretical at low currents, and
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FIG. 1. Power loss per unit length, TV, as
a function of axial temperature, T..

FiG. 2. Power loss per unit length, W,
as a function of current, I.
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(24)

In the literature one usually finds values of
current density J as a function of total current
rather than values of d. Remembering that
x =Br a,nd W=EI, we find Eq. (24) leads to

W'm/( x)g„I=9.6 5I/, (25)

where (x')A„ is the average value of x'.
A plot of Eq. (25) is shown as curve A, Fig. 4.

Curve 8 is a plot of the experimental values
taken from Suits' paper. ' The comparison of
theoretical and experimental current densities is

the two coincide within experimental error, if the
former is extrapolated to zero current.

The temperature distribution is shown by the
plot of T vs. x in Fig. 3. Experimentally, the arc
appears to have a well-defined edge, so that the
apparent arc diameter can be determined either
visually or photographically. Lacking values for
the light emitted from unit volume of the arc as a
function of temperature, this diameter has not
been determined from theory. It has been
found, "however, that the product of the visual
cross-sectional area, the electric intensity E, and
the F value characteristic of the measured
temperature equals the measured current. This
being the case, the apparent arc diameter should
equal the theoretical root-mean-square diameter
defined by Eq. (24) below.

dif6cult, for several reasons. In the first place,
one would like experiments below one ampere in
order to see whether or not the trend toward
increased current density at decreased currents
is anything like as marked experimentally as
theoretically. In the second place, errors in the
function F appear directly in computations of
current density. These errors may be quite large
because of uncertainties in the mobility and
because of the fact that slight changes in tem-
perature are amplified in changes in F.

The value of the function F required for the
average current density given by Eq. (25) is that
corresponding to' a temperature of 6080'K. This
temperature agrees remarkably well with the
value of 6100'K given by Suits" as the tem-
perature of the atmospheric arc in nitrogen de-
termined from measurements of the velocity of
sound. The center temperature T„on which the
computations are based, is that temperature at
which the maximum in W' occurs, namely,
6200'K, again not far from the 6100'K given

by Suits.

EFFECT OF CONVECTiON*

The variable gn8d'/v2, which brings in convec-
tion effects, can be made small by effectively

*Note added in proof.—Dr. Joseph Slepian has kindly
pointe'd out that although gaed'/v' must be small, it cannot
be zero if the present theory is to apply. In future experi-
ments it will be interesting to see how far g can be reduced
without the need for considering longitudinal changes in
the positive column,
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reducing the acceleration of gravity. The present
theory shouM. apply, therefore, to the results of
experiments performed in gravity-free space.
Steenbeck, '0 in a most ingenious set of experi-
ments, has investigated an arc operating in a
freely-falling container. His measurements were
for air, not nitrogen, and were more qualitative
than quantitative.

The air and nitrogen arcs do not dier greatly
one from the other. Hence a comparison of Steen-
beck's experiments in air with the present theory
developed for nitrogen should at least prove
instructive. Steenbeck concludes that the arc
drop is less in gravity-free space than in ordinary
space and mentions a factor of 2 or 3. His current
range was from 1 to 8 amperes. He does not state
at which of the various currents the factor of 2
or 3 is observed. It is interesting to note, however,
that in Fig. 2 the experimental and theoretical
values of g observed at 8 amperes bear the ratio,
one to the other, of almost exactly 3. The di-
ameter of the arc is observed by Steenbeck to
increase when gravity is removed. The current
density corresponding to a total current of 7 or
8 amperes is less than 1 amp. /cm'. The theo-
retical value observed at 8 amperes in Fig. 4 is
1.2 amp. /cm'. For currents below 4 amperes
Steenbeck gives the current density as somewhere
between 1 and 3 amp. /cm'. Fig. 4 shows 2.4
amp. /cm' at 4 amperes. If we consider the un-

"M, Steenbeck, Physik. Zeits, 38, t019 (1937).

certainties in the theoretical determination of
current density and the qualitative nature of the
experiments, the agreement seems satisfactory.

