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We here develop the theory of the processes in an appa-
ratus with two concentric tubes, such as that used by
Brewer and Bramley. In the first section we describe the
process of thermal diffusion in general, and review the
theoretical information on the subject. In Section II we set
up the equations for the convection and di8'usion processes,
and obtain an expression for the net transport of a single
isotope which is valid for arbitrary macroscopic properties
of the gas. The assumption that the viscosity and heat
conductivity of a gas are proportional to the absolute
temperature is usually a good approximation; in this case
the expression reduces to a simple form. In Section III

we apply the transport equation to questions of separation
factor and speed of operation. This is done both for the case
of discontinuous operation, in which the approach to
equilibrium is allowed to reach a certain stage and then the
contents of an end-reservoir are removed, and for the case
of operation with a continuous flow of gas through the tube.
The advantages of the two methods are compared. In the
last section we apply the formulas to a numerical example:
the concentration of the C'3 isotope by the use of methane,
in an apparatus of moderate dimensions and power
consumption.

I. INTRQDUcTIQN

ECENTLY Clusius and Dickel, ' and subse-
quently Brewer and Bramley, ' have re-

ported the results of experimental work on the
separation of isotopes by thermal diffusion. Their
results suggest that this may become an im-
portant method. In this paper we discuss
theoretically the problem of applying the process
of thermal diffusion to isotope separation.

The phenomenon of thermal diffusion consists
in the fact that a temperature gradient in a
mixture of two gases gives rise to a gradient of
the relative concentration of the two constitu-
ents. If the mixture as a whole is at rest, the
equilibrium concentration gradient is such that
the effect of thermal diffusion is just matched by
the opposing effect of ordinary diffusion. The
effect is by no means small; in some cases the
coefficient of thermal diffusion may be as much as
half of the ordinary coefficient. ' A similar phe-
nomenon is known in the case of liquids, where it.

is known as the Soret effect;4 the theoretical
explanation of the Soret effect has been signally
unsuccessful. '

' K. Clusius and G. Dickel, Naturwiss. 26, 546 (1938).
'A. K. Brewer and A. Bramley, Phys. Rev. 55, 590A.

. (1939).
3 S. Chapman, Phil. Trans. A217, 184 (1917).
4 Ludwig, Wien. Akad. Ber. 20, 539 (1856};Soret, Ann.

Chim. Phys. 22, 293 (1881).
~ Wereide, Ann. de physique 2, 67 (1914);Porter, Trans.

Faraday Soc. 23, 314 (1927)~ Also see comment by Chap-
man, Phil. Mag. 7, 1 (1929).
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No simple theory can give an account of
thermal diffusion; neither its existence nor its
sign can be derived from elementary consider-
ations. ' Its presence can be understood only by a
detailed consideration of the equa'. i,ons of trans-
port in a gas. The phenomenon was ~.mpletely
overlooked by the classic workers in kin~tie
theory; it was first discovered theoretically by
Enskog'in 1911,and independentlyby Chapman'
six years later, and first demonstrated experi-
mentally by Chapman and Dootson' in 1917.

The theory was fully and elegantly developed
by Enskog, "and Chapman. ' The more accessible
treatment of Chapman is, however, unfortu-
nately invalid because of algebraic errors. "
Chapman's corrected result" may be shown to be
identical with the result of Enskog. It is the
result obtained by Enskog in his doctoral disser-
tation that is given in the well-known textbook of
M 011er-Pouillets. "

'S. Chapman, reference 5.
~ D. Enskog, Physik. Zeits. 12, 56 and 533 (1911).' Reference 3, p. 115.
'S. Chapman and .F. W. Dootson, Phil. Mag. 33, 248

{1917);for a complete list of the experimental literature on
thermal diffusion, see T. L. Ibbs, Physica 4, 1133 (1937)."D. Enskog, Doctoral Dissertation, Upsala, 1917,
published by Almqvist and Wiksells."D. Enskog, Arkiv. f. Mat. , Astron. , o. Fysik 16, No.
16 {1921)."S.Chapman and W. Hainsworth, Phil. Mag. 48, 593
(1924); the presentation of the value of Dz in this paper
does not become complete until it is stated that the matrix
a;; is symmetrical.

"Miiller-Pouillets, Lehrbuch der Physik, eleventh edi-
tion, Vol. 3, Part 2, p. 110.
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The coefficient of thermal diffusion vanishes
for Maxwellian molecules (moiecules which
interact with a force which varies as the inverse
fifth power of the separation). For molecules such
that the force varies as an inverse power of the
separation which is greater than five, the direc-
tion of the diffusion is such that the lighter
molecules move toward the warmer part of the
gas, in general, while for an inverse power less
than five, the lighter molecules accumulate in the
colder part of- the gas. A general result of the
theory is that the coefficient vanishes when the
mode of interaction, the radii, and the masses of
the two sets of molecules, are all equal this fact
is also obvious from symmetry.

