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When particles interact with each other through the
intervening mechanism of a field, the description of their
dynamical behavior by means of action-at-a-distance
potentials is only of an approximate nature. Two-body,
three-body, ~, m-body potentials may be regarded as
successive stages of this approximation; their relative
magnitudes are examined systematically for several types
of classical and quantized fields, e.g, , electromagnetic,
mesotron, etc. It is found that the description of electrons

in atomic systems by the customary two-body potentials is
an excellent approximation; in nuclei, independent of the
details of the field, one finds: three-body potentials
=(v„/c) X (two-body potentials) ~, zn-body potentials—(v„/c) ~&& (two-body potentials}, where v„ is the average
velocity of the heavy particles in the nucleus. The usual
description of nuclei in terms of two-body potentials
cannot therefore be considered satisfactory, except in the
case of the deuteron.

INTRODUCTION

''N field theories of particle interaction, an
& - exact description of the dynamical behavior
of the particles necessitates the explicit intro-
duction of variables describiq, g the state of the
field. A description of particle dynamics in terms
of interactions depending only on the instan-
taneous relative coordinates of the particles'
(action-at-a-distance) is, therefore, necessarily of
an approximate character. In the first stage of
this approximation the interactions are of the
so-called "two-body" type:

systems, but a relatively poor one for the heavy
particles in nuclei.

CLASSICAL ELECTROMAGNETIC THEORY OF

ELECTRON DYNAMICS

(a) Etinations of motion

The equation of motion of a given electron in
the presence of potentials, p, A is

1 8
ma~ ——e~ —grad. ~ e(r~, t) ———A(r~, t)

c Bt

Vk

+—&(curl~A(r~, t), k=1, , n (1).
c

In the higher stages, as shown below, one ob-
tains additional interactions of such a nature
that the force between any two particles is de-
pendent on the positions of some of the others
("many-body" forces). For example,

Here q, A, arise from the other electrons, and
describe the state of the field; they are deter-
mined by the equations 2

BA
g'e = —4~pe;8(r —r;(t)) ——div. —, (2)

c Bt
V= P V;;~(r;;, rg, r;~)

1 O'A
q'A-—

c' cjt~

VZ

4m Pe, 8(r—r;(t))— —i, j, k

represents three-body interactions. It is the
purpose of this 'paper to examine the conditions
under which a set of two-body interactions con-
stitute an adequate substitute for the explicit
use of field variables. It will be found that the
use of two-body interactions is an excellent
approximation for electronic motions in atomic

1 Be)
+grad.

(
div. A+ ——[. (3)

c at)

To obtain an "action-at-a-distance" dynamical
description of the particles, one attempts to
express q, A in terms of the instantaneous rela-
tive particle coordinates. Choosing the gauge so*University Fellow.' One also admits interactions depending on the particle

velocity into the action-at-a-distance dynamical de
scription.

' W. Heitler, Quantum Theory of RaCh ation (Oxford
Univ. Press, 1936), p. 2, Eqs. (Sa), (Sb).
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that div. A=0, one 6nds:2 whence, to s'/c'

8j
y(ra, t) = P—;exactly.

rI j

e; (v; ra;(v; r»))
X(r„&)=P —

i

—+
i 2c(ra; ra;a )

sa&~ ('&i&irii &i«(rii'rai)rai)t
(4) f.(k) =. Z;i,+

i, i 2llM ErairiP rai fit )
82 i 82 82

if i (8)
mc' r r' mc' r

+,2 8.
+terms ln —+tcrIQs 1Q —+ ' '

$2 $2

a;=—acceleration of jth particle. (5)

The forces acting on the 4th particle will be
correct to the second order in s;/t, , and the first
order in a;/c', if all terms in A except those in
s i/c„are neglected. 'b

%1th this RppI oxlIIlRtlon, the cqUatlons of
motion (1) for the system of electrons, become:

ea~irai &as~ ( & ra~ 3(vi'rai)'rag/
maa ——Q —P i

— +-
i rai' i 2c' t. raia raia

&ava t'si viXrai)+p xi-
i i; . kc

(ai »i)r»)+~,l
—+

i 2c' &ra; raia

Thus f.(k) is of the three-body type. The
three-body forces become appreciable whenever
thc relative distances between thc clcctl"ons Rlc
not large in comparison vnth their dassical
clcc troIDRgnetlc 1 Ml, ll.

It is a general. fact that "acceleration-de-
pendent" forces, when expressed in terms of
coordinates RQJ vclocltlcs, are of the many-body
type.

(b) Lagrangian and. Hamiltonian of the particle
sgsteBl

The equations of motion, (6), are derivable
fI0m a t%'0-body LagranglRQ:

I.= Q-', mva' —-', P
k fI-j

&a&; (va'v~ (va'rai)(vi'rai) ~+!Z i +
u 2i; ( rai rai

—=f.(k)+f.(k)+f (k)+f.(k), k=1, , ra. .(6)
from which one obtains the Hamiltonian:

Here, f,(k), f,(k), f (k), represent, in order, the
Coulomb force, a velocity-dependent correction
to the Coulorab force, and the magnetic force.
f.(k) is the force on the kth particle determined
by the acceleration of the others.

Since there are ia equations of motion (4), the
Ã Unknowll RccelcrRtloQs RIc glvcn ln terms of
the positions and velocities. To the zeroth order
ln 8 C)

sa&~ (va v~ (va'rai)(Vi'rai))+lZ i
—+

a. ~ 2c'E ra; raia i
AVJ

'mva'+-'&sar (ra)-+-'Z &(ra) (&o)
k k k.| 8&8g

ai= 2 ri»c ~ r
This I.agrangian was 6rst given by C. G. Darwin, Phil.

Mag. 39, 537 I'1920). All relativistic terms in the kinetic
energy, such as Zkmkvk4/Sc', are consistently omitted in
what follows, since they introduce no essential modi6cation
in the derivation of many-body potentials. A further dis-
cussion of the approximations involved in this Lagrangian
is given in the Addendum,

"The gauge div. A=0, and the subsequent approximate
solution for A from the 6eld equations, has been used by
Breit in his derivation of the velocity dependent interaction
between two electrons. See Phys. Rev. 39, 616 (1932).

gb For further discussion of this neglect, see Addendum.

where the v's are to be expressed in terms of the
(&)
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p's, by the equations

1 eie; f'v; r),;(v; ri;)y-
va= —y~-Z

(
—+-

m ) 2c' Er» ri;i

=—
) p), ——A(r), ) ~, &=1, , n (11)

m& c )
Substituting into (10), the value of vt, given by
(11), olle obtalils

PIc e& pIH= Z + 2Ze~v (r~) —2E ——A{ri) (12)
21Ã c

with the A's given in terms of the y's, by (cf. (5)
and (11))

e; -(p;-(e;/c)A(r;))
A(r), ) = Q

r~ (p —(e;/c)A(r;)) r~;
+ -'-'

( p) r»(r»" p)) &=—~—
I

—+-
7 2nsc&rl, ; rI,

e;) ( r&;(r),; A(r;)) p

~
A(r;)+, (13)

