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that determined by conduction is of the order
of 0.4 cm, and thus may certainly be neglected.

The calculations given above for C'3 are
based on the value a=0.0106 which is given by
Eq. (3). This equation is, however, only a rough

guess, albeit the best one possible. It may be
found by experiment that the actual values of
II and A for any given gas are distinctly different
from those calculated from values of o. given by
(3), perhaps by as much as a factor 2. In practice,
therefore, 1't will be necessary to do some pre-
liminary work to find the actual value of n. It is

suggested that this be done by running the
apparatus at a fairly high pressure. For instance,
in the example just discussed, the use of a
pressure of two atmospheres instead of one will

multiply II by 4, and divide A by approximately
4, so that the separation factor will be small,
but so will also be the equilibrium time. If one
now measures c1' as a function of the time, one
will obtain the values of both II and A. Either
one will yield the value of n, by (30), or by (31),

(32) and (33). We may now extrapolate A to
the desired value by changing the pressure, since
we know that H, A and X&/Z vary, respectively,
as the second, inverse second, and inverse fourth
power of the pressure.

Preliminary adjustments such as those just
described will of course be necessary only in the
first work on each gas. Once the correct value of
a is known from experiment, our equations
should make it possible to design apparatus
which will perform in acceptable agreement with
specifications.

One of us (L. O.) is indebted to Dr. G. Akerlof
and Dr. G. W. King of the Chemistry Depart-
ment, and to Dr. C. C. Furnas of the Chemical
Engineering Department of Yale University for
advice in regard to feasible construction and
operation of apparatus on laboratory and in-
dustrial scale. The others (W. H. F. and R. C. J.)
are grateful to Professor K. T. Bainbridge and
Dr. R. Sherr of the Physics Department of
Harvard University for interesting and helpful
conversations.
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N RECENT articles' an explicit and calculable
~ - expression has been derived for the second
virial coefficient of a monatomic gas. This is the
8 in the equation of state,

pU/RT=(1+B(T)/U+C(T)/V'+ )

and, assuming the Einstein-Bose statistics, is
given by the formula,
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' E, Beth and G. E. Uhlenbeck, Physica 4, 915 (1937);

L. Gropper, Phys. Rev. 51, 1108 (1937).

Here, X'= kp/mkT, ri~ is the phase found from the
wave equation for the relative motion of two
radially interacting molecules,

d'v p m l(l+1) p

+i kp' ——ao'V ]v=0.
dp' E. 52 p2

koo(q, l) are the discrete states for two such
molecules, ao is the Bohr radius, and V is the
interaction potential between the two molecules.

Extensive calculations have recently been
made with formula (1) by Massey and Bucking-
ham' on the inert gases, in particular, helium.
These calculations are based on the use of the
Slater-Kirkwood potential for the calculation of

2 H. S. W. Massey, and R. A. Buckingham, Proc. Roy,
Soc. 168, 378 (1938).
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TABLE I. Companson of analytical values of y0
with those found by numerical intef, ration.

ko

0,1
0.02
0

ANALYTICAL kp

—1.76
+1.66
+2 ~ 78

NUMERICAL qo

—1.8212
+1.6480
+2.7816

)0.68 5.37 28.4i
V= 7.7e '"'—

~
+ + ( X10 "erg

E p6 pip p

with an expression a/p' b for sm—all values of p

down to p=0. The reason for this choice of
joining-on function is that it leads to Bessel
functions for the solution of the wave equation,
and these are tabulated. This joining on process
could not appreciably alter the results, for the
energies considered in the integral of (1) were

' Van Itterbeek, Leiden Comm, , Supp. 70C (1932).
4 H. Margenau, Phys. Rev. 38, 742 (1931).

the phases for helium. In this paper we use the
Slater-Margenau potential, which presumably
takes into account all the more important Van
der Waals' forces.

To compare (1) with the experimental values
at low temperatures it is advisable to consider
the case of helium because: 1. extensive low

temperature measurements have been made with
helium; 2. helium remains a monatomic gas
down to the lowest temperatures (T=4'K);
3. the statistical wave-length of the helium
molecule, X=(SP/mZT)', is relatively large be-
cause the mass is so small, and the larger the
wave-length the more pronounced should be the
quantum effect; 4. the potential between two
helium molecules has been theoretically calcu-
lated, so that, in principle at least, one should
be able to deduce the experimental results solely
from theory.

A comparison of (1) was made for the case of
the lowest temperature for which 8 has been
determined; namely, T=3.708'K. At this tern
perature the experimental value of 8 for a cubic
centimeter of helium is, —4.17)&10 ' cc ' so that
for a mole 8= —93.6 cc.