Even to the first approximation (the result
comes out a.s an infinite determinant), the coeffi-
cient of thermal diffusion can be stated in closed
form only for the case of rigid elastic spheres, in
which case the effect is greatest. The experiments
show a coefficient which is in general something
less than half of the value predicted for elastic
spheres.

The equation of diffusion, with thermal diffu-
sion included, is

ci(vi —v) = —Di2 grad. c,+(Dz/T) grad. T, (1)

where ci is the relative particle density of the
lighter constituent, with c~+c2——1; vi is the
convection velocity of the lighter constituent
alone, while v is the convection velocity of the gas
as a whole (v= civi+c2v~); Di2 is the coeKcient of
ordinary diffusion, which in the case of isotopes
may be replaced by D, the coefficient of self-
diffusion, and D& is the previously mentioned
coefficient of thermal diffusion; T is the absolute
temperature. In the corresponding equation for
c2, the Dy term has the opposite sign.

It can be shown rigorously, for the case of hard
spheres, that the ratio D&/D» k& depends only-—
on the relative concentrations and on microscopic
quantities, but not on the pressure or tempera-
ture. It is reasonable to suppose that for actual
molecules this ratio does not vary with pressure
or temperature to any significant extent.

For the separation of isotopes, we are inter-
ested in the case when the two sets of molecules
in question are chemically identical, and differ
only in mass. In this case, the expression for kz

becomes greatly simplified, because the modes of

interaction and the radii of the two constituent
molecules are then the same, since these prop-
erties are completely determined by the electronic
configuration. For this special case, Enskog's
result reduces to'

Dr/D =kr ——acic2,

where a= (105/118) (m2 —mi)/(m2+mi), the m's

being the relative masses of the two types of
molecules. It is to be remembered that number 1
is the lighter species. This expression is the first
approximation for the case of elastic spheres, in
which furthermore we have retained only terms
of the first order in (m2 —mi)/(mm+mi).

The experimental determinations of kz for the
case of dissimilar molecules yield values some-
what less than half of the theoretical result for
elastic spheres. ' Until experiment yields us
values for k~ in the case of isotopes, therefore, we

suggest that

n = 0.35(m2 —mi)/(m2+mi) (3)

be used as a provisional value in the design of
apparatus. The exact vaIue of the numerical
coefficient will vary from moIecule to molecule,
because of the different modes of interaction.

When values for k~ in the case of isotopes are
determined experimentally, they may lead to
valuable conclusions about the nature of the
intermolecular forces in the gas in question.
Thermal diffusion should be an excellent way to
obtain this information, because it is one of the
few phenomena in a gas that depend essentially
on the peculiar characteristics of the molecules. '~

The knowledge of kT for the case of isotopes is
particularly valuable, because in this case there
is no mixing of the characteristics of two dis-
similar molecules.

The use of thermal diffusion for separating
isotopes was first suggested by Chapman. " Its
use was discussed by Mulliken, '" on the basis of
Chapman's first treatment. Mulliken concluded
that it could not compete with other methods,

'4 S. Chapman's earlier expression (reference 16) was

17 f82 —m1 C1cg
~ kT ———

3 m2+m19. 15—8.25 c1c2

'& S. Chapman, reference 3, p. 181; J. H. Jeans, Dy-
numicul Theory of Guses, fourth edition (Cambridge, 1925),
p. 325."S.Chapman, Phil. Mag. 38, 182 (1919)."R.S. Mulliken, J. Am. Chem. Soc. 44, 1033 (1922).
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but he did not consider the very effective method
of fractionation employed by Clusius and
Dickel. '

Clusius and Dickel ran a heated wire up the
axis of a long vertical hollow tube, into which was

put the gas whose isotopic constituents were to
be separated. The combination of the effect of
thermal diffusion and of the convection currents
set up in the tube is such as to increase greatly
the rather small separation caused directly by
the radial temperature gradient. The light
isotope collects at the top, while the heavier
isotope goes to the bottom of the tube, as we
shall discuss in detail in the next section.

The procedure of Brewer and Bramley' was
very similar. They used two concentric tubes, of
one and two centimeters diameter. The inner
tube was heated.

In the following two sections we examine
quantitatively what is occurring in this new
method of separating isotopes. We find it possible
to set up formulae showing the dependence of the
performance characteristics on the dimensions of
the apparatus, the temperature, the density, etc.
These results should be useful in designing
apparatus for isotope separation by this method.

II. THE CQNvEcTIQN FIELD AND THE

TRANSPORT EQUATION

Description of apparatus and notation

The apparatus is supposed to consist of two
concentric cylinders, the inner one heated and
the outer one cooled, mounted in a vertical
position, with reservoirs at the top and bottom
communicating with the annular space between
the cylinders, where convection and diffusion
take place. The difference of the radii may be
supposed small compared with either radius, so
that we may proceed as if the convection were
taking place in a thin flat slab, of breadth 8 equal
to the mean circumference of the cylinders,
thickness 2m equal to the difference of the radii,
and length 2l, the length of the tube.

