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When particles interact with each other through the
intervening mechanism of a field, the description of their
dynamical behavior by means of action-at-a-distance
potentials is only of an approximate nature. Two-body,
three-body, - -, m-body potentials may be regarded as
successive stages of this approximation; their relative
magnitudes are examined systematically for several types
of classical and quantized fields, e.g., electromagnetic,
mesotron, etc. It is found that the description of electrons

in atomic systems by the customary two-body potentials is
an excellent approximation; in nuclei, independent of the
details of the field, one finds: three-body potentials
2(v,/c) X (two-body potentials)- -+, m-body potentials
2(v,/c)2 X (two-body potentials), where v, is the average
velocity of the heavy particles in the nucleus. The usual
description of nuclei in terms of two-body potentials
cannot therefore be considered satisfactory, except in the
case of the deuteron.

INTRODUCTION

N field theories of particle interaction, an

exact description of the dynamical behavior
of the particles necessitates the explicit intro-
duction of variables describing the state of the
field. A description of particle dynamics in terms
of interactions depending only on the instan-
taneous relative coordinates of the particles!
(action-at-a-distance) is, therefore, necessarily of
an approximate character. In the first stage of
this approximation the interactions are of the
so-called ‘““two-body’’ type:

V(riz, 713, -+ +) =Z_ Vii(rii).
v, 7

In the higher stages, as shown below, one ob-
tains additional interactions of such a nature
that the force between any two particles is de-
pendent on the positions of some of the others
(“many-body”’ forces). For example,
V=% Viplrij, 7it, 7ix)
i dnk
represents three-body interactions. It is the
purpose of this paper to examine the conditions
under which a set of two-body interactions con-
stitute an adequate substitute for the explicit
use of field variables. It will be found that the
use of two-body interactions is an excellent
approximation for electronic motions in atomic
* University Fellow.
1 One also admits interactions depending on the particle

velocity into the action-at-a-distance dynamical de-
scription,

systems, but a relatively poor one for the heavy
particles in nuclei.

CLAssICAL ELECTROMAGNETIC THEORY OF

ELECTRON DyNAMICS

(a) Equations of motion

The equation of motion of a given electron in
the presence of potentials, ¢, A is

19
ma,=e,] —grad.p o(ty, 1) —— —A(ry, £)
c ot

A"
+—k><curlkA(rk,t)}, k=1, -, n (1)
[

Here ¢, A, arise from the other electrons, and
describe the state of the field; they are deter-
mined by the equations :2

1 JA
Vip= —4r3 eid(r—r1;(f)) ——div. —, (2)
7 c at

1 92A v;
VIA—— ——=—4r} e;/—(r—r;(t))
c? at? i c
1d¢p
+grad.(div. A+-—1). (3)
c dt

To obtain an ‘‘action-at-a-distance’ dynamical
description of the particles, one attempts to
express ¢, A in terms of the instantaneous rela-
tive particle coordinates. Choosing the gauge so

2'W. Heitler, Quantum Theory of Radiation (Oxford
Univ. Press, 1936), p. 2, Egs. (8a), (8b).

1218



MANY-BODY INTERACTIONS

that div. A=0, one finds 2*

e .
oty ) =Y —; exactly. (4)
7 Vi
rk (v “Tr;)
A, =5 ( A )
(47}
v;? a;
+terms in ——+terms n ———l-
c? c?
a;=acceleration of jth particle. (5)

The forces acting on the kth particle will be
correct to the second order in v;/¢, and the first
order in a;/c?, if all terms in A except those in
v;/c, are neglected.??

With this approximation, the equations of
motion (1) for the system of electrons, become:

ere Ty e V)5 3(Vj'rkj)2fki)
may= -2 —\ - }
i i 2 Vi ki
eV e; ViXIy;
+D (2 22)
i c [ e%

exeif a; (@ Tr))Tx;
+r——+—-
i 2¢*\ry; 7hi°

=f{,(k) +£,(k) +£n(k) +£.(k), k=1, ---, n. (6)
Here, f.(k), f,(k), f.(Ek), represent, in order, the
Coulomb force, a velocity-dependent correction
to the Coulomb force, and the magnetic force.
f.(k) is the force on the kth particle determined
by the acceleration of the others.

Since there are # equations of motion (4), the
n unknown accelerations are given in terms of
the positions and velocities. To the zeroth order
in v/c,

1 (212}
— 2. T,
m v orgd

™

a;=

2 The gauge div. A=0, and the subsequent approximate
solution for A from the field equations, has been used by
Breit in his derivation of the velocity dependent interaction
between two electrons. See Phys. Rev. 39, 616 (1932).

* For further discussion of this neglect see Addendum.

H=Y1mv2+
k
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whence, to 1%/c?

ere; feieityn  ejer(Ti Tyt
() =% (2
i, 12m62\rk,~r,-z3 ki
e2 1e2 2 1
ﬂ—————-—ﬁ'—"‘“fcl (8)
me2rr? mctvy

Thus f,(k) is of the three-body type. The
three-body forces become appreciable whenever
the relative distances between the electrons are
not large in comparison with their classical
electromagnetic radii.

It is a general fact that “acceleration-de-
pendent” forces, when expressed in terms of
coordinates and velocities, are of the many-body

type.

(b) Lagrangian and Hamiltonian of the particle
system

The equations of motion, (6), are derivable
from a two-body Lagrangian

lcey
L= szvk -3
ky 7 Trj
ene; (Vi Vi (Vi Tr;) (Vi i)
+iX— |
k, i 2¢? 147 Tkj?’

(4
=Smvt 1 Seue(r) +1T ~vi-Alr), )
k k C

from which one obtains the Hamiltonian :

€xe;
32—

ky 7 Vg5

€re; Vi V;
HE (2

%, i 2¢? Yki (47

3

(Vi L) (Vi‘rki))

=S, %zk:ew(rk)ﬁge-";‘i’iA(rk), (10)

where the v's are to be expressed in terms of the

3 This Lagrangian was first given by C. G. Darwin, Phil.
Mag. 39, 537 (1920). All relativistic terms in the kinetic
energy, such as Zpmvit/8¢?, are consistently omitted in
what follows, since they introduce no essential modification
in the derivation of many-body potentials. A further dis-
cussion of the approximations involved in this Lagrangian
is given in the Addendum,
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p’s, by the equations

exli f Vi

_ 1[1%-2 +rkj(vj'rk7')):|
m i 262\ 7y 3

E~(m__aag) L

Substituting into (10), the value of v; given by
(11), one obtains

(11)

5 2m k P’

ka er Pr
H=3% —+3Xeo(ty) —32 —— Ary) (12)
cm

with the A’s given in terms of the p’s, by (cf. (5)
and (11))

1[(P1 (ei/c)A(x;))

A(ry
(r) = 7' mcl_ Vi
| Ti(pi— (ei/©)Alxy)) 'rkf]
7'kj3

_y K E_i_fw(fkf'l)i))

i 2mec (47 7'1”'3

i %i(Thi - AL
BRI .
F] chzf’kj 1’1”‘2

k=1, -+, n.

