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We treat the internal conversion of nuclear p-rays by methods suited especially to the cases
of the artificially radioactive elemen'ts. The paper is divided into five parts: Section 1 discusses
the radiative transitions in nuclei of middle atomic weights, where one may expect large angular
momentum changes and low energy of excitation; in Section 2 we consider the selection rules for
the various types of nuclear radiation, and the conditions on their strictness; in Section 3 we

examine the choice of potentials for the representation of the multipole fields; Section 4 con-
tains calculations leading to a nonrelativistic formula for the conversion of electric multipole

radiation of any order, applicable for Z&40 and y-ray energy'(nzc; and very simple

relativistic formulae are derived, good for high p-ray energy but restricted to low binding,

Z &30, for both magnetic and electric multipoles of any order. We summarize the qualitative
behavior of the formulae in a conclusion.

1. INTRODUCTION

HE internal conversion of y-rays was first
observed as the superposition of homo-

geneous groups of emitted electrons on the
continuous p-ray spectrum of certain naturally
radioactive elements. The intensities of these
lines have been calculated' by methods apprOpr-
ate to these cases: i.e., by using relativistic elec-
tron theory necessary for these elements where
Z 80 and the velocity of the electron in the
bound state is large, and for radiation of a few

lorn multipole orders. The integrals involved had
to be carried Out numerically.

The arti6cial production of y-radioactive
nuclei of low and middle Z made the extension
of the calculations to this range seem desirable.
Thus the activity found by Alvarez' in Ga'7 is
associated with a line of emitted electrons,
presumably conversion electrons of a Zn y-ray
which is emitted. after the Ga nucleus captures a
X electron to go to Zn". F'or the detailed interpre-
tation of such reactions it is helpful to have

reliable estimates of the conveision coefFicient.
Hebb and Uhlenbeck' were led to calculate the

internal conversion coef6cients for the 6rst 6ve
electric multipoles on different grounds. The
ideas of von Weizsacker4 about nuclear isomers,

~ For results and extensive references see H. R. Hulme,
N. F. Mott, F.Oppenheimer and H. M. Taylor, Proc. Roy.
Soc. AISS, 315 (1936}.

s L. W. Alvarez, Phys. Rev. 54, 486'(1938).
3 M. H. Hebb and G. E. Uhlenbeck, Physica 5, 605

(1938).
4 C. F. v. Keizsacker, Naturwiss. 24, 813 (1936).

which ascribe the long lifetime of the metastable
nuclear state to a difference of several units of
angular momentum between metastable and
ground states, and in fact the general ideas of
Bohr on nuclear structure, indicated that high

multipole orders should frequently be involved in

nuclear radiation between states of low excita-
tion. Their calculations were made to ascertain the
correction to the estimate of lifetime on the basis
of radiative decay alone, when the possibility of
decay by electron emission is taken into account.

The formulae of Uhlenbeck and Hebb are
completely nonrelativistic, applicable in the
range Z(40 and for y-ray energies&&mt, "'. Ke
extend the formulae of Uhlenbeck and Hebb to
all multipole orders, and obtain simple rela-

tivistic results for light nuclei, for magnetic
multipoles, and for high multipole order.

2. SELECTION RULES FOR MULTIPOLE RADIATION

The interaction between the electron and the
nuclear charge and current we represent as the
perturbation on the electron motion by the 6elds
of an oscillating electric or magnetic multipole
placed at the nucleus. This treatment is based on

a simple argument: the classical multipole 6elds
de6ne normal coordinates for Maxwell's equa-
tions by an expansion of the 6elds in spherical
harmonics, and the 6eld of an electric or mag-
netic 2~ pole when quantized represents a light
quantum with angular momentum Lh. ' Since the

'%. Heitler, Proc. Camb. Phil. Soc. 32, 112 (1936),



total angular momentum of the system nucleus
+y-roy must be conserved, we expect a nuclear
transition between states of total angular mo-
mentum J and J' to emit a quantum represented
by a 2~ pole such that L=J—J'.

For convenience we summarize the arguments
leading to the selection rules for multipole
radiation. ' In the gauge in which

LP]retarded
p(R) = jfdIt

fR —r(

we can write for the scalar potential at a point
distant R(R, 0) from the center of a system of
particles with charge e; and position r, (r;, td;), in-
volved in a transition 'IIJ ~%'J ..