In addition to the notation already introduced,
we shall use the following: 1», T2 ——absolute tem-
perature of the outer, inner tube; AT= 12—T»',
x= radial coordinate, —m'(x(m; s= coordinate
along the tube, —l(,.(l; c=specific heat at
constant pressure, in cal. /gram-deg. ; Q=heat

flow, in cal. ,/'cm'-sec. ; ) =thermal conductivity,
in cal. /cm-deg. -sec. ; p= pressure; g =viscosity;
p =density; g = acceleration of gravity; J&, Jm
= flux of species 1, 2 in grams/cm'-sec. ; r =total
upward transport, in grams/sec. ; rq, r2 u—p—ward
transport of species 1, 2, in grams/sec. r= r~+r2,
c»' ——value of c» in the bottom reservoir; c»' ——value
of c» in the top reservoir; I~:, =equilibrium value
of c»' with r=0; a„=a specified value of c»',
m ~

——mass of gas in the top reservoir; and
t„=relaxation time of the equilibrium. In all
considerations subsequent to Eq. (29), the tem-
perature dependent quantities are to be evaluated
at the average temperature, ~ (T2+ T~).

General treatment of the convection and diffu-
sion field

Throughout this section and the next it will be
assumed that it is the lighter isotope, species 1,
which one is interested in concentrating. The
considerations will be completely symmetrical in

respect to the interchange of 1 and 2, however, if
we understand that the vertical coordinate
changes sign when we apply our equations to the
concentration of a heavy isotope —that is, c»'

becomes the concentration c~' in the top reservoir,
while the small collecting reservoir would be at
the bottom; and so on, in an obvious manner.

In the immediately following presentation, we
shall develop a mathematical description of the
convection and diffusion processes in the tube,
and derive the fundamental relations which yield
the transport of species 1 along the tube. Having
obtained these relations, we then proceed in the
next section to determine the behavior of the
apparatus in the large: to find what separation
factors can be obtained, and at what speed a
mixture of given concentration may be produced.

We shall calculate the convection by using the
temperature distribution as determined by con-
duction only. Near each end of the tube, where
gas at a different temperature is entering, the
temperature distribution is of course different.
On the basis of the treatment of the convection
problem given below, one finds that the length
over which this difference remains appreciable is
of the order of

f,= (w'cg p'/48rIX) (T2 T&)/(T2+ Tl) q (4)—
where here as in (5) the temperature dependent
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quantities p, q, ) are evaluated at the average
temperature (T2+T~)/2. Our neglect of these
regions depends on the condition 2l„«2/, which
will usually be strongly satisfied in practice.

The treatment of the convection flow as
lamellar is justified, since the Reynolds number
may be shown to be roughly

(~'gp'/24'')(T2 —Ti)/(T2+ i), ( )

which in practical cases will be very much
smaller than the values at which turbulence
occurs in flow through tubes or between plates.

In the region of the tube where the tempera-
ture gradient is determined by conduction alone,
we have

We shall base our calculation of the transport
of species 1 through the tube on the assumption
that the time variation of the concentration c~

at each point in the tube is negligible —that is,
that the condition is either stationary or quasi-
stationary. A stationary condition exists at final
equilibrium in a closed apparatus, and also when
there is a uniform output of the concentrated
isotope. During the approach to equilibrium the
condition will be essentially stationary provided
each end-reservoir is sufficiently large. The
volume of each reservoir must be larger than
that of a length of tube in which the equilibrium
concentration changes by a factor e.

Accordingly we proceed from the equations

Q=) dT/dx,

T2

2wg fld=T
Tl

B/» = (Q/~) (B!BT).

(6)

div. Ji=dtv. J2=0.

Eq. (10) then gives, on application of (6),

(B!BT)(pD/&) [(B~i/BT) —(~~i~n!T)g
= (&p/Q') [s(Bc,/Bs) —D(B'c,/Bs') ). (12)

We shall neglect the dependence of ) on the
concentration c~ and also the dependence on c~ of
p, q, and D. These dependences are not large
when the fractional difference of molecular
weight is small. Moreover, only transverse diEer-
ences have any significant effect on the per-
formance, and the transverse difference of con-
centration is very small. Thus only the tempera-
ture dependences of the various quantities is of
any importance.

The hydrodynamical equation of steady, vis-
cous How is

The term containing (B'c~/Bs') is the one that
introduces the eRect of longitudinal diffusion.
The retention of this term would make it
impossible to carry out the analysis in any
simple manner. Since the effect of diffusion along
the tube can be calculated separately quite
accurately, we shall omit the term in question,
and calculate from

(B/BT) (pD/) ) [(Bc~/BT) —(ac,c2/T) j
= (l p/P) v(Bc,/Bs). (12 )

We now introduce a function G(s, T) defined by

(Bc)/Bs)G(s, T) = —(XQ'/pD) J'„
div. v grad. v=grad. p —pg.