The #» linear inhomogeneous vector equations
(13), may be solved, either exactly, with de-
terminants, or approximately, with e?/2mcr;;
as an expansion parameter. The latter method
leads to

A)=% €; / Pi erf(rki'Pi))

\ e
i 2mc (4] Tkjg

et e [( 1 fa'z(Pz‘fﬂ))
- -

i, 12mcry; 2mc|_ 7i1 7id

Trj pr ru(perio)
+—1;- "—+—“‘——
Thi? i1 i’

e 1
+ Z termsm( )

mc?

c mr

e 1\%e p
+ X termsin(————) e,

(14)
il t me? v/ ¢ mr
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whence, neglecting terms in [(e?/mc?)(1/7) ],
[(e¢/mc®)(1/r) B, -- -, and substituting for A(ry)
into the Hamiltonian (12), one obtains

P’

H=3% —-+3 Z —
k 2m ky 7 ¥
. ere; (pk'Pi (Dr-Txs) (Pi‘rki))
— +_.__.__.__—.
&y i 2m2c? Tk 1’k7‘3
exei’e; [Pk ‘P (Perti)(Petsn)
k, i, 18m3ct Yii? it Pii? il
P Tr) (P Ths)  (TriT30) (Po-Thg) (Pr-Ti2)
+ + .
kT i et
= H(kinetic) +H(Coulomb)
+H(Darwin)+H’. (15)

The interaction H' contains ‘‘velocity-depend-
ent”’ three-body potentials (for j=1I). These are:

H'(three-body vel.-depend) ==

exei’e 1 Pr D1 e? 1)(7)2 e?
el —=-M—)—
k, 4, 18m3ct vi7 1 mc* v/ \c?/ r

(16)

Thus one obtains' a three-body Hamiltonian
from the two-body Lagrangian because of the.
peculiar relation between the p’s and v’s, in (11),
and the consequent peculiar relation between the
A’s and p's (Eq. (13)). While the use of the
three-body Hamiltonian is somewhat artificial in
classical mechanics, the same equations of motion
(6), being derivable from the two-body La-
grangain (9), its introduction is essential in
quantum mechanics, since the p’s, not the v’s,
enter into the fundamental commutation rela-
tionships.

The terms in A, of order

[(e2/mc*)(1/r) Pep/mer, [(¢¢/mc*)(1/r) Fep/mer,
v, [(&/me*)(1/r) I 2ep/mer,

when substituted into the
— 3 Zi(er/c) (p/m) - A(ry)

term of the Hamiltonian give 4, 5, - - -, m-body-
potentials. The ratio of the magnitudes of the
individual terms in the m-body and Coulomb
potentials is =2 (e2/mc?) (1/r) Jm%?/c2.

If one considers the classical electron to have a
spin s; and a magnetic moment yx, proportional
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to s, then3s

eif Vi Tii(ViTi) X L;
A= (SRR p B )
i 2¢\1y; ki

mv? i erei Vi v]-
> -%z~—+[%z— T
k 2 ky 7 Vi (Cy i 2¢? Vi
(Vi Trs) (Vz"rkf)) erVi vinky]
+— )z 22—
k.7 ¢ 1’1“‘3
e;V; Xr u; XTIk
[ ka ( ivi ki + ka curlk( j kz)]
Cri® k, i 75
-5 —3Zere(rs) +3 Z— A(ri)
k
(18)

+‘2‘Zyk' curlk A(rk),
k

1 e;if Vi T3i(ViTy;)
vk=__(pk,z _’(;+£_’_.’“z_)
m i 2¢ 1471 Tkj?'
u; XTI 1 e
-r= ’)E—(pk——Am)), (19)
j 3 m c

mvy,
=2

k

+32 ere(ri)
k

e
1Y v Ar) — 3w curly Ary)
k C k
(20)
pi’
=T 1 ere(y)
t 2m k

""“Z _—— A(rk) —lzuk curlk A(I'k)
E ¢ m

Using (19), one may express A in (17), in
terms of the p’s, just as before. Thus
A=S &‘_l_l‘ki(Pi'rkf) s v X1k
i 2mec \7y; B i e

e;? ezl' p: ru(pe- le))

I- T
i 1 2mcry; 2mel \r;; i

Ty ) TS 710 23 #1)) e’
g () |- =
7t iv 12mc?ry;

rk,-2 ¥l

WXty Ty fwXE
x[ ]l_l__k_’_rkj.( ! ﬂ)]. (21)
1’7';3 7’7“'2 1’,'13

32 A moving magnetic dipole gives rise to an electric
dipole with moment 322v;/cXu;. The interaction of this
electric dipolé with the electric field due to the other
particles is of the same order in v/c as the spin-orbit term
appearing in the Lagrangian (18). It is omitted for reasons
of simplicity since its inclusion introduces nothing. essen-
tially new.
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Upon substitution of this expression for A into
the Hamiltonian (20), the term:

—z2.x(ex/c) (pr/m) - A(re)

gives the Darwin two-body potential, and the
three-body potential obtained before, and in
addition, a “spin-orbit”’ two-body potential and
a ‘“‘spin-orbit” three-body potential. The term:
— 3> s curl, A(ry) gives “‘spin-orbit” and “‘spin-
spin”’ two-body potentials; and “‘spin-orbit” and
“spin-spin’’ three-body potentials. The ‘‘spin-
spin”’ three-body potential is

H'(three-body spin-spin)

e;* w X1
=3 ! W curlk[ ( )
k., i, 14dmc? Tk 7']‘13

Ty wi XI5 e? u?

+—T;- ( )] = —.

7'lcj3 leg mcr 13

It will be seen below that a three-body potential,

with the same spin dependence, as in (23), is

of considerable importance in the mesotron field
theory of nuclear forces.

In concluding this section it may be pointed
out that when the A’s in the Hamiltonian are
expressed in terms of pi, I, Sy one need only
apply the commutation relations to these vari-
ables, to obtain a quantum-mechanical action-
at-a-distance theory of electronic motion.

(23)

QuanTuM ELECTROMAGNETIC THEORY OF
ELECTRON DYNAMICS

In the preceding section the classical electro-
magnetic field was eliminated, to a certain degree
of approximation, from the equations of motion
of the electrons. The resulting action-at-a-
distance Hamiltonian (15), could then be
quantized. In the following section the procedure
will be reversed: one first quantizes the electro-
magnetic field, as well as-the matter, and then
proceeds to an approximate action-at-a-distance
description of electronic motion, by means of a
quantum-mechanical perturbation method. This
method will give not only the same many-body
potentials found above (‘“‘classical”’), but also,
many-body potentials explicitly dependent on %
(“specifically quantum-mechanical’).

The Hamiltonian for the total system, field
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and matter, is: (Fourier representation of the
quantized field variables?)

= {%gppz"{"’szp b+ {Z —+ Z 27

2m &k, § Tki

- Zk:yk-curlk A(ry) }

= H(field) + H(matter) +H (interaction) (24)

with

P
A(r) =3 (4rc?)ta, (Q,, cos (k, 1) —— sin (k, )

Vo
= Zp:(‘lﬂz)%ap@p exp (ik, 1) (25)
+¢,* exp (—ik, 1))
= ;QPAF—!—QP*AII*!
div. A=0; |[a,|2=1. (26)

In the eigenstates ¥(Q,, r;) of H, the number
of light quanta is not specified, i.e.