) 2mc'r„& r, )

The n linear inhomogeneous vector equations
(13), may be solved, either exactly, with de-

terminants, or approximately, with e)2/2mc'ri;
as an expansion parameter. The latter method
leads to

f p) r»(r»" p)')'t
A(r~) =Z (

—+
2mc (r„r») )

f p) r )(p) r ))p

7, 22mc'r„2mc Er;2 r;, )

p) r )(p)'r ))'$
+ r~;~ —+

r~; Er;, r;, ).2 . 3

( e' 1q'e p+ P terms in (—
7, 2) 8 &nsc' r) c rfl,r

(e 1$~e p
terms in

(
—

)
——+. , (14)

&mc' r) c mr

whence, neglecting terms in [(e'/mc') (1/r) $2,

[(e'/mc') (1/r)]' ~ and substituting for A(rp)
into the Hamiltonian (12), one obtains

Pl t'let'7'

H=Z +2 2
2m &. jr', ;

e,e; t p, y; (p, r„;)(y; r„)q
-+

&' 72m'c'4 rI,;
ee e p p, (p„r;,)(p, r;,)

+ Q +
2, 7, 28m'c4 rI„.;r;2 rl,;r;2'

(pa r~;) {p) r») (r):; r;)) (y~ r») (p) r;))
+ ', '+ '

rkj rj2 rjcj rj'2

=—H(kinetic) +II(Coulomb)

+H(Darwin) +H'.

The interaction II' contains "velocity-depend-
ent" three-body potentials (for jul). These are:

H'(three-body vel. -depend)—

e),e e) y), p) ( e' 1y (i)') e'
z

i, ) , ) Sm'c4rq r )
'I mc' r) &c') r

Thus one obtains' a three-body Hamiltonian
from the two-body Lagrangian because of the
peculiar relation between the y's and v's, in (11),
and the consequent peculiar relation between the
A's and p's (Eq. (13)). While the use of the
three-body Hamiltonian is somewhat arti6ci31 in

classical mechanics, the same equations of motion

(6), being derivable from the two-body La-
grangain (9), its introduction is essential in

quantum mechanics, since the p's, not the v's,

enter into the fundamental commutation rela-

tionships.
The terms in A, of order

[(e'/mc') (1/r) 5'ep/mcr, [(e'/mc') (1/r) ]'ep/mcr,

~, [(e'/mc') (1/r) J" 'ey/mcr, -
when substituted into the

——',Z~(e), /c)(y~/m) A(r )

term of the Hamiltonian give 4, 5, ~ ~ ~, ns-body-

potentials. The ratio of the magnitudes of the
individual terms in the tn-body and Coulomb
potentials is —-[{e'/mc') (1/r) ]"-'i)'/c'.

If one considers the classical electron to have a
spin SI, and g, magnetic moment p2„proportional



MANY-BODY INTERACTIONS

Upon substitution of this expression for A into
the Hamiltonian (20), the term:

--:Z.("~)(p.t ) A(")
gives the Darwin two-body potential, and the
three-body potential obtained before, and in
addition, a "spin-orbit" two-body potential and
a "spin-orbit" three-body potential. The term:
—-', Pi,p~ curli, A(ri, ) gives "spin-orbit" and "spin-
spin" two-body potentials; and "spin-orbit" and
"spin-spin" three-body potentials. The "spin-
spin" three-body potential is

II'(three-body spin-spin)

e; 1 (piXr;i'l
py ' cur ly

~», E4mc' r„-I rP )
t'piXr&&) e' p+ 'r„"I

ri, r;P mc'r r'

It will be seen below that a three-body potential,
with the same spin dependence, as in (23), is
of considerable importance in the Inesotron 6eld
theory of nuclear forces.

In concluding this section it may be pointed
out that when the A's in. the Hamiltonian are
expressed in terms of pj„ i~, s~ one need only
apply the commutation relations to these vari-
ables, to obtain a quantum-mechanical action-
at-a-distance theory of electronic motion.

mVIc~=K +kZe~e(r~)
k 2 k

+2K —v~ A(r~) —-'Zp~ «r4A(r~)
k lc

ek pk—-', P ——A(ri, ) ——',+pi curlp A(ri).
c m k

QUANTUM ELECTROMAGNETIC THEORY OF

ELEcTRQN BYNAMIcsUsing (19), one may express A in (17), in
terms of the p's, just as before. Thus

In the preceding section the classical electro-
magnetic 6eld was eliminated, to a certain degree
of approximation, from the equations of motion
of the electrons. The resulting action-at-a-
distance Hamiltonian (15), could then be
quantized. In the following section the procedure
will be reversed: one first quantizes the electro-
magnetic 6eld, as well as the matter, and then
proceeds to an approximate action-at-a-distance
description of e1ectronic motion, by means of a
quantum-mechanical perturbation method. This
method will give not only the same many-body
potentials found above ("classical" ), but also,
many-body potentials explicitly dependent on 5
("specifically quantum-mechanical" ).

The Hamiltonian for the total system, 6eld

e; ( p; ri, ;(p;.ri;) ) ti; Xr»
A=K

I
—+, +Z

i 2mc&r„r, ) i r„'
« pt« i(pi'I'i) 3

, i 2mc'r. , 2mc ir;, r; P

ri /pi I i(p''i'I i)) e
+ r~"

I

—+
ri, kr;i r; P ) i&2mc'ri. ,;,

PE+3'~t &I 2' |'PtXX'&.i I

X + rs;
I

I. (21)
rP rii g rP

3'A moving magnetic dipole gives rise to an electric
dipole with moment —v;jalap;. The interaction of this
electric dipole with the electric field due to the other
particles is of the same order in vjc as the spin-orbit term
appearing in the Lagrangian I'18). It is omitted for reasons
of simplicity since its inclusion introduces nothing. essen-
tially new.

e;(v; ri;(v; ri„)) ti;Xri;«")=r.-I —+, I+z
i 2c&ri,; r, 3 ) ~ r,P

mvi, ' eie; eie; pv~, v;1=2 —lZ + lE
a 2 &, &'rj, ; k, &'2c2E r

(vi, r&;)(v; ri,;)q ej,vi, ti;Xr&;
+ +2K

ri, ) i, ~' c ri,

/e;v; Xra;) (p;Xri; t+ 2 2 v'I I+IZs~. «rl~I
&. i & cri„3 ) &, i & r)„).
mVlc -eaVI

— —2Ze~e (r~)+2K — A(r~)
k 2 Ic Ic

+-,'Pp curl„A(r ), (18)

1 ( e;fv; ry;(v; rg;)$
v~= —

I
pr Z I

——+
mE ~ 2chr„r„3

p;Xry„) 1 ( ey
I=——

I p.—A(r.) I, (»)r3) m& c )'
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and matter, is: (Fourier representation of the
quantized field variables4)

pk eke jH= ( 2+P-, '+ vv'Qv'j+ P + P —',

P ~ 2m ~2 r~;

ep pj ea'
+ —Z ——A(r,)+P (A(r„))'