We assume that the velocity is entirely in the
vertical direction, and that it is independent of z;
this is a very close approximation since the
pressure variation within the tube is negligible.
Then we have from (6) and (7)

(Q'/&) (did T) (v/1 ) (d&/d T) = (dP/d-)+ pg (g)

with the boundary conditions

v(T)) = v(T2) =0. (9)

By (1), the equation for the flux of species 1 is

Jq = p[vc~+D( —grad. cq+ucqc2 grad. ln T)j, (10)

and a corresponding equation holds for J2.

=Q'[(Bc,/BT) —(nc,cm/T)]. (13b)

Then from (12'),

(B/BT) (pD/), ) (Bcq/Bs)G(s, T)
=XpQ'v(Bc /Bs). (14)

Fr'om this point on we shall assume that the
dependence of Bc~/Bs on T can be neglected.
This is equivalent to assuming that Bcq/BT is
independent of z, which is physically reasonable
for a quasi-stationary condition. We shall at
once establish two important consequences of
this assumption: First, the total transport
through the tube is zero; second, G is a function
of 1only.
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Since div. Ji is zero, the flow of species 1 must
be constant along the tube —that is,

v j =8 pc,vdx =constant,

proceed to obtain an expression for the transport
of a single isotope along the tube,

According to (1S) and (18) the net vertical
transport of species 1 is

, = (8/Q)f Xpc vdT,

(dri/dz) = (Bci/Bz)(B/Q) 7 pvdT
+1

= {Bci/Bz) ~ r =0.

(15)

Partial integration and substitution from (13b)
and {21)lead to the expression

ri =Hcicn —XBci/Bz, (23)

where II and X are positive constants de6ned by
Then since Bci/Bs is not identically zero, r, the
total transport, must vanish.

By (13a), we have

G(s, Ti) =G(s, Tg) =0

since JI, must vanish at the walls. The factor
(Bci/Bs) on each side of (14) cancels, and since
the only remaining quantity that can be a
function of s is G(s, T), one finds, on integrating
(14) that (pD/X)G can depend on s only through
an additive function of s. Then, since (16) hold
identically in s, we have

G(s, T) =G(T). (17)

We have now, canceling the Bci/Bs i'n (14), and
solving for v,

s(T) = (1/7 pQ')(did T)(pDG(T)!&) {18)

Then from (18) and (16),

G'{Ti)=G'(T~) =o. (19)

If we now substitute (18) in (8), and differentiate
with respect to 1, we obtain as the differential
equation for G(T)

d 1 d g d 1 d f pD q dp
G(T) ( =g (2o)

dTX dTX dTXp dT ( X ~ dT

with the boundary conditions

G(Ti) =G(TI) =G'(Ti) =G'(Tg) =0. (21)

By the calculation of this single function one
vas, by (18), a complete description of the con-
vection process; and, within the limits of our ap-
proximations, one has, by (13), a description of
the transverse diffusion, both thermal and ordi-
nary. By the use of this same function we can

T2

II= —(8/Q') (pDn/XT) G(T)d T (24)
Ti

T2

~=(WQ)
~1

rid = Eg Bci/Bz,

r2

&~=(&/Q) " 7pDdT
+1

(26)

We have removed t."Ice from under the integral
sign of (24), because cicq varies only slightly with
T. We could not consider ci as constant in (22),
however, because it is only the slight variation of
cI which prevents this integral from vanishing.

In Eq. (23) the term Hc&cn gives the transport
of species 1 caused by the existence, due to
thermal diffusion, of a transverse How of this
isotope, which makes the concentration in the
column of gas moving upward differ from that in
the column moving downward. At the beginning
of the process, when Bci/Bs=0, this is the only
cause of transport. After a longitudinal concen-
tration gradient has been built up, the convection
currents lead to a certain amount of remixing of
the gas, represented by the term —ZBci/Bs.
There is, however, another remixing effect which
is not included in Eq. (23), because in replacing
(12) by (12') we omitted the term which corre-
sponds to diffusion along the tube. Since the
convection velocity will be small, however, the
longitudinal diffusion will be practically inde-
pendent of it. If we ignore the convection
velocity, the transport of species 1 due to
longitudinal diffusion is
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The total transport of species 1 is obtained by f(AT/T) =30T'(AT) 'I(DT)'/6 —TqT&

+(TgT2)'(TAT) ' ln (Tg/Tg) }
Specialization to the Maxwellian case

The treatment so far has been general, in the
sense that the quantities D, ) and y might have
an arbitrary temperature dependence. If, how-

ever, the mean free path varies as the (e——',)th
power of the temperature, and if c„is independent.
of 1, the following quantities should all be
constant:

(~/T"), (l/T"), (.D/T"); (~/7), (pD/7).