I', (Eg Zg) t-
y(R, t) =exp I dv+J(r;)

exp $ik (R—r;)]
X4z (r,)Pe,—

iR —r;i

Suppose that there is no contribution to this
integral from any r;&8 (6 corresponding to the
radius of the nucleus). Then we can make a
well-known expansion of the exponential' to get

t (» ~) =f(«) 2 2 C1f1(k&) 1'1"(q)

(r.q
2e+1

n=0 &8)

ff
~
J—J'~ =I, then in the reduction of tfrgtI'J

the lowest spherical harmonic occurring is Yl.,
hence the lowest value of ) contributing is X=I.
Values of t up to J+J' also contribute, but their
contributions are reduced by a factor approxi-
mately (k8)" ~ and this is certainly small for
most nuclear y-rays (for a one-Mev y-ray,
kent'& 1/15). This gives a leading term in the
scalar potential Fl„just that of a classical
electric 2~ pole in this gauge. To 6nd the re-
maining terms in the scalar potential of such a
multipole, we consider all 'A&I. and collect,
successively, terms in each power of ko that
occurs.

6 Compare, e.g. , H. A. Kramef's, Hend- und Jahrbuch
der Chem~schen I'hys~k, Vol. I/II, p. 449.' H. Bateman, I'artie/ D~gerentia/ Equations, p. 388.

TAaI. E I. Minirnlrn allowed multiPO/es for givers parity
chmge end 6J (I.=J—J'}.

PARn'V CHANCE

Even

MINIMUM ALLO%'ED MULTIPOLEI. EVEN L ooo

el. 2~ pole el. 2~+' pole
mag. 2~+' pole mag. 2~ pole

el. 2I+' pole
mag. 2~ pole

el. 2~ pole
mag. 2~+' pole

'H. A. Bethe, Rev. Mod. Phys. 9, 222 (1937}.

Going now to the vector potential, the transfor-
mation properties of the current vector enter. The
current pv transforms like FI. For

t
J—I'I =I,

one can now obtain three values of ) correspond-
ing to the lowest power of (kii), namely I., I+1
and L—j.. In this gauge the magnetic multlpoles
have zero scalar potential, and correspond to
the single term YI, in the vector potential.
The electric multipoles come from Pl,+~ and
FI, g.

Like the total angular momentum, the parity
of the nuclear states is a constant of the motion;
from the reHection properties of the vector
potential, we can see that the electric 2~ poles
llave pa11'ty (—), the IIlaglle't1c (—) + . Tlllls to
a given parity change and hJ there corresponds
a minimum electric and minimum magnetic
multipole as shown in Table I. The higher
multipoles, up to L, =J+J', permitted by the
parity could contribute, but their amplitudes
contain the small factor (kent)

~ ~~

Unless there are some further special sym-
metries of the nucleus, the lowest multipole
allowed will be the most important. We know'
that the dipole moment of all but the lightest
nuclei is reduced by the approximate coincidence
of the centers of mass and charge, so that electric
dipole and electric quadripole radiation can be
comparable, but all other electric multipoles
smaller. The fair agreement with experiment' in
the natural radioactive series supports this. For
the magnetic moments, which involve not only
the charge and motion, but also the spin prop-
erties of the nuclear matter, no analogous re-
duction of the dipole moment is to be expected.
On the other hand, we have the same experi-
ments of Ellis e/ al. to show that, while magnetic
dipole and electric quadripole are both allowed
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for a transition 6J= 1, even parity change,
relatively little magnetic radiation is present.

We shall see that for low energies internal con-
version increases very sharply with multipole
order. Nevertheless we are still justified in keep™
ing only the lowest multipole, for the reason
that while the ratio of the number of electrons
ejected to the number of quanta ejected increases
with multipole order for long wave-length, the
actual number of electrons ejected falls og. We
have seen that the intensity of y-rays falls off
with multipole order 1 by a factor (kb)"; the
number of emitted electrons may be expected to
fall off (and we shall see that this is roughly so)
by a factor (k.b)", where k, is the reciprocal
electron wave-length. For energies & j. Mev,

k; for low energies k decreases linearly with
energy and k, as k:, and both electron and y-ray
wave-lengths increase. Only for energies )20
Mev are kb, k,b 1. For energies lower than this
we need consider, for either y-ray or electron
emission, only the lowest multipole order neither
forbidden by selection rules nor reduced by any
special arguments of symmetry, because here
even the electron wave-length is much longer
than the nuclear dimensions.