\I’(Qm ri) = Z Ca, "p\&a(ri) ‘Pnp(Qp) (27)
with
H(matter) ya(r;) = eba(r;),
(28)

H(field) ¢,,(0,)= [;(np-i-%)ﬁvp]son,,(Qp)-

The elimination of the field variables, and the
consequent action-at-a-distance dynamical de-
scription of the particles, corresponds, in quantum
mechanics, to the consideration of transitions of
the system among states, where the number of

(A(rl))2

2mc?

—=— A(rz)
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light quanta is always zero, i.e., states of type

‘I'<pr ri) = { ,Z Ca’, Op‘/’a'(ri) } %I,(Qp)- (29)

In particular, one may limit the discussion to
transitions among the matter eigenstates, i.e.,
Car, 0p=10q, o. The transitions among the states
¥a, caused by H(interaction), i.e., by the virtual
emission and absorption of light quanta, are now
to be regarded as caused by an equivalent
action-at-a-distance potential H’. The depend-
ence of H' on the particle coordinates is to be
such that the transition probabilities between the
matter states y,, with H' as perturbing potential,
are identical to any desired approximation, with
those arising from H (interaction) in the complete
field theory.

It is to be noted that the quantum-mechanical
method of eliminating the field variables, is
necessarily of a perturbation character of suc-
cessive approximations, since one must consider
transitions between states in which no quanta
are present. Such a treatment, as already ob-
served above, leads to two types of many-body
potentials, “classical’”’ and ‘“‘specifically quantum-
mechanical,” which are discussed in order.

(a) Classical many-body potentials

In a system, consisting, for simplicity, of only
three electrons and the radiation field, the follow-
ing type of transition takes place: The first
electron, say, simultaneously emits two virtual
light quanta, by means of the (e?/2mc?)(A(ry))?
term in the perturbation; one of these virtual
light quanta is absorbed by the second electron
by means of the — (eps/cm) - A(r;) term, while the
other is absorbed by the third electron by means
of the — (eps/cm) - A(r;) term. The matrix element
for this transition, which depends on the instan-
taneous coordinates of all the three electrons, is
given by

—— A(ra)

The initial and final states 4, and f, are
characterized by no virtual light quanta present

4 W. Heitler, reference 1, paragraphs 6 and 7.

f) . (30)

(Eo_'En) (E:_En')

and matter wave functions ¥; and yy; the inter-
mediate states %, #’ have, respectively, two and
one virtual light quanta present, and matter
wave functions ¥, ¥ar.
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Employing the customary expressions for the
matrix elements of emission and absorption of
the virtual light quanta,® neglecting recoil
energies of the electrons, using the completeness
relations for the matter wave functions, and

1223

adding over the possible polarization directions
of the virtual light quanta, as well as over all
possible permutations of the order of their
emission and absorption, one obtains for the
matrix element (30):

167%* exp (1K, 112) exp (1K, - r13) (p2—K,(p2-Kk,) /k,2) (ps—K, (p3-K,/) /k,r?)
f‘#i* > ™ p (1K, 112) exp (1K, 113) (P2 —K,(P2-K,) /ky?) (Ps— K, (P3-k, » Jdndradrs. (31)
pe’ P R TN
Thus, the equivalent action-at-a-distance three-body potential, H’, becomes
1
(r=ckoi Trte)—> — [ i, )
’ (2m)?
16m%* exp (ikp'r12) exp ('ikﬁ"r13)(p2_kp(p2’kp)/kpz)(pa_kp’(pfi'kp’)/kp’z)

H'(r19, 115)= X

p, p’ m3 1/,,21’,7'2

1 e* pexp (1K, r12) »(p2-K,) exp (tk: Ir13) k, (ps-k,)

- f ks (pz— L ) f 2 (ps— o )dk,,,. (32)

4rtmdct k,? k2

Now ( )
exp (7K, I12) k,(p2-k,) 1 r12(p2-Tie
f P (pz— PR )dkp=7r2__(p2_|__ ! L )’
k,? k,* 712 712?
et (P2 Ti(paTu)  T1a(Pa-T1s)
whence H' (713, 113) = Tk el )( el ), (33)
4mdct 1’12 7’13

which is just the term obtained in the classical
treatment, above.® (Cf. Eq. (15).)

If one considers three-body potentials arising
from the same type of transition as before,
except that —ue-curle A(rs), and —ys- curls A(r;)
replace — (eps/cm)-A(rs), and — (eps/cm)- A(xs),
one obtains ‘‘spin-spin’’ three-body potentials,
which again, are just the same as those obtained
in classical theory. (Cf. Eq. (23).)

(b) Specifically quantum-mechanical many-body
potentials

Consider, again, a system of three electrons
and the radiation field. In addition to the transi-
tions discussed above, the following type of
_process also takes place: one electron emits two
virtual light quanta, 4n succession; one of these

quanta is absorbed by the second electron, the
other by the third. The perturbation energy
responsible for any one of these single absorptions
or emissions is either

— (epr/cm) - A(ry).

Only the first of these perturbations will be
treated explicitly, since in the mesotron field
theory of nuclear interaction, which has a
formalism almost identical with that of electro-
magnetic theory, the term analogous to

—uyg-curly A(ry), or

— i curly A(ry),

gives by far the largest effect.

The matrix element corresponding to the
transition described in the preceding paragraph,
is

(4| w1+ curly A(ry) | 7) (1| wi- curly A(ry) | ') (n"| wa-curly A(rs) | ") (0"’ | ws- curls A(rs) i)

n, n?, n'’

(Ei—E.)(Ei—En)(Ei—

, (34
En”) ( )

5 W. Heitler, reference 1, pp. 95 and 96, Eqgs. (12) and (13).
6A symmetncal expression in the indices 1, 2, 3, is obtained by interchanging the roles which the particles play in the
transition process.
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The initial and final states, 7 and f, are
characterized by no virtual light quanta present
and matter wave functions ¢; and ¢;; the inter-
mediate states have, respectively, one, two, and
one virtual light quanta present, and matter
wave functions ¥, ¥nr, Yurr.

The matrix element of —y;-curly A(ry) for the
emission of a light quantum of frequency »,, and
the transition of the three electrons, from y; to
Ya, 1S

- foe]

472t
h

a, exp (1K, - r1)us- curls(a, exp (—ik, - r3))

PRIMAKOFF AND T. HOLSTEIN

- f yiur-curly (dncd)H(/29,) e, exp ik, -12))
X¢adridradrs  (35)

and similarly for the other emissions and ab-
sorptions.