C m 2mc

—Ptii, curli A(ri, )

—=H(field) +H(matter) +B(interaction) (24)

= P(4irc')la, (q, exp (ik, r) (23)

= QqvAv+qv~Av*,

+q,*exp (—ik, r))

div. A=O; la, l'= l. (26)

In the eigenstates +(Q„r;) of H, the number
of light quanta is not specified, i.e.

with

'P(Q. r~)= Z « ~A'(r~)~. ,(Q,)
a; np

(27)

H(matter) P, (r;) =. e,P, (r;),

H(field) ~v„(Q,) = [Q(n, + 2) hv, Jp„(Q,).
(28)

The elimination of the field variables, and the
consequent action-at-a-distance dynamical de-
scription of the particles, corresponds, in quantum
mechanics, to the consideration of transitions of
the system among states, where the number of

with

( Ip
A(r) =P (4irc') ~a,

l Q, cos (k, r) ——sin (k, r) l

light quanta is always zero, i.e., states of type

q (Q„r;)= I p ca'. OA' (ri) j v,,(Q~) (29)
a', Op

In particular, one may limit the discussion to
transitions among the matter eigenstates, i.e.,
c

~ op 5 . The transitions among the states
P„caused by H(interaction), i.e. , by the virtual
emission and absorption of light quanta, are now
to be regarded as caused by an equivalent
action-at-a-distance potential H'. The depend-
ence of II' on the particle coordinates is to be
such that the transition probabilities between the
matter states P„with H' as perturbing potential,
are identical to any desired approximation, with
those arising from H(interaction) in the complete
field theory.

It is to be noted that the quantum-mechanical
method of eliminating the field variables, is
necessarily of a perturbation character of suc-
cessive approximations, since one must consider
transitions between states in which no quanta
are present. Such a treatment, as already ob-
served above, leads to two types of many-body
potentials, "classical" and "specifically quantum-
mechanical, "which are discussed in order.

(a) Classical many-body potentials

In a system, consisting, for simplicity, of only
three electrons and the radiation field, the follow-
ing type of transition takes place: Th'e first
electron, say, simultaneousLy emits two virtual
light quanta, by means of the (e'/2mc')(A(ri))'
term in the perturbation; one of these virtual
light quanta is absorbed by the second electron
by means of the —(epi/crn) A(r3) term, while the
other is absorbed by the third electron by means
of the —(eps/cm) ~ A(ra) term. The matrix element
for this transition, which depends on the instan-
taneous coordinates of all the three electrons, is
given by

n n'

t'. e', l f epm )( ep3
l
i (A(ri))' n Ij n ———'A(rm) n'

ll n —A(r, ) f l2rnc' & ( crn & ( cd
(&'—&-)(&'—&- )

(30)

The initial and final states i, and f, are
characterized by no virtual light quanta present

4 W. Heitler, reference 1, paragraphs 6 and "l.

and matter wave functions P; and f~, the inter-
mediate states n, n' have, respectively, two and
one virtual light quanta present, and matter
wave functions if„, g„..
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Employing the customary expressions for the
matrix elements of emission and absorption of
the virtual light quanta, ' neglecting recoil
energies of the electrons, using the completeness
relations for the matter wave functions, and

adding over the possible polarization directions
of the virtual light quanta, as well as over all
possible permutations of the order of their
emission and absorption, one obtains for the
matrix element (30):

16irses exp (ik, ris) exp (ik, 'ris)(ps —k, (ps k,)/k, ')(ps —k, (ps'kp')/kp' )
Qrdridrsdrs. (31)

m8 V 2V, 2
P P

Thus, the equivalent action-at-a-distance three-body potential, H', becomes

Zf(k, ) i~ f(k,)dk, I

(2~)s~ )
16irses exp (ik, r») exp (ik, ris)(ps —k, (ps k,)/k, s)(ps —k, .(ps k, .)/k, ')

H'(ris, r„)= P—
m' V VP P

1 e' pexp (ik, ris) ( k, (ps k,)) t exp (ik 'ris) t' k, (ps'kp)l
(

p, — )dk,
( ps — idk, . (32)

mc& u, ' L
- u, '

Now

f
exp (ik, ris) f' k, (ps k,)) 1 ( ris(ps ris)l

i
p, — dk„=ir'—

i ps+
k s ~ risE riss )

whence
8 (ps ris(ps'ris) l ( ps ris(ps'ris)l

~

—+ ~~
—+

4m'C' Er~2 r~2' ) Er]3 r]3 ) (33)

which is just the term obtained in the classical
treatment, above. ' (Cf. Eq. (15).)

If one considers three-body potentials arising
from the same type of transition as before,
except that —ps curls A(rs), and —ps curls A(rs)
replace —(cps/cm) A(rs), and —(cps/cm) A(rs),
one obtains "spin-spin" three-body potentials,
which again, are just the same as those obtained
in classical theory. (Cf. Eq. (23).)

(b) Specifically quantum-mechanical many-body
potentials

Consider, again, a system of three electrons
and the radiation field. In addition to the transi-
tions discussed above, the following type of
process also takes place: one electron emits two
virtual light quanta, in succession; one of these

quanta is absorbed by the second electron, the
other by the third. The perturbation energy
responsible for any one of these single absorptions
or emissions is either

—ps curl& A(rs), or —(cps/cm) A(rs).

Only the first of these perturbations will be
treated explicitly, since in the mesotron field
theory of nuclear interaction, which has a
formalism almost identical with that of electro-
magnetic theory, the term analogous to

—ps curls A(rs),

gives by far the largest effect.
The matrix element corresponding to the

transition described in the preceding paragraph,
1s

(i ~pi curli A(ri) ~n)(n~ pi curli A(ri) ~n')(n'~tss curls A(rs) ~n")(n" ~ps curls A(rs) ) f)
(34)

n, nI nrr (E E)(E E)(E —E ~ )— —
' W. Heitler, reference 1, pp. 95 and 96, Eqs. (12) and (13).

A symmetrical expression in the indices 1, 2, 3, is obtained by interchanging the roles which the particles play in the
transition process.



The initial and final states, i and f, are
characterized by no virtual light quanta present
and matter wave functions P; and P~', the inter-
mediate states have, respectively, one, two, and
one virtual light quanta present, and matter
wave functions p„, p„., lf „".

The matrix element of —tii. curl i A(ri) for the
emission of a light quantum of frequency v p, and
the transition of the three electrons, from P; to

' P;*pi curli((4lrc')&(5/2vp)&apexp(ikp r,))

)&p.dr&drmdri (35)

and similarly for the other emissions and ab-
sorpt1ons.