Then (20) becomes

(d/dT) T—n($2/dT2) 7 I—n(dG/dT)

= 15+p(hT/2T) "/ I (2k+1)(2k+3)

X (2k+5) }

=1+(15/3 5 7)(AT/2T)'+

f(AT/T) has the value unity for AT= 0, and the
value 5/4 for the extreme case Tq/Tm ——0, and lies
between these two values for intermediate cases.
For Ta = 2T~, f= 1.016, while for T2 3T~, ——
f= 1.039.

From (25) and (29), we have

2 =II/2K= (63/4)

X I ( sD)/(pg~') }f(~T/T) (31)

= —7 2($4pg)/(DDT» —2). (27) and (26) gives

The general solution of (27) has been obtained,
and there appears to be no bar to the explicit
evaluation of H and E in this manner, The
formulae would be awkward in practice, however,
because of heavy cancellation of terms. The
writers have worked out the cases of m =-', (hard
spheres) and I= 1 (Maxwellian molecules). Since
the case n= j. is much simpler than any other,
and corresponds fairly well to the temperature
dependence of the properties of most gases, we

suggest that the formulas for this case be used in

practice. This simplification is particularly well

justified because our knowledge of the all-

important factor a itself is so inexact.
For n=1, integration of (27) and application

of (21) gives

G(T) = —
I (&'g p) /(2«D) }

X(T2 T) (Tl T) /(T2+Tl) (28)

and (6) becomes

w =)AT/2Q, (29)

where in this and all following formulae, p, D, ), g
and T are to be evaluated at T=~(T2+Tq). If
(28) and (29) are used in (24), the result is

II= I (n 'p'~a&)/(908) }(~T/T) 'f(~T/T) (30)

where

Kg/K= 1890(Tg'+ TgTg+ T2')

X IDs/(rp'pg&T) }' (32).

The corresponding relations for a gas consisting of hard

spheres follow:

Ke introduce the abbreviations:

t = T~, t1 ——T&~, t» ——T»~,

r = (t,—t,)/(t, +t,),
S(t) = (2t —t» —t1)/(t» —t,).

Then we find

G(t') = —I(~'AT) j(»~D) I(t.-t )'I ~-(~(t))'I'
X I(6—2r») {3+re(t))»—(3+r»)» I (3+r»)- {5—r»)-,

m = I) /(3QT&) I (t»3 —t13),

H = I (4n)Pp»g T)/(3Q3g) I

X I(»-t1)'/(t»+t1) (3+")(5—")I4 (r)

y(r) = i —r»/5 —(30+2r»)
X Ir»/(1 3 5 7)+r4/(3 5 ~ 7 9)+ ~ ~

4(0) = &, 0(&) =4/9,

Z = I (&OX7g»T»pa) j(63Q»»D) I

X I (t» —t1)9(t»+t1)/(3+r')'(5 —r')'I y(r),

rp(r) = 1—(692/825) r»+ (146/2475) r4

+(4/75)r'+ (13/7425) r',
&(0) = r, &(&) = (2044/7425),

xg= I ()LpD)/(2QT) I (t —t 4).

In some cases the ratio (32) will be quite
small, so that (23) gives essentially the total
transport. For example, with fixed dimensions of
apparatus this will be true provided the pressure
is suSciently high ((p/D) ~ (pressure)'). For the
sake of simplicity we shall proceed with most of



ISOT'OPE SEPARATION B Y THERMAL DIFFUSION 1089

our considerations on the assumption that this
condition (XA/E) «1, is satisfied. In cases where
this is not true, it is only necessary to replace A in
the following by

AA ——A/{1+(EA/K) '}. (33)

III. SEPARATIQN FAcTQR AND SPEED
oF OPERATIoN

Discontinuous operation

We shall now apply the results we have just
derived to the case of discontinmous operation, by
which is meant that one waits until the upper
reservoir has approached its equilibrium concen-
tration, and then removes all of its contents, and
starts over again. It is assumed that the reservoir
is closed off from the tube during the removal of
the gas; otherwise the mixing with gas drawn in
from the tube would make it impossible to obtain
the concentrations and amounts calculated here.

Our fundamental equation for these calcu-
lations is that for the total transport of species 1

up the tube. By (23) and (31) we have

ci(l) =ci' we have now

ci' ——pi —(q/2) {g tanh 2qrit —qp}/
X {gp tanh 2gAI —g}, (40)

where go= 1 —2cI'.
In practice, it will be advantageous to make

the lower reservoir sufficiently large that c&' does
not drop appreciably during the separation, since
if it should drop, one would not realize all of the
separation factor. If the reservoir is sufficiently
1arge, then, c~ is also the initial concentration of
species 1. The constancy of c&' may often be
secured more conveniently by maintaining a
continuous How through the bottom reservoir.
The quantity go is then constant and equal to the
initial value of g, and the equation for the time
rate of change of cI' is

(dci'/dt) = ri/nti.