Substituting (35) into (34), neglecting recoil
energies, and making use of the completeness
relations for the matter wave functions, one
obtains for (34):

(gl-curll > a, exp (ik, r{)us-curls(a, exp (—ik,,-rg))
I

X (]}1‘ curh Z

p

! (Vpr’)(Vp(Vp+ Vp')llp/)

) }’l’fdrldrzdra- (36)

Summing over the possible polarization directions of the virtual light quanta, one obtains

4rict )
— fxl/i* -—i—yl-curll > curls (uz-exp (¢k, rig)ui-curly Y,
p I

The equivalent action-at-a-distance three-body
potential, corresponding to a process where v, is
the first to be emitted, and first to be absorbed,
is thus given by the quantity inside the curly
brackets in (37). Taking into account all possible
orders of emission and absorption of the virtual
light quanta »,, »,,, one obtains, for the three-
body potential, H" (12, 13) :

H" (113, r13) =

4r?
—;—[31 -curly Z

curls (w2 exp (ik,,~r12))]

¢ ’ v,3/¢
curl; (us exp (7k, - r13))
X[ul.curllz L v ] (38)
p’ 1),,'2/(:2

~+same term with indices 2 and 3 interchanged.
1
With »,/e=k, and Zlc)— —— [ )ik,
» (2m)3

the first bracket becomes

1 ri2Xus
ui-curly ( ), (38a)
(27r) 2 : 7'122 :
while the second bracket is equal to
1 us
——ur curl 12 —‘) y (38b)
4r 713

curls (us exp (iK, T13)

V92VP’2(”p+Vp’)

}Illfdrldrzdrs. (37)

being, apart from the numerical factor 1/4m, just
the spin-spin two-body potential between the
first and third particle.

Thus,

1 i Xy
H" (112, 713) =7[yl'cur11 ( )

2rhe 7127

X[yl-cur112 (;1—33)] (39)

+same term with indices 2 and 3 interchanged
=ut/herd.

ORDERS OF MAGNITUDE OF ELECTROMAGNETIC
MaNyY-Bopy POTENTIALS IN
ATtoMmIc SYSTEMS

The magnitudes of the many-body potentials,
in particular of the three-body potentials, will
now be estimated. Suppose the three electrons
are orbital electrons in an atom. Then, on the
average, the distances 7;; =7, between the elec-
trons are of the order of Bohr radii, and are
related to the electronic velocities, v, by : r =h/mv ;
the electronic magnetic moments u are 2ef/mc
werv/c. Thus, from Egs. (15), (16), (33), the
relation between the magnitudes of the individual
terms in the velocity-dependent three-body po-
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tential and in the Coulomb two-body potential, is

e? v? e?

H'(three-body vel.-depend.) &=—— — —
mc?r ¢ r

1

] 3

é——~(-) H(Coulomb). (40)
137\ ¢

Further, from Eq. (23),

62 MZ

H’(three-body spin-spin) =

mc?r 3

o

e? h/mc)2 e? 1
r —_—

__(7-})3H(Cou10mb). (41)
137\¢

mcey 7

Finally, for the specifically quantum three-body
potential (cf. Eq. (39)),

41 2 h/ 4 52

" e (hi/me\ ‘e
H'z2——2=— —
hers he\ 7 7

1 /9\*
:ﬁ_——«(—) H(Coulomb). (42)
137 \¢

It is therefore clear that the description of the
electromagnetic interaction of electrons in atomic
systems, by means of action-at-a-distance two-
body potentials, is an extraordinarily good
approximation,$® since v/c2Z/137.5>

MEesoTrRON FiELD THEORY OF NUCLEAR
INTERACTION

(a) Elimination of field variables for the “clas-
sical” mesotron field

The mesotron theory of the interaction of
nuclear heavy particles’” (protons and neutrons)

6z See, however, the Addendum.

% Z is the effective nuclear charge for the electron in
question.

“The “‘vector’’ mesotron field theory will be used, since
it gives the correct sign for the neutron-proton two-body
potential. For a general discussion of mesotron theory,
see H. Yukawa, Proc. Phys.-Math. Soc. Jap. 17, 48 (1935);
19, 1084 (1937); 20, 320 (1938); also H. Bhabha, Proc.
Roy. Soc. 166, 501 (1938); N. Kemmer, Proc. Roy. Soc.
166, 127 (1938); Frohlich, Heitler and Kemmer, Proc.
Roy. Soc. 166, 154 (1938). The use of a linear combination
of the ‘‘scalar,” ‘‘vector,” “pseudo vector” and ‘pseudo
scalar” charged mesotron fields, and/or of uncharged
mesotrons, would not essentially alter any of the results
on many-body interactions obtained below. (See section
.n present paper on general field theory.)
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is closely modeled upon the electromagnetic
theory of electron interaction. Here the variables
of the system also fall into two categories: those
describing the motion of the heavy particles and
those describing the state of the field. The
dynamical relations between these two sets of
variables are given by equations analogous to
the Maxwell equations and the Lorentz force
formula; the heavy particles act as sources of
the field, and the field in turn affects the motion
of the heavy particles. The characteristic differ-
ence between this theory and that of Maxwell is
the appearance of a fundamental length, R, in
the field equations; a consequence of this new
constant in the quantized form of the theory, is
the existence of “‘quanta’’ of rest mass, mo=7#/cR.

The mesotron field due to mesotron-charge,
mesotron-current, mesotron-magnetization and
mesotron-polarization densities of the heavy
particles,® p, I, M, P is specified by two six-
vectors? E, B; E*, B* and two four-vectors
®, A; d*, A* satisfying the equations:

B=curl 4, (43)
194
E=—— ——grad. 9, (44)
c dt
47l 4w 9P
curl B=—+4— —
c c 0t

10E 1
+4r curl M4+- — ——A4, (45)
c 0t R?

1 .
div. E=47p—47 div. P— —15@. (46)

Taking the div. of (45) and the time derivative
of (46), one obtains:

dp 1 /0%
0=div. I+—— —(-——--i—div. A) (47)
ot R\ o

It may be pointed out that the singularities in the
mesotron field equations are exactly of the same type as
the singularities in the electromagnetic field equations.
Hence, the mesotron theory convergence difficulties are
no better, and no worse, than those of electromagnetism;
cf, H. Bhabha, Nature 143, 276 (1939).

8p=|p|II; p*=|p|II* where the II and II* are operators
(complex conjugate to each other) changing the heavy
particle from a proton to a neutron, and from a neutron to a
proton, respectively. Similarly for I, M, P.

9 Here the asterisks denote complex conjugates.
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and so, if charge-current is to be conserved, the
potentials must satisfy the ‘‘Lorentz” condition.

9P
—+div. A=0. (48)
at

Second-order equations for the potentials may be

obtained in the usual way:

2 ! Lo 47(p—div. P), (49)
V29 ——& —— —= —4r(p—div. P),
R* % 93¢
1 1 924
VIA——A4d———
R?  ¢? o2

I 10P
= —47r(—+curl M+- ———). (50)
c c 0t

Finally, the equation of motion of a heavy
particle in presence of potentials ®, 4 is!®

194
Ma;,= [gk*( —grad. ®—- -)
¢ dt

A"
+ g curl Ad-grad. (we*-curl 4)
c

104
—I—grad.(pk*- ( —grad. ®—- —-))
c at

-+ comp. conj.}, k=1, - (51)

Sy n,

where gi*=gIL*, w* =ull,*, p*=pIL* (see foot-
note 8) with g, u, p, the mesotron-charge,
mesotron-magnetic moment, mesotron-electric
moment of the heavy particle. Terms involving
p=v/cXu will be consistently omitted in what
follows, since they do not essentially affect any of
the subsequent results.