Substituting (35) into (34), neglecting recoil
energies, and making use of the completeness
relations for the matter wave functions, one
obtains for (34):

4ir'c' t'

( yi curl i gap exp (ikp r,)p~ curly(ap exp (—ik, rg) (p

a, exp (ik, 'r, )t, curl, (a,.exp (—ikp'r, )))
)&~ tii curli P ~

Pidridrmdrs. (36)
p PpPpp Pp Pp Ppp Ppp )

Summing over the possible polarization directions of the virtual light quanta, one obtains

4m'c' curl3 (yp exp (ik 'ris) )—)t rp;* —ln curli p curl2 (pm exp (ik, rim) pi curl, Q pfdridr2dr8. (37)
IE p P Vp Vp (Pp+Pp )

With vp/c=kp, and Pf(k, )—+—~I f(k, )dkp
p (2ir)'~

the first bracket becomes

(~12XP~&
pi curli

(
(2lr) ' & rig

while the second. bracket is equal to

1 (pq)——tii. curl i
4ir &rig)

(38a)

(38b)

The equivalent action-at-a-distance three-body
potential, corresponding to a process where vp is
the 6rst to be emitted, and first to be absorbed,
1s thus given by the quantity lns1de the curly
brackets in (37).Taking into account all possible
orders of emission and absorption of the virtual
light quanta vp pp one obtains, for the three-
body potential, H" (rim, rig):

&"(Via, Vis) =
4m' curlg (ti2 exp (ikp rim))

'pi' clif li g
kc P Vp'/C'

curls (tia exp (ik, 'ris))
X pi curli P (38)

Pp /C'
+same term with indices 2 and 3 interchanged.

being, apart from the numerical factor 1/4m, just
the spin-spin two-body potential between the
first and third particle.

Thus,

1 piiXps)
H"(rim, r, a) = ti curl,

I

2eke ( ri p,

(p~l
X pi' cut'1

~riff)—
(39)

+same term with indices 2 and 3 interchanged
~li4/I'icy5

ORDERS OF MAGNITUDE OF ELECTROMAGNETIC

MANY-BODY POTENTIALS IN

ATOMIC SYSTEMS

The magnitudes of the many-body potentials,
in particular of the three-body potentials, will

now be estimated. Suppose the three electrons
are orbital electrons in an atom. Then, on the
average, the distances rg„—r, between. the elec-
trons are of the order of Bohr radii, and are
related to the electronic velocities, s, by: r —ii/pris;

the electronic magnetic moments p are =sk/rpic
=crs/c. Thus, from Eqs. (15), (16), (33), the
relation between the magnitudes of the individual
terms in the velocity-dependent three-body po-



ten tlal Rnd ln tI1C Coulomb two-. body potentlaI) ls

QB p2

H'(three-body vel. -depend. ) =———
'fflC 'f C

fs) s

~

—
~
H(Coulomb). (40)

137 &c

Further, from Eq. (23),

g2 ~2
H'(three-body spin-spin)—

SSCf f

8 f5/mcp 8 1 f vp.
~

- ~H(C.,i. b). (41)
mc'r ( r 2 r 13'7 &c)

Finally, for the specihcally quantun1 three-body
potential (cf. Eq. (39)),

p, ' 1 e'(5/mcus ' s'
H" =——==(

Acr' kc( r ) r

1 ts&'
)

—
( H(Coulomb). (42)

137 &c&

is closely modeled upon the electromagnetic
theory of electron interaction. Here the variables
of the system also fall into two categories: those
describing the motion of the heavy particles and
those describing the state of the 6'. The
dynamical relations between these two sets of
variables are given by equations analogous to
the Maxwell equations and the Lorentz force
formula; the heavy particles act as sources of
the 6eld, and the 6cld in turn affects the Inotion
of the heavy particles. The characteristic differ-
ence between this theory and that of Maxwell is
the appearance of a fundamental jength, R, in
the field equations; a consequence of this new
constant in the quantized form of the theory, is
the existence of "quanta" of rest mass, ms ——5/c&.

The mesotron 6eld due to mesotron-charge„
mesotron-current, mesotron-magnetization and
mesotron-polarization densities of the heavy
particles, ' j, I, M, I' is specihed by two six-
vectors' E, 8; E*, B~, and two four-vectors
4, A; c, A satisfying tllc cquRtlons:

(43)

It ls tI1cI'cfolc clear th.at tile dcscIlptlon of thc
electromagnetic interaction of electrons in atomic
systems, by means of action-at-R-distance two-
body potentials, ls 311 extl Rol dinarily good
approxlmatlon, "since s/c =Z/137. 'b

(44)

18E
+4m curl M+ A, (45)

c Bt R2

1,

(R) EllllllllR'tloll of field variables fol' 'tile clas div. E=4s.p —4rr div, p ——@.
sica1" mesotron 6eld' R2

(46)

The ITlesotron theory of the lntcl Rctlon of
nuclear heavy particles' (protons and neutrons)

Taking the div. of (45) and the time derivative
of (46), one obtains:

~ See, however, the Addendum.
'~Z is the e8'ective nuclear charge for the electron in

question.
7 The "vector" mesotron field theory will be used, since

it gives the correct sign for the neutron-proton two-body
potential. For a general discussion of mesotron theory,
see H. Yukawa, Proc. Phys. .-Math. Soc. Jap. 1V, 48 (1935);
19, 1084 (1937)„20,320 (1938); also H. Bhabha, Proc.
Roy. Soc. 166, 501 (1938};N. Kemmer, Proc. Roy. Soc.
165, 127 (1938); Frohlich, Heitler. and Kemmer, Proc,
Roy. Soc; 155, 154 (1938).The use of a linear combination
of the "'scalar, " "vector, " "pseudo vector" and "pseudo
scalar" charged mesotron fields, and//or of uncharged
mesotrons, would not essentially alter any of the results
on, many-body interactions obtained below. (See section
n present paper on general field theory. )

Bp 1 /'84
o=div. I+-

(
—+div—. A—)—

Bt R'&Bt
(47)

It may be pointed out that the singularities in the
mesotron held equations are exactly of the same type as
the singularities in the electromagnetic held equations.
Hence, the mesotron theory convergence difhculties are
no better, and no worse, than those of electromagnetism;
cf, H. Bhabha, Nature 143, 276 (1939).

s p = (p ~
II; p*=

( p )
II* where the II aad II are operators

(complex conjugate to each other) changing the heavy
particle from a proton to a neutron, and from a neutron to a
proton, respectively. Similarly for I, M, I'.

9 Here the asterisks denote complex conjugates.
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V7 R7'.2

+terms in —,—,etc. (52)
c2 c2

g
—rk7/R

C(r„ t) = Zg,BCt—+derv. A=0.
Bt

rk7

g .V . g
—T It 7/ g )s rg;IRM-

A(r/„ t) = Q -+Pp;X«ad. ;I
c r„ /

'( r„Second-order equations for the potentials may be
obtained in the usual way:

V; R; dp;dp;
+terms in —,—. . . etc. (53)c' c'1 1 84'

V'4 ——C —— = 4x—(p di—v P)., (49)
c' Bt2 The equations of motion (51), with C and A

expressed by means of the sums in (52), (53), are
derivable from the following Lagrangian and
Hamiltonian:

1 1 O'A
v2A- —A-—

and so, if charge-current is to be conserved, the solutions of (49), (50), for point sources, are"
potentials must satisfy the "Lorentz" condition.