Let t(ii,) be the time for the concentration of the
top reservoir to rise from. its initial value cI' to
some required value i~„. The integral of (41) may
then be expressed as

ri ——H{ci(1—ci) —(2A) '(dci/ds) }. (34).
Kr

t(a„) =nti dci'/ri
ci

(42)

At the final equilibrium, when the concen-
tration in the top reservoir has ceased to increase,
ri 0, and th——e solution of (34) is

ci(s) =-', {1+tanh A(s —sp) }, (33)

where so is determined by the condition that the
total quantity of species '1 is conserved. If we set

The integral must be done numerically or
graphically, by calculating ci' from (40) for
several values of r~.

In many cases, however, a close approximation
can be used, which eliminates the necessity of
numerical integration. We note that

ci(—I) =ciP; ci(l) =ii„ (36) ci(1—ci) =ci(1—2ci') + (ci') —(ci —ci') (43)

we find for the equilibrium separation factor:

(i~,/ci') (1—ci') /(1 —i~,) =e'"'. (37)

If a, is small with respect to unity, this becomes

(ii /c p) ~e4Al (38)

where

ci(s) =-,'{1+gtanh gA(s —sp) },

g = (1 4ri/H) '*. —
(39)

Under the boundary conditions ci (—I) =ci',

When ri is not zero, but has some constant
value —that is, before the final equilibrium has
been established —the solution of (34) is

where c&' is arbitrary. If x„differs from c&' by
only a small amount, say not more than 0.2 or
0.3, one can select a value of ci' and a constant
to replace the last term in (43) in such a way
that the resulting linear expression is a good
approximation to ci(1—ci) throughout the range
in question. If in (34) the quantity ci(1—ci) is
replaced by such a linear approximation, then
(34) and (41) can be integrated explicitly, and
the formula for ci' so obtained represents a
simple exponential approach to equilibrium,
which can be characterized by a relaxation time.
This gives us a useful way to describe the speed
of operation for cases in which a linear:approxi-
mation to (43) is valid. In the case that the
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There are several special cases of (44) worth
mentioning: If c& is always small compared to
unity,

t„=(m,/H) (e4"' 1). — (45)

If the separation factor, which is e4"' in this
case, is much larger than one, we see that the
relaxation time is directly proportional to the
separation factor.

If, however, we are working in the middle
region, where both c~' and ~, are approximately
one-half,

t, -=4Alm(/H; (46)

while if cj is always close to unity,

t„—:(m~/H) (1—e—4"'). (47)

It may perhaps be possible in practice to
reduce the equilibrium time to some extent by
a suitable variation of the pressure during
operation. From (30) and (31) we see that H
and X vary, respectively, as the second and
fourth powers of the pressure. According to (23)
the transport of species 1 is determined essenti-
ally by H during the early part of the separation
process, while Bc&/c&s is still small. Thus a high
pressure at the beginning increases the transport.
In order to reach a large concentration gradient
finally, the pressure must be reduced again.
By proper manipulation a considerable advan-
tage might be obtained. Such a procedure,
however, meets a considerable technical diffi-

culty, since the volume of the upper reservoir
would have to be varied along with the pressure
in order to prevent the loss of a great deal of
gas down the tube.

range of c~ is larger than about 0.3, the approach
to equilibrium is of a more complicated type,
which can not be characterized even approxi-
mately by a relaxation time.

A suitable value for c~' is the mean value of
c~ and x„. In the present case, the constant
value inserted in place of (cq —cq')' will not
appear in the relaxation time; then by the
procedure outlined, we find a relaxation time
(time for c~' —c&0 to rise to 1 —e ' of its equi-
librium value):

t, = (m, /H) I
e4"'&' "~'& —1}/(1 —2c&'). (44)

n= /H. (49)

We shall treat only the equilibrium case, where
c~' has a constant value, z„. There is little value
in treating the approach to the new equilibrium,
because the apparatus presumably would be
operated with v=0 until c~' rose to the value
intended for continuous operation. Then we
have r&'/r = e„and therefore

(50)

Continuous operation

So far we have been discussing operation with
no total transport of gas through the tube.
In such operation the concentrated material is
obtained by waiting until the approach to
equilibrium has reached a certain stage, and then
removing the contents of the top reservoir.
There is also available a continuous type of
operation, in which a small steady How of gas is
removed from the top of the apparatus, so that
there is a small total transport of gas along
the tube.