The potentials ®, A arise from the other heavy
particles. As in electromagnetic theory, to obtain
an action-at-a-distance description, one attempts
to express ®, 4 in terms of the instantaneous
relative heavy-particle coordinates. Approximate

10 The classical equation of motion (51) can be con-
sidered in quantum mechanics, as an equation of motion
between operators; in this sense it is equivalent to the
wave equation (11) given by Bhabha, reference 7.
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solutions of (49), (50), for point sources, are!

e~ TkilR V,'2 ;
&(1y, 1) =>_g; +terms in —, —, etc. (52)
7 (471 c? ¢?
giv; e~ TkilR e—TkilR
Ao ) =5 2wy xgrad ~)
i C 1471 7 [47]
v;i? a; du; dy;
-+terms in —]~, ~—]—, ! ], etc. (53)

dt’

c? ¢?

The equations of motion (51), with & and A
expressed by means of the sums in (52), (53), are
derivable from the following Lagrangian and
Hamiltonian :

M2
2

L=% +[ e +35 v Ar)
& k k c

+ 52w curly, A(ry) +C-c.'}, (54)
k

bi? a* p
H=Y 5;—[+{%§gk*¢<rk>—%§ = Aw)

k
— 32wt curly A(r) +c.c. } (55)
k

In H, the A’s are to be expressed in terms of the
p’s by means of the equations:

A(rk)=§:£’_(pf_((g"*/c)A(rf)+C-C-))@_”””R
icM

(47
e~ TkilR g Pi e—TkilR
+Twxrad(— )= = 2
i 147 ic M Yk

e—rk,'lR
+Zijgrad.,»( )
i

147
gigi*e kiR gipy e TillR

i1 MCZT'k,' Mc 7l

g].gj*e*rki/R e_"'J'l/R
—_ Z ——2—w><grad.l'( )
il Mc Tk (1]

+terms of higher order in g2/ Mc?r;. (56)

1t These solutions, including explicit expressions for the
terms in v32/c?, aj/c?, du;/dt, d?u;/d? are obtained in
Appendix I. The only terms which are treated in the text
are those explicitly written out in Egs, (52), (53), For a
discussion of the acceleration-dependent terms, see the
Addendum.
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Substituting for A(ry), one obtains for the
Hamiltonian (55):

ps?

g*g;
H= Z —t { [l Z ____e——rk,'/R]
k 2M zk' i Tk

e—fkj/R
—l—[—% > yk*-curlk(qugrad.j( ))]
ky 7 Tkj
g Pi —Tki/R)
c M 1y

scurly{ — —
gk* Px » e~ TkilR
— £ 5 Zewxerads( )]

k.7 ¢ Tk

+["%kz‘vk

*g. D
+[_% 5 B8 P pze_mm]
k, i M?2c? Tkj

gigi* e TkilR
-I—[l > yk*'curlk( oy
zk.i,l Mc? ki
e—rjl/R
a)
(&1}
gk*gjg].*gl pk.ple—rki/Re—fil/R
41z |
ki 0 M3ct
N O ¢TIk
+[% 2 Pk( ) w Xgrad. ( )
ki, 1 M3c? Tk 71
g7g1 e—TkilB e~ TillR
3 oF e curly )
k ki [£1)

2

£ +c.c. ] (57)
cr

(47181

+terms of higher order in

= H(kinetic) +H (two-body “Coulomb’)
+ H(two-body spin-spin)
+ H(two-body spin orbit)
+ H(two-body vel.-depend.)
-+ H(three-body spin-spin)
-+ H(three-body vel.-depend)
+ H(three-body spin-orbit).
The two-body ‘‘Coulomb’ and two-body spin-

spin interaction Hamiltonians have already been
discussed by the authors of reference 7.1'# The

1 The procedure of solving the equations of the mesotron
potentials in order to obtain two-body Coulomb and two-
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order of magnitude of the other two-body inter-
actions, as well as of all of the three-body
interactions, will be given in a later section.

(b) Quantum mesotron theory

In the preceding section, the unquantized
mesotron field was approximately eliminated,
and an action-at-a-distance dynamical descrip-
tion of the heavy particles obtained in terms of
a Hamiltonian (Eq. (57)) which could then be
quantized. The elimination of the gquantized
mesotron field gives results similar to the corre-
sponding treatment in electromagnetic theory;
on the one hand the classical Hamiltonian (57)
is confirmed, and on the other hand, additional
specifically quantum many-body potentials are
obtained.

Since the Hamiltonian formalism of the
quantized mesotron theory is somewhat different
from the formalism of electrodynamics (due to
the fundamental length), it will be discussed
briefly.

In the Fourier representation of the field:

2(r, ) = Ta. ()2,(1)

=Y a,(t)drc?)? exp (7k, 1), (58)
Asr, )= Tq, ()4 () = ;q,(t)ki’ grad. &(1);
curl A,=0, (59)
Ar(r, t) = ;qp(t)Ap(r)
=3g,(t)(4nc*)ta, exp (ik, 1);
div. 47=0, |a,|>=1, (60)
A(rl t) =AL(r’ t)+AT(r9 t)‘ (61)

The potential equations (49), (50), and the
Lorentz condition (48), become:

av+ Vo aa’ ng¢ (rk)y (62)

body spin-spin interactions was introduced by Yukawa,
reference 7. Recently these interactions have been derived
by Stueckelberg by a method of canonical transformation;
Phys. Rev. 54, 889 (1938). A treatment similar to Stueckel-
berg’s has been reported by E. Feenberg, December meet-
ing of the American Physical Society, 1938.
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q:r + VVZQV = ‘L;,—'"vk * Atr* (rk) ’ (63)
4

43
G+ V92Qp =)~V A,,*(l‘k)
k C
+ Zyk* . curlk AP* (I'k) , (64-)
k

(65)

g = Ckugm

2

c
vi=ctl—. (66)
R

The equations of motion of the heavy particles
(51), are:

1
Mak= {gk*( "—grad.k Zaaq)d(rk) ——Zq'UA”(rk)
a c?
1 ar*
———;QPAP(rk)) +—v Xcurly ;goAP(rk)r
c c

+-grad.; (yk*-curlk ijg,,Ap(rk))+c.c. }, (67)

k=1, -+, n.

Inspection indicates that the above equations of
motion, for field and matter, are derivable from
the following Lagrangian and Hamiltonian :?

L= };. (Go*do—v,2¢5™q5) + ; (4s%¢e — v4°¢sqs)

MV;?
2

_— Z (d,;*da - Va2ao'*aa) + Z
G %

+ {Z( —gk*Zd;avch(rk)

k

*

ai* 142
+—Vi: ZQdAa(rk) V- ;QpAp@h)
c v Cc

+ur*-curly quA,,(rk)) +c.c. } , (68)
P

2 In deriving the equations of motion (62)—(67) from
the Lagrangian (68), ¢,, ¢,* 40, 4o @o, as*, T are to be
treated as independent variables. Eq. (65) must then be
assumed as an auxiliary relation. Also p,=0L/dq,, etc.
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H= ; (Bo*Pot+7,20,7,) + ; (o™ potvs2q:*qs)
1
M

% (0o Sacten+ Daen ) +ee])

+ (%gk*;avq)a(rla +C.C.)