)I 1 itPq= —4s
I

+curl -M+
I (50) L, =Q + —-', Qg„*4(r/)+-', P v,. A(rg)

Ec c at& k 2 k

Finally, the equation of motion of a heavy
particle in presence of potentials C, A is" +2+pg* curlp A(r/, )+c.c. , (54)

1 BAi
~a.= g.*I -«ad. c ——

I
I cat&

+ 2Eg.*c(r.) -kZ —A(")
k 2' c M

Vk

+g/, *—Xcurl A+grad. (Itq* curl A)
c

( /' 1~Ay l+«ad
I p.*

I
-grad C ——

I I
c at&)

+comp. conj. , It=1, ~ ~ ~, s, (51)

where g/, *=gII~", I//~*=ItII/, ~, P*=PII/, * (see foot-
note 8) with g, p, p, the mesotron-charge,
mesotron-magnetic moment, mesotron-electric
moment of the heavy particle. Terms involving

p =v/cXp will be consistently omitted in what
follows, since they do not essentially affect any of
the subsequent results.

The potentials C, A arise from the other heavy
particles. As in electromagnetic theory, to obtain
an action-at-a-distance description, one attempts
to express C, A in terms of the instantaneous
relative heavy-particle coordinates. Approximate

' The classical equation of motion (51) can be con-
sidered in quantum mechanics, as an equation of motion
between operators; in this sense it is equivalent to the
wave equation (11) given by Bhabha, reference 7.

—-', PItq* curlq A(r,)+c c . .(5. 5)

In II, the A's are to be expressed in terms of the
p's by means of the equations:

g, (p; —((g;*/c)A(r;)+ c.c.))e-"' /'
A(r/, ) = P

c3II rkj'

(~ """'t a7 r7 ~-"""
+~&;X«ad. ;I r„) ~ c M r„.

)s rg//sq-
+Zlt, x«d. , I Ir„)

g.. 8&—rk7/R ~ P &
—r7'~/R

Mc'rk; Mc r)
gg~ps r'ai /s (, s r;—&/r/)—

t/X«ad. /I
7', & 3fc~rk; rj$

+terms of higher order in g2/Mcmr/, ;. (56)
"These solutions, including explicit expressions for the

terms in v7'/c', a7%', dp;/d$, d'u;/dt' are obtained in
Appendix I. The only terms which are treated in the text
are those explicitly written out in Eqs, (52), (53), For a
discussion of the acceleration-dependent terms, see the
Addendum.
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Pa gI gyH=p + -,'p — e "»/s'
2M & i fjcq

(b) Quantum mesotron theory

In the preceding section, the unquantized
mesotron field was approximately eliminated,
and an, action-at-a-distance dynamical descrip-
tion of the heavy particles obtained in terms of
a Hamiltonian (Eq. (57)) which could then be
quantized. The elimination of the glantised
mesotron field gives results similar to the corre-
sponding treatment in electromagnetic theory;
on the one hand the classical Hamiltonian (57)
is confirmed, and on the other hand, additional
specifically quantum many-body potentials are
obtained.

Since the Hamiltonian formalism of the
quantized mesotron theory is somewhat different
from the formalism of electrodynamics (due to
the fundamental length), it will be discussed

briefly.

In the Fourier representation of the field:

(C ~II/B1 q-
+ ——,'Qp" cul

I
p;&&gad. ;I

r1-; J)
(g. p. s tkj/81

+ k Z P/ 'curL( ——
Ec M r~; )

g/ p/ (c "I' /—I/Xgrad /~k~ c M & rg;

gl' g~ P~'P~
s—eS//II

I, ~M'c' rI,;

(c rP//R-
+ -', Q yI" curl/,

~
tII

Ic, j, l ~C rg;

r j)j8$
Xgrad. /j

r;,

Substituting for A(r/, ), one obtains for the order of magnitude of the other two-body inter-
HaIllllto111a11 (55): actions, as well as of all of the three-body

interactions, will be given in a later section.

gI g'g' g~ pa'pi~ ""~ ""~

3II'c'

g &g,g,4 f'c—I'Q j/B
y (c—r /I/R

+ -', p
' 'p,

) ) p/Xgrad. , (
~, /. I 3Pc' & r„; r/I

g.g,Wg ( e—rIct/Z ~
—r;f, /I/', )-

+—Q py ' cllrlI
~ p I

/ 3Pc' & r» r I )
g+terms of higher order in +c.c.

3IIc'r

—=H(kinetic) +II(two body "Co-ulomb" )

+H(two-body sp111-sp111)

+H(two-body spin orbit)

+H(two-body vel. -depend. )

+H(three-body spin-spin)

+H(three-body vel. -depend)

C(r, t) =Co.(t)C.(r)

= Qa. (t)(4Irc') & exp (ik. r), (58)

Ac(r, t) =Pq. (t)A, (r) = Pg, (t)—grad. C.(r);

curl AI, ——0, (59)

Ar(r, t) =Ra.(t)A, (r)

= Qq, (t)(4Irc')'a, exp (ik, r);

div. Ar ——0,
~
a,

~

' = l, (60)

A(r, t) =A1,(r, t)+Ar(r, t). (61)

The potential equations (49), (50), and the
Lorentz condition (48), become:

+H(three-body spin-, orbit). Its+I'r Oe= ZgA'r (r/I)l (62)

The two-body "Coulomb" and two-body spin-
spin interaction Hamiltonians have already been
discussed by the authors of reference 7."~ The

"~The procedure of solving the equations of the mesotron
potentials in order to obtain two-body Coulomb and two-

body spin-spin interactions was introduced by Yukawa,
reference 7. Recently these interactions have been'derived
by Stueckelberg by a method of canonical transformation;
Phys. Rev. 54, 889 (1938).A treatment similar to Stueckel-
berg's has been reported by E. Feenberg, December meet-
ing of the American Physical Society, 1938.
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ga
q.+v.'g. = Q—v j A.*(rg),

. k 4

ga
q, +v, 'q, =Q—vg A, *(rz)

k

(63)
~=Z (P.*P.+v~'q. *q~)+ Z(P.*P.+v'q'q. )

1—P(b.*b.+v.'u, *a,)+P-—

go*
t

] Pq, A.(r~)+gq, A, (ri,.) (+c.c.
c& ~

''
(65) +( Zg.*r.o.C.(")+"I

g a

—
I

~p„*.curl~ Pq„A, (ra)+c.c. I. (69)

The equations of motion of the hea~ particles
(51), are:

Map —— gp*( —grad. g Pa.4.(r i) Pq.A.—(r—i)
0'

g
0'

——Pq,A, {ri) (+ vaX curl~ gq, A, (r~),
c~ ) c P

+grad. ~
~

yi,* curl Pq, A, (ri) (+c.c. , (67))

Now, a peculiarity of the system of Eqs. {62)—
(67) is that the variables q and c are not inde-
pendent, the connection between them being
given by the Lorentz condition (65). Making use
of this relation. and oi' (62), one can completely
eliminate the variables e, from the equation of
motion (67), obtaining:"

"&iis
ga (

—grad i Pg
rJ„.