3. REPRESENTATION OF M ULTIPOLE FIELDS

In previous work on internal conversion, where

only dipole and quadripole fields were required,
the "Maxwell" representation was employed;
in this representation the electric dipole vector
potential is given by

& —[0, 0, (e""/kr)]e

+complex conjugate. (1)

The quadripole field is

Ag= [0, 0, (8/Bs)(e'"'/kr)]o '"'

+complex conjugate. (2)

Higher electric multipole fields are obtained by a
corresponding number of differentiations with
respect to s. (The scalar potential is obtained in

each case from the Lorentz condition. )
These s axis multipoles are, if spherical sym-

metry otherwise prevails, entirely equivalent to
those directed along the x or y axes where

successive differentiations are correspondingly
along the x or y axes. However, one might
erroneously think them also equivalent to mul-
tipoles of a "mixed'" type, e.g. ,

A2' ——[0 0 (8/Bx)(e""/kr)]e

+complex conjugate,

reasoning from analogy to the case of static
multipoles. That this is not so can best be seen
from the fact that A2' cannot be obtained from
A2 by rotation. In fact, A2' is not pure electric
quadripole at all, but contains both electric
quadripole and magnetic dipole.

Consequently the process of successive differ-
entiation does not yield in any direct way all of
the 23+1 independent multipoles of the 2' type
which must exist in order that the multipole
fields afford a complete set. Moreover, the fields
which can be obtained in this way are unsuitable
in calcu'Iations f'or general multipole order. '

The problem of finding explicit expressions for
the general multipole fields has been solved by
Heitler, "a modification of whose results we use,
and by Hansen. Choosing a gauge in which
div A'= y'=0, we obtain expressions for the
vector potential of a 2' electric pole in the
following form:"

A, '=e '"'[q( g"Y( &-"f& &(kr)

+qt+z 4+i ft+s(kr)]i

A+'=A '+iA„'=e '"'[Qg g"+'Y& g"+'f& &

+QE+1 Yl+1 fl+1]~ (3)

s ~rut[P m—1 Y m 1f-
+&&p&™1YIyx 'fi+x]

where ~=ck, I'~ is the spherical harmonic, and

' One might hope to calculate matrix elements involving
A~ by repeated partial integrations to reduce out the
I'l —1)th order derivative. The integrands are, however,
singular at r~o, so that surface terms occur in each'partial
integration, rendering the method impracticable.

"See reference 5. A similar solution has been given
independeritly by %. W. Hansen, Phys. Rev. 4V, 139
(1935).

» In order to make the potentials real, we add to A, ' its
complex conjugate and to each of A+', A ' the complex
conjugate of the other. However probabilities of transitions
involving absorb'On of light will depend only on the terms
containing e '&' and we will use only these terms through-
out, except in the calculation of the rate of radiation.
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the coefficients g, Q, P are given by

Q~+i + (l —m+1)~=gi~i (i+m+2)',

P(~i™—1(i+m+1) '= —g(+,m(l —m+2) '*,

Q( i"+'(l+m)'*= —g( i"(l—m —1)'*,

Pi i"—'(l —m)'*=gi i"(l+m —1)&,

(1+1i i
t (2l+3) (2l+1)i l

}{ }~+"
& l ) &(l+1)P—mP )

l i '*t (21+1)(2l—1)i '

El+1& i l' —mP

The constant 0-~ .measures the multipole mo-
ment. The radial function fi(kr) is:

f~ (kr) =Ipri~i(kr) /(kr) '

where Hi+-,*(kr) is the Hankel function of the first
kind. This gives rise to outgoing waves singular
at the origin rather than to standing waves such
as Heitler obtained.

The corresponding expressions for a 2' mag-
netic multipole are:

2,'=e ' 'bimYpf) m/[l(l+1)]'
2 '=e—'"'8 "+'Y"+'f m/'[l(l+1)]

e irv &Q&
—iYm&m if

&
.m/[l(l+ 1—)]I (4)

8P+' = —1/m[(l m) (l+m—+1)5'b p
C)" '= —1/m[(l+m)(l —m+1)]lb(".