- Z (bv*ba+ Vo'zaa*ao') + ZE
4 k

“(ka*.curlk Zp:q,,A,,(rk)+c.c.) . (69)

Now, a peculiarity of the system of Egs. (62)—
(67) is that the variables ¢, and a, are not inde-
pendent, the connection between them being
given by the Lorentz condition (65). Making use
of this relation and of (62), one can completely
eliminate the variables a, from the equation of
motion (67), obtaining :1*

e~ TkilR

May= {gk*( —grad.; Xg;
7

(87

LN S
i) T )

*

4]
+—v; Xcurly, }p:,g,,A,,(rk)
c

+-grad.; (gk*-curl’k Zp:q,,A,,(rk))—l—c.c. } ,

k=1, -+, n. (70)

. g
Gotraige= T oovi AT, (11)
k C

g
dot+ve'q,= );.‘—kvk <A ¥(r) + 2wk curly A,%(r).
[4 k
(72)

The new set of equations of motion: (70),
(71), (72), as may be directly verified, are
derivable from the following Lagrangian and
Hamiltonian 14

18 Equation (70) is derived in Appendix II.

1 Tn the limit R— 0, the variables describing the longi-
tudinal field disappear completely from the Lagrangian
(73), and the equations of motion (70). Since in this limit,
the mesotron field equations are identical with the Maxwell
equations (apart from the complex character of the field
variables) one obtains the well-known result of electro-
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c?

L= Z (q.ﬂ*q‘l' - VP2QP*QP) + Z—'—((ja*q:r - VV2QU*90)
P [ R?Vq‘z

e"fki/R

M2 1
+2 5 + {“‘“ng*gj

k k, 7 (471

c?

gr*
+X—Vi-
P 7 R?

%
Ao (1) + Vi 2°q,4,(1r)
k C P

Vo

4+ > ue*-curly Y q,4,(rx) +c.c. } , (713
% P

Hy= {Z(i’p*?p'F ¥,2q, g,,)-}—Z(;;/E;__

) o 2

1 e~ kil B ;
+{ =2 gi*g; +C.C.)}
2k, i

¥k

{[ %ﬂ} %‘Rz

+504, <rk>)+cc]+z

¢, A,(r1)

2Mc?
62

2
X[gk*Z qﬂAd(rk)+gk*ZQ'pAp(rk>+C.C.]
T Rey,? Z

_[§Uk* -curly ;g,,A,,(rk) —}-c.c.] }}

= H(mesotron-field) +H (heavy-particles)

+ H(interaction). (74)

Numerically,

H,=H=[Volume Integral of Energy Density
of Field4+Heavy Particle Kinetic
Energy+Magnetic Moment Inter-
action Energy].

The Hamiltonian Hi, plays a role in the
quantized mesotron theory, completely analogous
to the role of the Hamiltonian (24) in quantum
electrodynamics. It is to be noted that quantum
. perturbation calculations, in particular, the der-
ivation of action-at-distance two-body and
many-body potentials, will not involve that part
magnetism, v2: The effect of the longitudinal waves may

be completely expressed by means of action-at-a-distance
two-body Coulomb potentials.
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of the longitudinal interaction already exactly
expressed by the “Coulomb’ term:

e—Tki/R

1
=2 g1*g; +c.c.
2k, 5

(47
(c) Many-body potentials obtained in classical
mesotron theory

Three-body potentials can now be obtained
just as in electrodynamics, by a perturbation
treatment of transitions in which one has simul-
taneous emission (by means of the g24?%/Mc?
interaction term) of two virtual mesotrons by
the first heavy particle, one of the mesotrons
being absorbed by the second heavy particle and
the other by the third. The absorptions take
place by means of either the — (gp/ cM )+ A or the
—u-curl 4 interaction terms.

In this way, one obtains exactly the three-body
potentials already found in the Hamiltonian of
Eq. (57).5

(d) Specifically quantum-mechanical many-body
potentials

The largest specifically quantum-mechanical
three-body potential is obtained by a transition
of the following type:

The first heavy particle emits two virtual
mesotrons in succession ; one of these is absorbed
by the second heavy particle, and the other by
the third. All individual absorptions and emis-
sions are due to the —u-curl 4 interaction term.

Since the expression for the transverse field
energy: Z,(p,*p,+7v,2¢,*q,), and for the mag-
netic moment interaction term:

—[Zrus* 2,404, +c.c.]

are formally alike in the electromagnetic and
mesotron theories,'® the calculation of the three-
body potential proceeds in the same way as the
calculation of the corresponding three-body po-
tential in electrodynamics. (Cf. Egs. (34) to (38)
and accompanying text.)

Thus the specifically quantum three-body po-
tential arising from the transition outlined above

-curly

15 One can also obtain H (two-body spin-spin) and
H (two-body spin-orbit) by a second-order quantum
perturbation calculation with neglect of heavy particle
recoil energies. The results, naturally, are identical with
those obtained in Eq. (57).

16 Compare the Hamiltonians (24) and (74). The complex
nature of the field variables in mesotron theory introduces
only trivial modifications in this connection,
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is: (cf. the analogous electrodynamical Eq. (38)).

H'' (113, 113) .
—47? curls (us exp (tk, -rm)]

= w*-curly
fic P v,3/c?

curls (us* exp (ik, -1y3)
X[yl-curll > ]
o’ vt/ c?

+same term with indices 2 and 3

interchanged }—I—c.c. (75)

The characteristic difference between the
two theories (the existence of the fundamental

length R), now makes itself felt in the circum- -

stance that the frequency », is no longer pro-
portional to the wave number k,; the relation
between them is in this case:

v2/ct=F,2+1/R. (76)

Converting the sums to integrals by the
relation

21, k,)dk,

one observes that the second square bracket in
(75) is equal to:

1 e—ns/R
- curly? ( ot )
47 713

and is, apart from the numerical factor 1/4r just
the spin-spin two-body potential between the
first and third particles. The first square bracket
becomes:

1 ik, exp (1K, T1)
-curly mxf dk,.
(21r) (k,2+1/R?)?}

(76)

(an

Introducing the dimensionless variable,

Q=k,71,, one obtains

1 us 1Q exp (4Q T1/T12)
rl; —X d
ok f [Q*+ (ra/R) ]

(27!')3 712
The integral is finite and is of the order of ri2/715
for ria2R. (For 712&<KR, we have the electro-
dynamic case and the integral is —4w(ri2/712);
for 712> R the integral is very small.) Thus the
specifically quantum three-body potential be-
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comes for 7,3 2R

1 T2 Xy
H'' (11, rs) 2 —[91* -curl; ( )]
hic 7192
}}3*3—mlR
o ()]
713

-+same term with indices 2 and 3

interchanged } +c.c. (78)

ORDER OF MAGNITUDE OF NUCLEAR POTEN-
TIALS, FROM MESOTRON FIELD THEORY

The orders of magnitude of the nuclear poten-
tials obtained in the mesotron theory will now be
estimated. The average distances, 7;; 27, between
the nuclear. heavy particles, are =R=//mqc,
the average nuclear heavy particle velocities,
v, 2k/ MR =moc/ M. The mesotron charge g de-
termines the magnitude of the various inter-
actions. The mesotron-magnetic moment u, is
=gR =gh/moc. It is to be noted that the mass
occurring in the Compton wave-length in p, is
the mass of the emitted mesotron, and not of the
emitting heavy particle. The resulting anoma-
lously large value of p, is needed if one is to have
in Eq. (57): H(two-body ‘‘Coulomb’’) 2H (two-
body spin-spin) ;7 which is necessary for a proper
description of the strong spin-dependence of the
total two-body potential.’®

The heavy particle mesotron charge g, is re-
lated to the mesotron rest mass m,. Thus:

B Muy.? g?