The convection field with which we have been
calculating, which is described by the function
G(T), provides no total transport along the tube.
Because of the linearity of the hydrodynamical
equation, however, we can superpose on the
convection field an unidirectional velocity field

corresponding to a very small additional pressure
difference. Since the additional velocity field is
unidirectional and c& varies only very slightly
across the tube, we can omit all discussion of
the details of the new field and the distribution
of c& across the tube; we simply write for the
transport of species 1 due to the new field the
product of the mean value of c~ at the given
position along the tube and the total transport
of gas. The total transport of species 1 is then

7 ] —7 1+Tcy)
=FIc&c& —E(dc&/de) +rc&,

where 7~' is now constant along the tube. The
quantities H and X may still be taken as defined

by (30) and (31), since, with attainable speeds
of operation, the velocities in the superposed
unidirectional field will in practice be extremely
small.

As before we introduce A =K/2X, and as a
convenient dimensionless parameter,
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The differential equation for cI is now

{ —cP+(1+n)c4 —n4, } 'dc~ ——2Ade, (51)

of values of perhaps 0.3 to 0.7, we can replace

whose solution is
(a„—cP) =-(1—e—'""')/4n (56)

where

c((s) = -', {1+n+g' tanh q'A (s'—sp) }, (52)

g' = {(1+n)' —4n~, }4.

When (1—c4) remains fairly small, we can
replace c~cp by 1 —c4 in (48), and obtain

(1—c,o)/(1 —g„) =(e'" &'-" —n)/(1 —n). (57)

Eliminating sp by the condition c4( —l) =c~',
c,(I) =44, we find

tanh 2g'Al =g'(a, —cP) {(1 n) r,„—
+(1+n)c ' 214 c—'}—' . (53)

This rather formidable equation gives the im-
portant relation between v and f(:,. It must be
solved in any given case by successive approxi-
mations. The procedure may usually be based
on the assumption that n is small, since only for
small values of n can a large separation factor
be realized. If, for example, one replaces q' by
unity in the left number, and by the linear
approximation 1+n(1—214„) in the right member,
one obtains as a erst approximation

nt'& = {(14,+c~' 2~„c&')—tanh 2AI —(I4„—c4P) }

X(a,—cP) '(1+tanh 2A/ —214,) '. (54)

The quantity g' can then- be calculated with the
value n&" for n, and (53) can then be solved for
the second approximation n&'&, and so on. This
particular procedure converges well if cI' is
small, but fails entirely if c~ &» 2.

For cases in which the range of values of ci
to be covered is small, one can simplify the
analysis by replacing cqcp in (48) by a linear
expression in ci, just as was done in obtaining
Eqs. (44)—(47) for discontinuous operation. In
the present case the resulting formula involves
the parameters of the linear expression in a more
complicated way than does (44). Simple formulas
can be given, however, for each of the three
special cases corresponding to (45)—(47). When
c& remains fairly small throughout, we can
replace c~c. by c4 in (48), and, remembering
that n must be small, we obtain

These three formulas correspond precisely to
(45), (46) and (47), respectively, and involve
just the same linear approximations.

Continuous operation is the only practical
method if we wish to use several stages in series,
and the use of multi-stage apparatus seems
distinctly desirable if we wish to combine a
large separation factor with large speed of
production. Qle have seen that if c~' is small,
the quantity n = r/H must be small compared to
unity. Therefore, in any stage, the transport is
elfectively limited by the quantity IIcP(1—c4P),

where c~' is the concentration at the bottom of
the stage in question. If, now, c~' is small, we
see that in order to obtain a transport equal to
that of a later stage, H must be larger for the
first stage. A large II, however, means either a
large E, and then the separation will be small,
or a large B. A compromise would probably be
used in practice.

The multi-stage apparatus should therefore
consist of a series of vertical tubes; the first tube
should be of large size and will produce a small
change of concentration; subsequent tube~
should be made progressively smaller.

Comyarison of the two tyyes of oyeration in
single-stage ayyaratus

In the case of small c~, formulas (45) and (55)
make possible a simple direct comparison of the
separations obtained by the two methods at a
given effective speed, provided that 4Al is large
enough so that e 4"' can be neglected compared
to unity. Eq. (55) can be written

(58)

g n le 4Al —(~—/ -) r4Ae/

(14 /C P) ~(e—4A4+n) —4 (55)

For cases in which ci is throughout in a range

is a parameter inversely proportional to the
speed, and e'"' is the equilibrium separation
given by (38), which may also be obtained by
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setting n =0, or 0—+ ~ . In discontinuous operation
the quantity which corresponds to r is m&/to,

where to is the time allowed for the separation
to approach equilibrium before the reservoir is
emptied. Then if we put

O' =Hto/(mie4"') (59')

equal values of 0 and 0' correspond to equal
effective speeds of production by the two
methods Ac.cording to Eq. (45), the exponential
approach to equilibrium now takes essentially
the form

(e /c 0) ~(1 e—8') 4eAl (60)

The expressions (58) and (60) show that at a
given effective speed a greater fraction of the
equilibrium separation ratio can be obtained by
using discontinuous operation.