The rate of radiation is calculated in the usual
way and is found to be, for electric multipoles

~ m 2

quanta/sec.
m2kk

and for magnetic multipoles:

(b m)2

quanta/sec.
7r2kk

The choice of gauge in which div A=O, besides
rendering the potentials compact, is particularly
suited for use in problems involving interaction
of light with matter, where the Hamiltonian

(nonrelativistic) is given, neglecting terms in
A', by

1 5 e
II= —grad ——A +eq

2m i C

ek
[grad A+A grad]+epp.

2m 2mic

Matrix elements of perturbations by the radia-
tion field have the form

ek eA

~
4t — A grad — (div A)+epp 4'pdv. (7)

mic 2m' c

If now div A and y vanish, the calculation is
extremely simplified; the only term remaining is
the one in A grad.

From this one might conclude that all inter-
action vanished as the initial velocity approached
zero, which disagrees with the results for the
conventional gauge. The discrepancy must be
looked for in the contribution to the matrix
element of the necessarily singular generating
function X of the gauge transformation:

A =A'+grad. X, pp = pp' —(1/c) (BX/Bt), (8)

where A, pp are in the conventional gauge, e.g. (1),
(2) and

dlvA =p =0.
Substituting (8) into (7), using charge-current

conservation and applying suitable partial in-
tegrations, we find that the terms involving )
may be expressed as follows:

——
I ds(d/dt) (X4'g@p)

C

ek
de. I +q%'p grad X+) 4'q grad 4'p

2mzc+

—X@p grad 4f },
wher'e the surface integral is over the bounding
surface Z of the volume V under consideration.
The volume integral, integrated from time 0 to t
is an oscillating term which does not build up
with t and hence does not contribute to the
transition probability. If, as is appropriate for
the problem of internal conversion, we let our
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bounding surface 5 consist of two spheres whose
radii appmach infinity and zero, respectively,
then the integral over the outer surface will
vanish because of the regularity of the wave
functions and the potentials. We are conse-
quently left with a surface integral over a small
sphere surmunding the origin

ek. ' 8X
r'd Q

PNC ~(q 0) Bf

8'ko 8'ky
+X'kg —Xif o (9)

6nite contribution fmm an arbitrarily small
region, then we must consider these potentials
wrong for our particular problem. If, by a gauge
transformation, we are led to another set of
potentials for which the integrand of the matrix
element is small. at the origin, this latter set can
be called correct.

In the pmblem of internal conversion, this
condition is satisfied by the unprimed gauge.
It is not satisfied by the electric multipoles in
the primed gauge; div A' and y', while zero
throughout space, are integrably infinite at the
origin, as can be seen by partially integrating

To evaluate this, and thus to determine the
difference in matrix elements between primed
and unprimed gauges, one must know merely the
limiting forms for small r of the wave functions
and of ).

Consider now the case of electric multipoles;
by comparing (1), (2), etc. with (3), it is easily
seen that A' is more singular than A; hence it
follows from (8) that for small r,

g1Rd, X~ —A .

This equation is satisfied by

~mf
X

i i Yippie
u if+1)

(10)
(~r/2)-'-'

Y,m o( )i+i e—i~i

if+1j (1'or) lI'( —I+-,')

The additive constant is omitted since it does not
contribute to (9), which is now completely fixed.

We must still account for the fact that such a
difference between gauges exists and must answer
the question of which gauge, if either, gives the
"right" answer —i.e., that corresponding to the
physical problem, We know that any expressions
for the potentials of an electrical system in
terms of multipoles are approximate, and are
valid only outside the region containing the
charges and currents. These expressions can
therefore be appropriately used only when the
effect we wish to calculate (or the predominant
part of it) takes place outside this region. If,
because of the artificial singularities at the
origin intmduced in the definition of the mul-

tipole potentials, our matrix elements are given a

dv+~%'(I div A,

where V is a sphere including the origin whose
radius is permitted to approach zero.

Nevertheless, the primed gauge still can be
advantageously used since the correction neces-
sary to bring it into agreement with the correct
gauge is known, namely, (9).

The magnetic multipole potentials in the
primed gauge may be used without correction,

4. CxccUL@nows

We will calculate the number of electronic
transitions per second from the X level to the con-
tinuum of an atom of atomic number Z induced by
a nuclear 2' pole with unit rate of radiation. This
number, which we call uIr' for electric, and Px' for
magnetic multipoles, is defined as the coefficient
of internal conversion. Taylor and Mott have
shown" that it is to be interpreted, in all cases
of interest, as the ratio of the number of electrons
to the number of quanta leaving the atom,
N, /N„and not to X./(N. +X,) as was originally
supposed. In its main effect, the perturbation by
the electron serves to induce additional nuclear
transitions, not to reduce the number of emitted
quanta.