My,——= s=Average Potential Energy s=—
MR . R

whence va/C 2g?/bic. (79)

Thus mo/ M =g?/kc. (80)

The order of magnitude of the individual terms
in the various potentials in Eq. (57), and of the
specifically quantum three-body potential H”

17 See Eqgs. (81), (82). Also, compare papers cited in
reference 7.

18 Direct experimental evidence for a strong spin-
dependence of the total two-body potential follows from
the transparency of para-H; and the opaqueness of ortho-H:
for slow neutrons. See E. Teller, Phys. Rev. 49, 420 (1936);
J. Schwinger and E. Teller, Phys Rev. 52, '286 (1937),
F. G. Brickwedde et al., Phys. Rev. 54, 266 (1938) W. F
Libby and E. A. Long, Phys Rev, 55, 339 (1939).



MANY-BODY INTERACTIONS

(Eq. (78)) can now be estimated. Thus:

H(two-body “‘Coulomb’’) =g?/R, (81)
H(two-body spin-spin)
#2 g2
=—=—=H(two-body “Coulomb”), (82)
R R
H(two-body spin-orbit)
Up I Un
wg— — =—H(two-body “Coulomb”), (83)
c R ¢
H(two-body vel.-dep.)
Un? g2 U,
—— ——H(two body “Coulomb”), (84)
2R ¢
¢ v g g
H(three-body spin-spin) o—— —2o—— —
v spio=ep Mce Rt McRR
0,2
éjH(two-body “Coulomb’”), (85)
c
g4 U 2 g2 vn2 g2
H(three-body vel.-dep.) &— — 2——— —
Mc*R* McR ¢ R
Vnt
‘£—4H (two-body “Coulomb’), (86)
c
& v, &2 v, g
H(three-body spin-orbit) &— — 2————
M3 R McR ¢ R
V8
E_;H (two-body ‘“Coulomb’), (87)
c
Iu4 g2 gZ
H''(three-body quant.-mech.) = =
hcR> hc R
Un
=—H(two-body “Coulomb’). (88)
c

It is especially to be noted that the anoma-
lously large mesotron-magnetic moment u:2gR
and the approximate equality of the average dis-
tances between the particles, and the range R,
gives rise to a specifically quantum three-body
potential and a spin-orbit two-body potential'®
both =(v,/c)H(two-body ‘“Coulomb”).

. 19 A two-body interaction of the spin of the particle with
its own orbit, arises from the mesotron-polarization term:

%%pk* -grad.x ®(rr)+c.c.
gi€ Ir’”/R)
p ( ~ +c.c.

g (two-body ‘‘Coulomb’’).
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The numerical value of v,/c is determined by
the details of the magnitude and spatial de-
pendence of the interactions and may be esti-
mated to lie within the following limits : (for light
nuclei)

—=—=—. (89)

MANY-Bopy POTENTIALS FOR A GENERAL
FieLp THEORY??

It will now be shown that three-body poten-
tials =w,/c X (two-body potentials), etc., are ob-
tained in a general field theory satisfying the
conditions:

(a) The Hamiltonian H of the total system
may be written as

H(field) + H(heavy-particles)

+ H(interaction), (90)

where, H(interaction) can be considered as a
perturbation.

(b) Two-body potentials obtained from H(in-
teraction) in the second approximation of the
quantum perturbation calculation, are, at least
of the same order of magnitude, as any two-body
potentials which may already be contained in
H(heavy-particles), due to an elimination pro-
cedure analogous to that performed in the
electromagnetic and mesotron field theories.

The matrix element for the emission of a
virtual light particle of mass 7, and wave number
k, by one of the heavy particles will be denoted by

f*//i*(l'f) ¢0,*(q,)H(x;, g,; interaction)
X 01,(gp)¥n(r;)dridg,
= [0V, exp ik riateddr, OD

where Vi(r;), ¥a.(r;) are material states, and
©n0(q,) is a state of the field with », light particles
of wave number k, present.

The usual quantum perturbation method em-
ployed previously,?®* now gives the following

20 The contents of this section were first presented by
one of the authors (H. P.) at the Washington meeting of
the American Physical Society, April 28, 1938; Abstract

No. 126, Phys. Rev. 53, 938 (1938).
20a Agam with neglect of heavy particle recoil energies.
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two-body and three-body action-at-a-distance
potentials:
V,V,* exp (ik, 112)
(h2c2R 24 mo%ct)
V,V,* exp (ik, 112)
o0 [(B2c%k,? 4 moPct) ¥ ]2
Vo Vor* exp (1K, - 113)
(AR, 2 +mo2c)?

H(ry; two-body) =3 (92)

H(r13, 713; three-body) =

“+same terms

with indices 2 and 3 interchanged

1
B H 125 -
[m[kpz‘f“(ﬁ/mw)—?]%l (r12; two-body)

X H(r13; two-body) +same term

\

with indices 2 and 3 interchanged. (93)

Here, #/myc=R, must be the range of H(two-
body), by a general argument due to Wick,?
relating the rest mass of the virtually emitted
particles and the range of the resulting inter-
action. Further, for 712 =R,

1
[————] =R (94)
(ki 4-1/R)

since R is the only parameter characteriz-
ing the 7 space dependence of H(two-body),
and consequently, the 2 space dependence of
VoV */ (B 2 +mo?c*)t Thus:

H (712, 713; three-body)
2 (R/he)H(r12; two-body)

X H(r13; two-body). (95)
For nuclear systems, (r1227132R)
v.(%/R) =2Mv,2/2 =H(R; two-body), (96)

Un
whence H(three-body) =—H (two-body). (97)
c

Similarly, higher order quantum perturbation
calculations lead to:

H(m-body) =[(R/kc) (H(two-body)) Jm—2
2(v,/c)™2H(two-body).
2 C. G. Wick, Nature 142, 994 (1938).

(98)
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CONCLUSIONS

These investigations indicate that the replace-
ment of field interactions by two-body action-
at-a-distance potentials is a poor approximation
in nuclear problems. The error made is at least
of the order of v, /¢, if one compares the magni-
tudes, term by term, of two- and three-body
potentials. Furthermore, the number of terms in
the m-body interaction of an #-body nucleus:
n!/ml(n—m)), is, in general, many times larger
than the number of two-body interaction terms:
n!/2\(n—2)!=n(n—1)/2, but, a direct estimate
of the magnitude of the total m-body interaction
((number of m-body terms) X (average magnitude
of each)) is complicated by the fact that the
m-body interactions are, at least in part, of an
exchange and spin-dependent character. It seems
therefore, that a satisfactory description of
nuclei, other than the deuteron, can be obtained
only by an explicit consideration from the very
beginning of the role played by the field.?