1 c'—E q.A.(r,)—Zq, A.(") ic'R'v' c& )

Inspection indicates that the above equations of
motion, for 6eld and matter, are derivable. from
the following Lagrangian and Hamiltonian:"

I = g (qv*qv —
vi, 'q, *qp) +P (q.*q.—v, 'q.*q.)

gI
+ vuXcurli Pq, Av(ri;)

C P

(+grad.
~

p, 'cuff, hatt, A, (r, ) ~+c.t:.I,
&=1, , N. (70)

3IIV Is—P (d,,'d. —v.'a.'a.) +P
gI

q.+v;"q.=P—v~ A.~(r~),
Is

(71)

+ Z) —g~*Z~.C.(r~)
a g

ga gh .

+ vi: gq, A. (r&,)+ v& Pq, A, (r~)

+pg* curly Pq, Av(r„) (+c.c. , (68))
'2 In deriving the equations of motion {62)—(67) from

the Lagrangian (68), gP, gP*, g, g,*, a„a,*, r7, are to be
treated as independent variables. Eq. (65) must then be
assumed as an auxiliary relation. Also pp =—BI.jBgp, etc.

ga
q, +v,'q, =P—v .A,*(r )+ Pp curl A, '(ri,).

Is

{72)

The new set of equations of. motion: (70),
{71), (72), as may be directly verified, are
derivable from the following Lagrangian and
Hamiltonian 4

j3 Equation (70) is derived in Appendix II.
24 In the limit R~ ~, the variables describing the longi-

tudinal field disappear completely from the Lagrangian
(73), and the equations of motion {70).Since in this limit,
the mesotron field equations are identical with the Maxwell
equations (apart from the complex character of the field
variables) one obtains the well-known result of electro-
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c2

Li= E(q.*q.—v, 'q. *q.)+2 -(q.*q.—v'q. *q.)
p 0 g2V2

of the longitudinal interaction already exactly
expressed by the "Coulomb" term:

Mvy 1
+Z + —-Zg.*g

lc 2k 7

g
—re'tg g

—re JR
—Eg~ gi
2&, i

+c.c.

gjc C gI+P v~ P q.A.(r )+P v Pq, A, (r~)
c R2v, 2 c

++pi, * curli, Pq, A, (ri)+c.c. , (73)

( P *P.
~i= &(p.*p.+"'q.*q.)+&I ——

P a g g2/+2v 2

( l s ~ajls

+( —Pgg*g; +c.c.
)

(2~. i

gk Pk / C

+ —Q —
~

P q, A, (ri,)
L ' g2v '

1
+Eq.A, (r.) ~+cc +Z) & 2Mc2

C

&( g&*Q q,A, (ri)+gi*gq„A, (ri,)+c.c.
. 0 g2V2 P

-2

Ptii* curli, gq, A, (ri)+c.c.
P

—=H(mesotron-field) +H(heavy-particles)

+H(interaction). (74)
Numerically,

H&=H= [Volume Integral of Energy Density
of Field+ Heavy Particle Kinetic
Energy+Magnetic Moment Inter-
action Energyf.

The Hamiltonian H~, plays a role in the
quantized mesotron theory, completely analogous
to the role of the Hamiltonian (24) in quantum
electrodynamics. It is to be noted that quantum
perturbation calculations, in particular, the der-
ivation of action-at-distance two-body and
many-body potentials, will not involve that part

magnetism, vis: The effect of the longitudinal waves may
be completely expressed by means of action-at-a-distance
two-body Coulomb potentials.

(c) Many-body potentials obtained in classical
mesotron theory

Three-body potentials can now be obtained
just as in electrodynamics, by a perturbation
treatment of transitions in which one has simul-
taneous emission (by means of the g'A'/3Ec'
interaction term) of two virtual mesotrons by
the first heavy particle, one of the mesotrons
being absorbed by the second heavy particle and
the other by the third. The absorptions take
place by means of either the —(gp/cllII) ~ A or the
—p curl A interaction terms.

In this way, one obtains exactly the three-body
potentials already found in the Hamiltonian of
Eq (57)"

(d) Specifically quantum-mechanical many-body
pote ntia1s

The largest specifically quantum-mechanical
three-body potential is obtained by a transition
of the following type:

The first heavy particle emits two virtual
mesotrons in succession; one of these is absorbed
by the second heavy particle, and the other by
the third. All individual absorptions and emis-
sions are due to the —p. curl A interaction term.

Since the expression for the transverse field

energy: Z, (p,*p,+v,2q, *q,), and for the mag-
netic moment interaction term:

—[Ziti'* curli, Z,q,A, (ri)+c.c.]
are formally alike in the electromagnetic and
mesotron theories, "the calculation of the three-
body potential proceeds in the same way as the
calculation of the corresponding three-body po-
tential in electrodynamics. (Cf. Eqs. (34) to (38)
and accompanying text. )

Thus the specifically quantum three-body po-
tential arising from the transition outlined above

»One can also obtain II (two-body spin-spin) and2 {two-body spin-orbit) by a second-order quantum
perturbation calculation with neglect of heavy particle
recoil energies. The results, naturally, are identical with
those obtained in Eq. (57)."Compare the Hamiltonians (24) and (74). The complex
nature of the field variables in mesotron theory introduces
only trivial modification in this connection,
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is: (cf. the analogous electrodynamical Eq. (38)). comes for rim-=R

(r» r»)—4m' cur4 (p2 exp (ik, r»)
'pi ciii li P

P v, '/c'

It'I u XP2'II
~"(r», r»)= Ii curl

I

AC E rI2' )

curl, (pi' exp (ik,"r,s)
X pi curli P

P v&~ /v

+same term with indices 2 and 3

interchanged +c.c. (75)

(y~ s F13IB)X pi curlP
i

rim

+same term with 1nd1ces 2 aIld 3

interchanged +c.c. (78)

ORDER OF MAONn'UDE OF NUCLEAR POTEN-

TIALS, FROM MESOTRON FIELD THEORY
The characteristic difference between the

two theories (the existence of the fundamental
length R), now makes itseM felt in the circum-
stance that the frequency vp is no longer pro-
portional to the wave number kp; the relation
between them is in this case:

The orders of magnitude of the nuclear poten-
tials obtained in the mesotron theory will now be
estimated. The average distances, ri„—r, between
the nuclear. heavy particles, are =R—= ii/mpc,
the average nuclear heavy particle velocities,
v„—5/MR =moc/M. The mesotron charge g de-
termines the magnitude of the various inter-
actions. The mesotron-magnetic moment p, is
=gR=gh/m, c. It is to be noted that the mass
occurring in the Compton wave-length in p, is
the mass of the emitted mesotron, and not of the
emitting heavy particle. The resulting anoma-
lously large value of p, , is needed if one is to have
in Eq. (57): H(two-body "Coulomb" ) =H(two-
body spin-spin) "which is necessary for a proper
description of the strong spin-dependence of the
total two-body potential. "