In the first part we limit ourselves to non-

relativistic energies thmughout. This gives a
range of applicability up to Z=40 and y-ray
energies up to 200,000 or 300,000 volts. From
these calculations we find an asymptotic ex-
pression for high /.

I' H. M. Taylor and N. F. Mott, Proc. Roy, Soc, A142,
215 (1933).
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i(kr/2) —'—l( —) '+'

(kr) -'*r (—l+-,')

In the second part we derive a formula singular term, namely
applicable to low atomic numbers, neglecting the
K binding energy with respect to mc' and to the
p-ray energy. These formulae are very simple.

A. Nonrelativistic —electric multipoles

The number of transitions per electron per
second from a state 0'0 in the E shell to a state%'f
in the continuum is given by

It can be shown that the contributions of less
singular terms are smaller by at least k'/(a'+p')

v'/c'. With this substitution the radial integral
can be carried out in series, and we obtain

ek M" a 3+1
X,=—A —

I dv4', A' grad 4', , (l1)
mac p 1+-,'

where +J is normalized to unit Aux through the
boundary at infinity. A. , the surface integral
contributed by the gauge transformation, is
calculated from (9). Also where

2'Lpi
&& F( 1, i+1+in, 2l+2, [, (13)

p)

40 ——(u'/7r) *e '"

(mvp) l [r(1+1+in)r(1+1—in) j'*
Ir —m

& k i r(i+1)r(l+-', )

&(e'"t'(pr/2) 'e '"'F(i+1+in, 2l+2, 2ipr),

where a=Zn(mc/k), p is 1/k times the mo-
mentum of the ejected electron and n=a/p
=Zn/[2v (Zn)—']1 where v is the p-ray energy
over mc'. We' require the expression A' grad +0,
which, using (3), is found to be simply

f,(kr)—ao i"Ll(i+1)]' I i"
(kr)

eo.~" (2a'k) * p'+ ( l
i

v.c E rn I k'+'El+1)

Lr (i+1+in) r (l y1 —in) ]-'
X- &~m[2

r(i+1)

We can express the hypergeometric function F in
(13) in terms of two terminating hypergeometric
series by using the familiar analytical continua-
tion. If we do so and make use of the formulae:

p/2ip = (1—in)/2, p'/k' = 2/v(1+n')

r(i+1+in) r(l+ 1 —in)

Both A' grad. and X contain P~, hence both
contribute to transitions to a final state +~ F~ .

We make the indicated substitutions and
carry out the. trivial angular integrations, ob-
taining

M' co

X.= [ kr'+'f&+s —
j, = +02a(i+1) drf(r'+'

0

Xe ""F(i+1+in,2l+2, 2ipr)

where p =@+ip and

v2 ( 2) '
.VI=

~

——
~

)&M' (given below).
r( —l+-', ) & k)

In the radial integral we replace fi by its most

(l'+n') [(l.—1)'+n'j (1+n')
sinh 7fn

we obtain for the conversion coefficient for two X
electrons "
nrr'=2K, v kk/(a '") Iv/c«1 I"

l (2q '+' n4
Ll'(I+ l) j'I —

(l+1 L vt (1+n')'

L(1+1)(1+n2) l—2e—2n c&n & n Ir&$&

(14)
(l'+ n') L(i —1)'+n'] . (1+n') (1 —e

—'")
» These formulae, up to l = 5, have been derived by Hebb

and Uhlenbeck, reference 3, with whose results we are in
agreement. Their parameter q is the reciprocal of our m."The inequalities in braces give the conditions of
applicability of our final formulae.
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It satisfies the recursion relation;

1+2
V)pg ——V((1+n')—+

l+1 (2l+2)! (1+m')

22l+I)

where
l

4' II (i'+n')
f=l

Ug ——

(1+n')'(2l) !

l+1 t' 1 —in'
)& in I'{ 1, 2l, 1 ——l-in,

}
—1 .