ADDENDUM

The electromagnetic two-body Lagrangian (9) is cor-
rect to the second order in /¢ and to the zero order in
time-derivatives of the velocity. If, however, one wishes
to consider the acceleration terms previously neglected in
the vector potential (5),2% and hence terms in the time-
derivative of the acceleration in the equations of motion,?*
there are two alternatives:

(1) To retain the time-derivative of the acceleration
explicitly in the equations of motion. Now, if these equa-
tions are to be derivable from a variational principle, the
“Lagrangian’’ must contain the accelerations explicitly.
This involves an action-at-a-distance particle mechanics
beyond the scope of the present canonical formalism, and,
consequently renders impossible the transition to quantum-
mechanics.

22 [t may be added that a description of nuclei in terms
of many-body interactions, or, more hypothetically, in
terms of an integrated field energy density is consistent
with the nuclear model proposed by Bohr.

28 A vector potential correct to the first order in v/c leads
immediately to the equations of motion (6), which are,
in turn, derivable from the two-body Lagrangian (9).

2t The “self-force” term in the equations of motion is
proportional to the time-derivative of the electron’s own
acceleration, and represents dissipation of its energy by
radiation. Naturally such “self-force’’ terms (along with all
other “self”’ terms) are beyond the scope of the mutual in-
teraction problem, whether or not, the mutual interactions
themselves are capable of Lagrangian-Hamiltonian descrip-
tion. This is formally indicated by the fact that the vector
potential-of the kth electron depends on the velocities,
accelerations, - -+, of the m—1 others. Thus the sum in
Eq. (5) is extended over all j except j=4.)
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(2) To express the accelerations and their time deriva-
tives in the equations of motion by means of the coordi-
nates and velocities of the particles. This can be done to a
first approximation by setting the acceleration equal to
the Coulomb force divided by the mass. If the resulting
equations of motion are to be the basis of a quantum-
mechanical treatment, they should be capable of reduction
to a Lagrangian, and hence, Hamiltonian form. If such a
reduction proves to be impossible, then the canonical
action-at-a-distance description of acceleration-retardation
effects must be renounced. On the other hand, if these
equations of motion can be deduced from a Lagrangian
and Hamiltonian, then additional many-body interactions
will be obtained.

A counterpart of the explicit appearance of accelerations
in the classical vector potential is the presence of particle
recoil energies in the energy denominators of the quantum
perturbation scheme involved in the elimination of the
quantized field variables. An attempt to consider the
effects of these recoil energies to a first approximation leads
to problems in connection with the canonical action-at-a-
distance description of the particles, similar to those
arising in classical theory from the acceleration-retardation
effects.

The questions raised in this addendum are being investi-
gated both for the electromagnetic and the mesotron field
theories, and it is intended to make a more detailed report
in the near future.

ArpENDIX I

To obtain a solution of (49), in the form of an
expansion in v/c it is simplest to make a Fourier
resolution of ® and p.

&(r, t)=f<1>y(r)ei”dv, (A1)
o )= [ pu(reiar (A2)
Substituting into (49),
1 v?
qu)v'_—'q)v'*_—'-@v: —47"Pv» (As)
R? c?
whence
exp (—«k|r—r'])
2,6 = [ s L PV
|r—1'|
with k=(1/R2—1»?/c%)}, (A5)
For

] c
-1, ris K&—,
c R
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for all p,(r) which contribute appreciably to

o(r, ). Expanding «, one obtains, ‘

exp[ —1/R(1—»*R2/2¢%)|r—1'| ]d ,
r

[r—1'|

8,0 = f o)

exp(—1/R|r—r’
~ fpy(!") p (—1/R] I)dr,
[r—r'|

R
+;fv2p,(r’) exp (—1/R|r—1'|)dr’ (A6)
c

and

—1/Rlr—71'
exp (—1/R|r rl)d

']

’

T

B(r, 1) = f )

R a?
— [ (G
2c? ag

~+terms of higher order in the time

|[r—r

exp (—1/R|r—r1'|)dr’

(AT)

derivatives of p.

For point sources located at r;({) and having
velocities, accelerations, v;(¢), a;(t),

o, 1) = Sgid(x' —1,(1))

and ®(r, t) becomes

exp (—1/R|r—r1;|)

®(r, ) =2 g;
i |r—r;]

2

R .
——> g—exp (—1/R|r—r;|)+terms
262§g’ o p (—=1/R[r—r;])

Vi a;

of higher order in —, —, etc.
c ¢

exp (—1/R|r—r;|)
= 2.8i

i |r—1;]

2c?
X (v;-grad.;) exp (—1/R|r—r,|)

2.gi(v;-grad.;)
7

+2¢i(a;-grad.;) exp (—1/R|r—1;[)

. Vi a;
+terms of higher order in —1, —], etc. (A8)
¢ ¢
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One may solve Eq. (50) for 4 in an entirely

similar manner. Thus:

At t)=zgv1exp (=1/R|r~1;|)
i C

|r—1;]
—1/R|r—r,
+Zv:‘><grad.i(exp( \riry!r i l))

R
+— {Z curly (v;-grad.;)
2¢% | 7

X(v;-grad.;)u;exp (—1/R[r—r;|)]
+ 3 curl; [(a;-grad.u; exp (—1/R|r—r1;{)]

du; )
+¥ curl, [di (vygrad) exp (<1/Rlx—zi) |
i 14

d*y; )
+>" curl; [—— exp (—1/er—r,-|)]j
i dt?

~+terms of higher order in

ArpENDIX II

To eliminate the variables a, from (67), in
order to obtain (70), one makes use of (62) and
(65). The latter two equations give: .

2281 (r)) —ds _ 2.i8i%s* (1) — ckogs

2

(A10)

Ay =
Vel Vo

The second expression for a,, is just the equation
div. E=4rp— (1/R*)® written in terms of the
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Fourier components as, ¢,. Substituting this
value for a, into (67), one obtains:

Vol

Ma,= {gk*[—grad.kzz
7 2

1 [
+_Zq‘¢7(—;~ grad-k q)v(rk) - Aﬂ(rk))]
c’ Vo

*

g . gr
——‘—;QpAp(l'k) +—vi X Curlk;QPAP(rk)
c c

+grad.k(gk* -curlqu,,Ap(rk))—{—c.c. } (A11)

From (59), (66)

ks
— grad., ®,(r;) — 4,(ry)
Vo .
k2 c
~ (S5t )t = . (A1)
Also,
®,*(r;)®,(r
(sz_l/R2)Z _.L)___(__’fz
I Vo
®,*(r;) (ko +1/R:) P, (1)
=—Z ! ; ’ =—47r6(rk—r,-).
’ Vo

‘1).,*(1']') P, (rk) e TkilR

2

Thus (A13)

¢ Vo (47

Substituting (A12) and (A13) into (Al1), gives
Eq. (70).