The heavy particle mesotron charge g, is re-
lated to the mesotron rest mass mp. Thus:

v,'/c' =k p'+1/R'. (76)

Converting the sums to integrals by the
relation

Zf(k.)~ f(&n)dkp
1

(2v)'

one observes that the second square bracket in

(75) is equal to:

( s—rig/a )—pi ' Gurli
I pg

4m. I4, rI3 )
and is, apart from the numerical factor 1/4ir just
the spin-spin two-body potential between the
first and third particles. The first square bracket
becomes: Mv ' g 2

3IIv„— —Average Potential Energy ~,
MR 2 R

(79)

(80)

v„/c —g'/kc.

via/M =g'/Ac.Introducing the dimensionless variable,

Q =k,ri2, one obtains The order of magnitude of the individual terms
in the various potentials in Eq. (5'I), and of the
specifically quantum three-body potential H"1 pg I.iQ exp (iQ r»/r»)

pi*.curli —X II &Q.
(2v)' &» ~ I:Q'+(r»/R)'3' 1'See Eqs. (81), (82). Also, compare papers cited in

reference 7.
» Direct experimental evidence for a strong spin-

dependence of the total two-body potential follows from
the transparency of para-Hm and the opaqueness of ortho-H&
for slow neutrons. See E.Teller, Phys. Rev. 49, 420 (1936);
J. Schwinger and E. Teller„Phys. Rev. 52, 286 (1937);
F. G. Brickwedde et a/. , Phys. Rev. 54, 266 (1938); %. F.
Libby and E. A. Long, Phys. Rev, 55, 339 (1939).

The integral is finite and is of the order of rig/rig
for rim=R. (For ri2((R, we have the electro-
dynamic case and the integral is —4v(ri~/ru);
for ri~&&R the integral is very small. ) Thus the
spqcjhqg, lly quantum three-body potential be-

t.ik, exp (ik, ri2)
pi cut'li pgX, ' dkp (77)

(2')' (~,~+1/R2) ~ whence
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(Eq. (78)) can now be estimated. Thus:

H(two-body "Coulomb" ) =g'/R,

H(two-body spin-spin)

(81)

V~ P V~

=g——=—H(two-body "Coulomb" ), (83)cR' c

H(two-body vel. -dep. )

p 2 g2 p 2

H(two-body "Coulomb" ), (84)
c' R c'

g2 p2 g2 g2
H(three-body spin-spin) =

3fc2 R4 3fc2R R

~H(two-body "Coulomb" ), (85)
c2

g4 p2 g2 p2g2
H(three-body vel. -dep. ) =

Mc4 R' MC2R c' R
4

H(two-body "Coulomb" ), (86)
c4

g ~~ g ~g
H(three-body spin-orbit)—

3IIC' R' 3IIC2R c R

=—H(two-body "Coulomb" ), (87)
C

p4 g2 g2
H"(three-body quant. -mech. )—

ACR' kc R

p2 g2 —H(two-body "Coulomb" ), (82)
R' R

H(two-body spin-orbit)

The numerical value of ti„/c is determined by
the details of the magnitude and spatial de-
pendence of the interactions and may be esti-
mated to lie within the following limits: (for light
nuclei)

8rt, 1) )
3 c 10

(89)

MANY-BODY POTENTIALS FOR A GENERAL

FIELD THEQRY

It will now be shown that three-body poten-
tials =v„/cX (two-body potentials), etc. , are ob-
tained in a general field theory satisfying the
conditions:

(a) The Hamiltonian H of the total system
may be written as

H(field) +H(heavy-particles)
+H(interaction), (90)

where, H(interaction) can be considered as a
perturbation.

(b) Two-body potentials obtained from H(in-
teraction) in the second approximation of the
quantum perturbation calculation, are, at least
of the same order of magnitude, as any two-body
potentials which may already be contained in

H(heavy-particles), due to an elimination pro-
cedure analogous to that performed in the
electromagnetic and mesotron field theories.

The matrix element for the emission of a
virtual light particle of mass mo and wave number

k, by one of the heavy particles will be denoted by

=—H(two-body "Coulomb" ). (88)

It is especially to be noted that the anoma-
lously large mesotron-magnetic moment p "™gR
and the approximate equality of the average dis-
tances between the particles, and the range R,
gives rise to a specifically quantum three-body
potential and a spin-orbit two-body potential"
both (v„/c)H(tw b od—yo"Coulomb" ).

'9 A two-body interaction of the spin of the particle with
its own orbit, arises from the mesotron-polarization term:

-', Zpg, * grad. f, C (rI,)+c.c.

=lZ (
—Xy') K d. (' )+. .

V

c R' c
——"

p, ———"II (two-body "Coulomb" ).

X p, (q,)P.(r;)dr;dq,

p;*(r;) V, exp (ik, r~)P„(r;)dr;, (91)

where f;(r;), P„(r;) are material states, and

q&„~(g,) is a state of the field with n„ light particles
of wave number k, present.

The usual quantum perturbation method em-

ployed previously, "' now gives the following

20 The contents of this section were first presented by
one of the authors (H. P.) at the Washington meeting of
the American Physical Society, April 28, 1938; Abstract
No. 126, Phys. Rev. 53, 938 (1938).'"Again, with neglect of heavy particle recoil energies.
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two-body and three-body action-at-a-distance
potentials:

VpV„"exp (ik, r»)
H(re; two-body) =g, (92)

(k' ck,'+mo'c4) &

V, V,*exp (ik, r»)
H(r», r~8, three-body) = P

& '[(5'c'k, '+ m 02c4) &]'

V, V, *exp (ik, r»)
X +same terms

(k'c'k, '+ma'c') '

with indices 2 and 3 interchanged

H(r, 2, two-body)
kc[k„'+(h/moc) 'g'

XH(r~s, two-body)+same term

with indices 2 and 3 interchanged. (93)

Here, 5/moc—=R, must be the range of H(two-
body), by a general argument due to Wick, "
relating the rest mass of the virtually emitted
particles and the range of the resulting inter-
action. Further, for r~~ —R,

=R
(kp'+1/R')~ g,

since R is the only parameter characteriz-
ing the r space dependence of H(two-body),
and consequently, the k space dependence of
V, V,*/(k'c'k, '+mo'c') '*. Thus:

H(rg2, r», three-body)
=(R/Ac)H(r», two-body)

XH(rgg, two-body) (95).
For nuclear systems, (r~~ ——r, 3 R)—

& (&/R) =-~s.'/2 =II(R; two-body), (96)

&n .

whence H(three-bo dy) =—H(two body). (97)
C

Similarly, higher order quantum perturbation
calculations lead to:

H(m-body) —[(R/kc) (H(two-body)) 1™2

=(v„/c)"—'H(two-body). (98)
» C. G. Vrick, Nature ~42, 994 (~938).