2

l t 2q '+'~'
~~'= z'~4

(1+n'+ 1/2l) np/'2) '— -2
2 —2nl' —- +0(1/l)

(2+ly') '

(16)

where p, = n,+ (n'+2/l) *'

Carrying out the integration, one obtains a
formula closely related to (15), the formula for
vanishing Z.

For l))1:

so that

~ II (i'+n')
i=1

l t 2) '+"'
~rr'= Z'~4

l+1 E vi

{v/c«1 },
(15)

{Ze'/Av«1 }.

Up
——0,

Ui ——0,
1

V3 4(3+——2n')/15, etc.
Limit n~0:
In this limit of low Z, A'. grad +0~0, and only

A contributes. We obtain, " again for two
electrons

The formula can be further simplified for
e'l))1 (i.e. , l sufficiently high, not too near
threshold). In this case p~2n+1/ln The. princi-
pal terms in the bracket cancel and one is left
simply with the formula for vanishing Z reduced
roughly by a factor l.

l t'2) '+"' (1) {n'l»1 },.~ =z'.4
{

—
} o{ —

} (1&)
l+1 ( v) E l) {v«c}.

It can be shown that the term O(1/l) will not
vanish identically in n.

For n'l«1, (16) goes over into (1S), a con-
vergence non-uniform in /.

B. Nonrelativistic magnetic multipolesThe convergence to this limit, however, is not
uniform in /."

Asymptotic formnla for large l:
This can be most easily arrived at by using the

contour integral representation:

In nonrelativistic theory, there is no conversion
of magnetic multipole radiation by X electrons,
or by any electron with zero orbital angular
momentum. The transition from a state with zero
to one with l units of orbital angular momentum
can be accompanied only by the absorption of a
2' pole quantum. But since the electron's parity
change is ( —) ', magnetic radiation is forbidden,
since magnetic 2' pole has parity (—)'+'.

Physically this means there are no radial forces
on such an electron. The electric field of a
magnetic multipole is tangential and the mag-
netic force is perpendicular to the velocity, i.e.,
also tangential.

Conversion of magnetic radiation by S elec-
trons thus depends essentially on their spin.

I"(2l+2)
4'I (i+1+in)r(ly1 in)—

1 (1yn) l+~n(l ~) l fn—
X dQ

—1 I+in

zn z
u = ——+—(I'+2/l)'.

2 2

for the hypergeometric function in (13).There is
a saddle point on the imaginary axis quite close
to the origin:

"This formula was given by the authors in Phys. Rev.
54, 149 (1938) where through error it was given as for one
E' electron.

"For increasing l, the tangential component of the
magnetic field, and hence the radial Lorentz force, becomes
more important.

C. Relativistic calculations, neglecting binding

The number of electronic transitions per second
from a state 0 in the X shell to a state f in the
continuum where the electron is ejected into the
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solid angle d0 is given for two electrons in the Taking the trace and evaluating the space
E shell: integrals we Find the Inatrix element. Dividing by

the rate of radiation, and normalizing, we obtain
for the internal conversion coefFicient for two

e E electrons, neglecting binding energy:

where II= g ~tdv4f(n A+q)%„
spin J

2Z'n'(v+2) ' l (7+1)v'+4l-

v' E v ) 7+1
e is the vector whose components are the 6rst
three Dirac matrices for v/c, and +f is normalized
to unit energy. The integral is over all space, and
the sum over 6nal and initial spin states. If now
we make the gauge transformation (8), we obtain

t'II= p ~tdv%qA' e%,+J dnX@ze n%,
spin

where the second term is the analog of (9) in the
nonrelativistic case, n is a unit vector along r,
and the surface integral is over a smajl sphere
around the origin. In this approximation, where
the inHuence of the Coulomb Field is neglected,
we use plane waves for the space-dependent part
of 4'~. Then the wave functions factor into spin-
and space-dependent parts. If we introduce the
projection operators,

2ro ——1+p,

P8tc + 4l! pyle
27f 1+

we can replace the wave functions by ~okp Rnd

r~%'r in II,, and the P IIII can be replaced by the
spin

sum over both the spin states and the states of
positive and negative energy in the well-known
WRy

1'F

We get

}II('=Trace L(A e)ro(A e)*rr

{Ze'/kv&(1 }, (18)

where v =y-ray energy in. units mc'.
3EIagnetic multiPoles:
A similar, but simpler, calculation (no gauge

term appears) gives for two E electrons:"

2Z'a' (v+2) '+'

v )
{Zv2/hv«1 }. (19)

L,inn'ting cases:
For low-energy y-rays, I &&j.