From Steenbeck's measurements it is safe to
conclude that the theoretical results show the
same trends as do the experiments with respect,
to the inRuence of convection, and that theory
and experiment are not in quantitative disagree-
ment. Quantitative measurements in nitrogen
are greatly needed. In a private communication
Dr. Suits has expressed an interest in such
measurements, and it is sincerely hoped that he
will carry them out.

A few preliminary computations on the arc at
10 atmospheres indicates about 80 watts per
centimeter for 8".The curve of t/t/ vs. T, is almost
Rat over a wide temperature range. Hence the
determination of T, and of J awaits further
computations.

Some attempts have been made at atmospheric
pressure with a view toward including convection
in developing a more complete theory of the arc.
To date several empirical functions have been
tried for representing convection heat loss. Each
is subject to certain restrictions as to form, im-
posed by dimensional arguments, and hence none
are entirely arbitrary. Any one of the three func-
tions tried is satisf c+ y within the arc, but none
of them behave properly at large radii. %'ork is
still in progress, however, and it is hoped that an
entirely satisfactory function will be developed
before very long.
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The perturbation scheme of Mpller and Plesset, which
has as its basis a complete set of solutions of the Fock
single-electron differential-integral equation, is extended
to the calculation of atomic polarizabilities and van der
Waals force constants, The present treatment difl'ers in

three respects from the previous treatments of Kirkwood
and Buckingham. First, the Hartree-Fock model is used
consistently throughout the calculation. Additional func-
tions are introduced to complete the set of single-electron
functions. Sum rules are developed for these functions with
the aid of their common Hamiltonian. These replace the
Kuhn-Reiche sum rules, which do not apply in their usual
form. Second, atomic polarizabilities are expressed as a

sum of sums in the perturbation scheme. An ordered set of
lower bounds is derived for @e first of these sums and also
for similar expressions for van der Waals force constants.
Third, the contribution of each electron is considered
separately. The lower bounds are evaluated exactly with
the help of the sum rules developed. In this way are ob-
tained for the approximate values of the atomic polarizabil-
ity of beryllium and argon 4.14&10 '4 cm3 and 1.28&10 24

cm', respectively. Likewise the constant p, in the van der
Waals energy, —p/R6, is found to be about 222)&10 So erg
cm6 for two beryllium atoms and 63.7)(10 '0 erg cm6 for
two argon atoms, The observed atomic polarizability of
argon is 1.63&(10 ~4 cm'.

' 'N the Hartree-Fock method' of dealing with
~ ~ the Schrodinger equation there is assigned to
a state of the system an approximate wave func-
tion having the proper symmetry and made up
of products of single-particle functions. For an
atom with N electrons in a nondegenerate state,
the approximate wave function has the form

C'(A) = Qu&(a')us(a') u~(a").

A stands for the collection of quantum symbols
a', a~, , a~; the functions u(a) are orthogonal
normalized functions of the space and spin
coordinates, xylo, of a single electron; and 8 is
the normalized antisymmetrizing operator. '

~ On leave from Purdue Universit'y, 1937-38.
i D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928);

V. Pock, Zeits. f. Physik 5I, 126 (1930); P. A. M. Dirac,
Proc. Camb. Phil. Soc. 25, 376 {1930}.

~ 8= [N!j &Z&(—)&P& where P is a permutation of
parity p of both positional and spin coordinates of the
electrons. The notation of this paper follows more or less
that of Condon and Shortley, Theory of Atomic Spectra. It

For the purpose of Hartree™Fock calculations
the atomic Hamiltonian is assumed to be

H = (i/2m)P —ze'/r;,

In terms of the two expressions

(aiII'ia) =P tdru*(a)H'u(a),

(ab~q~ed) = P '

dry I drgug"(a)uP(b)

Xgi2u g (e)um(d),

is an adaptation of the genera. l Dirac notation to atomic
problems. Coordinates are usually indicated through
subscripts which indicate the particles to which functions
belong. Quantum symbols appear in the main line of print.