The phases q& were calculated by using the
Slater-Margenau potential' in the region where
V is presumed to be valid, and joining

very small, and over this region of small energies
V and a/p' bp—ractically coincided.

Before discussing the contribution to (1) from
the 1=0 term we shall investigate how many
terms of the sum on l must be taken along at
the lowest temperatures (T=4'K). For suffi-
ciently low temperatures the integrand in (1)
will be appreciable only for very small ko say,
Xko/ap —1, because of the presence of the expo-
nential. But for small ko and sufficiently large l
the distance of closest approach will be well

beyond the point where the potential is appre-
ciably different from zero. Hence the phase
shifts will be zero for such values of l. The
question is what is meant by sufficiently large l?
It was found that already for l=4, the distance
of closest approach for an energy such that
Xko/ap=1 was p=14.8, far beyond the point
where V is appreciably different from zero. For
values of kp such tllat Xkp/ap(1 the distance of
closest approach will be still farther out. And
for values of kp such 'tllat Xkp/ap) 1 the integrand
in (1) rapidly diminishes because of the expo-
nential. Hence the phases for l=4, 6, etc. at the
low temperature T=3.708'K may be neglected.

On the other hand, the phases for /= 2 are not
negligible. This can be understood if one plots
(ao'm U/ko+l(1+ 1)/po) for l= 2. One 6nds a very
low broad maximum, 0.05. For all ko2~0. 05 the
molecule will pass over the hump into the
potential field, and one should expect consider-
able positive phase shift when one realizes that
the depth of aoom V/k' is very large compa, red to
this energy; namely, it is 0.36 as compared to
ko'=0. 05. Further, since values of ko2 consider-
ably larger than 0.05 may be allowed before the
exponential in (1) is negligible, one might then
expect, qualitatively, that the contribution for
l=2 is considerable. As a matter of fact it
amounts to —91.3 at T=3.708'K. This result
was obtained by first integrating (1) by parts.
One gets for /=2

—40pr~XPÃ[qp exp (—X'koo/aoo) jo"

—40m&) 'X exp —X2ko' o' kog2dko
~o o

2

Now sp(0) =0 since there is no penetration as
kp—+0. Hence the integrated part of (1) vanishes.
The remainder of (1) was evaluated by trape-
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zoidal integration. with the help of the following
calculated phases

0.849 0.583
0.4 0.5

0 0.163 0.300
~p 0 02

0.560
0.3

Since the integration was carried out with such
a few phases, a partial test of the error made
through trapezoidal integration was carried out
by employing parabolic integration. There was
only about one percent difference in the results.

We return to the contribution for /= 0 and a
discussion of the discrete states. It was found
that the Slater-Margenau potential was just deep
enough to accommodate one discrete level
(n=p, l=p) k02=0.0051. This discrete contribu-
tion came to —148 cc.

For the continuous contribution with 1=0, the
phases were calculated analytically, as well as
numerically, by passing a Morse potential very
accurately through the Slater-Margenau poten-
tial. This analytic expression for the phases is
rather complicated and is the form of an infinite
series, which, however, is rapidly convergent for
small ko. In any case the numerical and analytic
values were almost identical. The important
range of values of ko was between zero and about
two-thirds. Above that the factor exp ( —X'kP/ao')
cuts out the contribution to the integral. In
Table I some. analytic values of qo are compared
with those found by numerical integration. This

table includes the extremes of the range. Enough
values of gp were found to make the integration
of (1) after first integrating by parts and noting
that qo(0) = m. This gave a contribution of +125.
This together with the contributions from the
l =2 term, the discrete term, and the pure Bose
term, the net result for the second virial coeffi-
cient at T=3.708'K was found to be 8= —123.
Comparing this with the experimental result
—93.6, one sees that there is about a thirty
percent discrepancy. Since we estimate the
numerical work to be within an error of 10
percent it is clear that the potential must be
altered.

It is necessary to decrease either. the depth or
the range or both. This would have the double
effect of raising towards zero the discrete energy
and decreasing the positive phases. Both effects
mould contribute to making the virial coefficient
less negative. While one cannot make quantita-
tive statements about the potential one can,
however, now set certain limitations on it. It
must lie somewhere between the Slater-Kirk-
wood potential which gives a smalIer well, and
the Slater-Margenau potential. It cannot be
smaller than the former, for the former does not
take into account all the Van der Waals' forces,
And it cannot be larger than the latter, since
the latter already gives too large a negative
virtual coefficient.