(2) k+5/2z.
1+1 & v)

{v/c«1 },

(2y l+~

~E Z3n4
Ev)

{Ze'/hv«1 }.
(20)

P~' 3+1 (v) '

air! 4l (c)

For very high energy p-rays, v»1:"

{v~~},
(21)

{Ze'/kv«1 }.

For low energy y-rays and for small binding
energy, conversion of magnetic 2' pole radiation
is smaller than that of the electric 2' pole by a
factor

+(n N)ro(A n) "rI+(A n)r, (N n)*rz In this limit the conversion is independent of
multipole type and order, as in the same limit for
internal conversion by pair production. 2' Both

A= CgJjA' exp (ip r)dv,

N = CrJ~dtrX exp ('Ip r)n,

Cy =normalizing constant.
"Cf. W. Heitler, Quantum Theory of Radiates, p. 1/0.

' This formula may be expected to give a fair estimate
for low and middle Z, even though binding is neglected, as
magnetic conversion essentially depends on spin. Compare
Section 48.

~9 This formula agrees, in the limit of low-Z, with the
electric dipole formula given by H. Casimir, Physik.
Zeits. 32, 665 (193I). The latter is applicable, for suffi-
ciently large v, to all Z.

"This result is more easily derived by the method sug-
gested in reference 9.
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electric and magnetic conversion formulae for
negligible binding have the general properties:

(1) For a given f, the conversion increases as v

decreases, the more rapidly the greater l. For
v—+ ~ the conversion for all multipoles ap-
proaches a common limit.

(2) For a given v, conversion increases with f,
more and more slowly as v—+ ~.

I. skelt:
For conversion from the I. shell, (18) and (19)

hold provided Z be replaced by Z —a/2, where o.

is the energy screening constant; for the L, shell
these results are valid for larger values of n than
for the X shell.

5. CoNcLUsIoN

Experiment has established internal conver-
sion, either by detection of the actual electron
groups or of the x-rays from the filling of the
depleted X levels, in the cases of Rh,"Br,"Ma,"
Ag" and Au" probably in In" and Cd;" and,
of course, in Zn. In the last, the data are suffi-

ciently complete to assign the conversion tenta-
tively to an electric quadripole radiation. " In
the others it is not yet possible to classify the

'1 B. Pontecorvo, Phys. Rev. 54, 542 (1938).
"Philip Abelson, of this laboratory, has detected char-

acteristic bromine x-rays in the activity of Br' (un-
published)."E, Segre and G. T. Seaborg, Phys. Rev. 54, 772 (1938)."L.N. Ridenour, I . A. Delsasso, M. G. White and R.
Sherr, Phys. Rev. 53, 770 (1938)."J.R. Richardson, Phys. Rev. 53, 942 (A) (1938).

"We are grateful to Dr. R. Serber for the information
that Goldhaber has found electron lines from indium.

'" J. G. Hoffman and R. F. Bacher, Phys. Rev. 54, 644
(1938)."L.W. Alvarez, reference 2, p, 497.

radiation. The general features suggested by the
von Weizsacker hypothesis are, however, ob-
served: low energy and long lifetime (metasta-
bility) seem to be accompanied by large con-
version —pointing to high angular momenta. An
interesting check on the picture will be furnished

by comparison of lifetime and conversion coeffi-
cient, both of which are fixed by multipole order
for a given y-ray energy.

We summarize our results: LHere t is multipole
order, n =Ze'/hv].

(1) The smaller the y-ray energy compared to
mc', the more rapidly conversion increases with
multipole order. For large y-ray energies, the
increase with multipole order is much less
marked.

(2) The effect of binding is complicated,
though in general conversion varies about as Z'
for given l and energy. For a given value of n,
there may be a minimum in the conversion
coefficient as / is varied.

(3) For sufficiently large f, and low y-ray
energy the conversion (given by (17)) is of the
order of 1/f &&, the conversion neglecting binding.

(4) The magnetic multipole conversion will be
small for low p-, ray energy and Z &40.

(5) Quantitative results for y-ray energies
under 0.2 Mev and Z(40 will be given by
formula (14). For Z(30, high energies, and not
extremely high multipole order, (18) and (19)
give usable estimates. For Z )50 numerical
calculation is necessary for accurate results.
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