CONCLUSIONS

These investigations indicate that the replace-
ment of 6eld interactions by two-body action-
at-a-distance potentials is a poor approximation
in nuclear problems. The error made is at least
of the order of s /c, if one compares the magni-
tudes, term by term, of two- and three-body
potentials. Furthermore, the number of terms in
the m-body i'nteraction of an n-body nudeus:
n!jm!(n m)!,—is, in general, many times larger
than the number of two-body interaction terms:
n!/2!(n —2)!=n(n 1)—/2, but, a direct estimate
of the magnitude of the total m-body interaction
((number of m-body terms) X (average magnitude
of each)) is complicated by the fact that the
m-body interactions are, at least in part, of an
exchange and spin-dependent character. It seems
therefore, that a satisfactory description of
nuclei, other than the deuteron, can be obtained
only by an explicit consideration from the very
beginning of the role played by the field."

ADDENDUM

The electromagnetic two-body Lagrangian (9} is cor-
rect to the second order in v/c and to the zero order in

time-derivatives of the velocity. If, however, one wishes

to consider the acceleration terms previously neglected in

the vector potential (5}, ' and hence terms in the time-
derivative of the acceleration in the equations of motion, ~4

there are two alternatives:
(1) To retain the time-derivative of the acceleration

exph'citly in the equations of motion. Now, if these equa-
tions are to be derivable from a variational principle, the
"Lagrangian" must contain the accelerations explicitly.
This involves an action-at-a-distance particle mechanics

beyond the scope of the present canonical formalism, and,
consequently renders impossible the transition to quantum-

mechanics.

"It may be added that a description of nuclei in terms
of many-body interactions, or, more hypothetically, in
terms of an integrated field energy density is consistent
with the nuclear model proposed by Bohr.

~' A vector potential correct to the first order in vjc leads
immediately to the equations of motion (6), which are,
in turn, derivable from the two-body Lagrangian (9).

'4The "self-force'* term in the equations of motion is
proportional to the time-derivative of the electron's Own

acceleration, and represents dissipation of its energy by
radiation. Naturally such "self-force" terms (along with all
other "self" terms) are beyond the scope of the mutual in-
teraction problem, whether or not, the mutual interactions
themselves are capable of Lagrangian-Hamiltonian descrip-
tion. This is formally indicated by the fact that the vector
potential. of the kth electron depends on the velocities,
accelerations, ~ ~ ~, of the n-1 others. Thus the sum in
Eq. (5) is extended over all j except j=k.)
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(2) To express the accelerations and their time deriva-
tives in the equations of motion by means of the coordi-
nates and velocities of the particles. This can be done to a
first approximation by setting the acceleration equal to
the Coulomb force divided by the mass. If the resulting
equations of motion are to be the basis of a quantum-
mechanical treatment, they should be capable of reduction
to a Lagrangian, and hence, Hamiltonian form. If such a
reduction proves to be impossible, then the canonical
action-at-a-distance description of acceleration-retardation
effects must be renounced. On the other hand, if these
equations of motion can be deduced from a Lagrangian
and Hamiltonian, then additional many-body interactions
will be obtained.

A counterpart of the explicit appearance of accelerations
in the classical vector potential is the presence of particle
recoil energies in the energy denominators of the quantum
perturbation scheme involved in the elimination of the
quantized field variables. An attempt to consider the
effects of these recoil energies to a first approximation leads
to problems in connection with the canonical action-at-a-
distance description of the particles, similar to those
arising in classical theory from the acceleration-retardation
effects.

The questions raised in this addendum are being investi-
gated both for the electromagnetic and the mesotron field
theories, and it is intended to make a more detailed report
in the near future.

APPENDIX I

To obtain a solution of (49), in the form of an
expansion in s/c it is simplest to make a Fourier
resolution of C and p.

for all p„(r) which contribute appreciably to
p(r, t). Expanding z, one obtains,

exp f
—1/R(1 —v'R'/2c') fr —r'

f ]
C „(r) = p,(x')— dr'

fr —r'
f

exp (—1/R fr —r' f)
p.(r') dr'

fr —x'f

R
+—~v'p„(r') exp (—1/R fr —r' f)dr' (A6)

2c'~

and

exp (—1/R fr —r' f)
C (r, t) =

Jl p(r', t) dr'
fr —r'

f

R (d
f

—p(" t) I
exp(-1/R fr-" f)«'

2c'~ Ed@ )
+terms of higher order in the time

derivatives of p. (A7)

For point sources located at r;(t) and having
velocities, accelerations, v;(t), a;(t),

p(r', t) = Zg;~(r' —r;(t))

C(r, t) =~I C„(r)e'"'dv

p(r, t) =)"p„(r)e'"'dv

Substituting into (49),

1 v2

7~4„——4„+—C „=—4+p„,
R C

(A1)

(A2)

(A3)

exp ( —1/R
f
r —r;

f )
C(r, t) =Qg,

7

R——Qg,—exp (—1/R fr —r; f)+terms
2c' 7 dP

V7 R7'

of higher order in —,—,etc.
C C

exp (—1/R
f
r —r;

f )
=Kg

fr —r;f

whence

exp (—~ fr —r' f)
4„(r)=~f p„(r') dr' (A4)

R——Zg;(v,"grad. ;)
2C 7'

X(v "grad. ;) exp ( —1/R fr —r; f)

with

For

e —= (1/R' —v'/c') '*.

8 C

vis «—,
C R

(A5) +Pg;(a; grad. ;) exp (—1/R fr —r; f)
7

I1 v; a;
+terms of higher order in —,—,etc. (A8)

C C
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One may solve Eq. (50) for A in an entirely Fourier components a„g . Substituting this
similar manner. Thus: value for u„ into (67), one obtains:

g g exp (—1/R l
r —r; l )

A(r, t) =Q—v,
2C r —r-

f exp (—1/Rtr —r;l)q+Py; Xgrad. ;l
lr —r;l

R
+—g curl;1 (v; grad. ;)

2c

X(v"grad. ;)p; exp (—1/Rlr —r;l)3

+P curl; l (a; grad. ;)p; exp (—1/8 lr —r; l)]
ding+P curl; (v; grad. ;) exp (—1/Rlr —r;l)
dt

d pg'

+g curl; exp (—1/Rlr —r;l)
dt2

+terms of higher order in

v; R;dp; dp;
, etc. (A9)

c dt dt

APPHxorx II
To eliminate the variables u, from (67), in

order to obtain (70), one makes use of (62) and
(65). The latter two equations give:

g;C.'(r;)C.(r.)
May= gs' —grad. pPQ

i Vcr

gi gJ
Qj,A„(rg)+ vgXcurlggq„A, (rg)

C

+grad. xl pL* curly, gq, A, (rg) t+c.c. . (A11)

From (59), (66)

C2k,
grad. g C, (rp) —A.(r p)

Prr

f'c'k, ' y c'
—1 tA. (rg) = — A.(rg). (A12)

4 v,' ] R'v, '

(Vp' —1/R') P

P;g,4.*(r;) ii, P,g;—4,*(r;) ck.j. —
(A10) Thus

Prr
2

Pg
2

The second expression for a„ is just the equation Substituting (A12) and (A13) into (A11), gives
div. E=4np (1/R')C wr. it—ten in terms of the Eq. (70).