In the case of ci near one-half, we can introduce
the parameters

e =(4A/e) ', e ' =Hto/(4Alm, ), (61)

General remarks on speed of operation

In the case of discontinuous operation, the
quantity which characterizes the speed of opera-
tion in terms of the mass of the element with a
given concentration, divided by the time re-
quired to produce it, is m&f/t„where f is the

equal values of which correspond to equal
effective speeds. The equilibrium concentration
difference, from (56) with n=0 is A/; and the
realized concentration differences are, by (56)
and (46),

(~,. —cio) =e(1 e 'i&)—A-l

for continuous operation, and

(z,—ci') =(1—e &') Al. (63)

When less than a fraction (1—e ') of the equi-
librium concentration difference is to be ob-
tained, the continuous method works slightly
better; otherwise, the discontinuous is better.

In the remaining case, c& nearly equal to one,
it is not possible to introduce a single parameter
characterizing the speed in such a way that a
simple comparison of the two methods is possible.
Rough computation from (47) and (5'7) shows
that when large ratios (1—cia)/(1 —ii,) are re-
quired, continuous operation is decidedly faster.

s "f'"'/'"(pn) 'B(/ ~/T')' (66)

To get a large speed at the specified concen-
tration, it is evident that one should choose as
light a molecule as possible, because of the
strong dependence on f The .factor B can be
increased by using a larger tube, or several tubes
in parallel. Since under ordinary conditions p is
proportional to the pressure, the speed varies as
the square root of the pressure and as the
three-fourths power of the length, provided that
2m, the difference of the radii, is readjusted for
changes of pressure and length in accordance
with (65).

It is assumed in the argument leading to (66)
that the ratio Z&/Z is very small compared
with unity, since otherwise we should not be
justified in using (31), and should use instead
the modified value (33).

The power expended because of conduction is

by (29)

P„.=2/B(4. 18Q) =4.18K/B/s T/ni (67)

in watts, and, by (65), is proportional to /~p&BAT;

the viscosity and heat conductivity are inde-
pendent of the pressure. Thus so far as con-
duction is concerned, the speed and power are
just proportional to one another, as long as a
fixed concentration difference is demanded, and
a fixed temperature difference is used. The
advantage of a rather large AT is evident; but
there is little use in going to extreme tempera-
tures, since it is the ratio of hT to the mean
temperature that is involved, and also since the
radiation loss will be large if T2 is made very

fraction of the molecular weight contributed by
the element in question. This characteristic
quantity varies a,s Hf. In the continuous case,
the corresponding quantity is rf, which, for a
given concentration, also varies as Hf. Thus in
either case the variation of the speed, s, is
given by

s ~~f~ (w p'nBflq)(~T'/I )' (64)

Since Al must have a given value, and since
D ~ s/p, we see from (31) that te must vary as

(~/)'(~/p)'. (65)

If we accept (3), n varies as f, and we have the
significant relation
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high. The power consumption due to radiation
between the walls is independent of m, and for
nontransparent tubes is given by

P,= 2IB(1—Rg) (1—R2)
X (1—R)R2) '0 (T24 —Tg4), (68)

where R~ and Rg are the average reHection
coefficients of the walls of the tubes, and 0.=5.7
X10 "watt/cm'-deg. '.

Effects of asymmetry; general constructiona1
considerations

We shall here consider briefly the effect of
asymmetry in the apparatus. Due to non-
uniformity of heating or cooling of the tubes,
it is possible that the temperature may vary
around the tube. This will give rise to an addi-
tional convection, characterized by a slight
upward flow at the hotter part of the annulus,
and a corresponding downward How at the
colder part. For simplicity, we may suppose that
the temperature field is still independent of s',

but varies with the azimuthal angle, q, in the
simple manner:

T=f(r)+(»/2) co ~ (69)

One can then show that the essential effect is to
introduce another contribution to the transport
given by —Z„dc&/ds, where

Z /Z=(315 B' /1 6m' w)(5T~DT)', (70)

provided that B))w. Since X„/X must be kept
fairly small, Eq. (70) imposes rather strong
conditions on the tolerable asymmetry of the
temperature. In the apparatus to be discussed
in the next section, X„would become equal to
X for Br—5'.

A lack of centering of the tubes would have a
considerable direct effect on performance, be-
cause H and X depend on the third and seventh
powers of m. The asymmetry in temperature
brought about by the lack of centering would,
if appreciable, be still more harmful. To minimize
it, good conduction is essential. Thus metal tubes
are to be preferred on several counts: for
precision in construction, high conductivity, and
large reHection coefficient to reduce radiation
losses.

The importance of symmetry makes it evident
that advantages in speed and concentration

should be sought by increases in length rather
than by the use of high pressures and small
values of m. Also, both for accuracy of construc-
tion and because of the factor B' in (70), it is
better to use several tubes in parallel rather
than large tubes.

To avoid lack of.symmetry in the temperature
distribution, the water cooling must be efficient
and the heating of the inner tube must be very
uniform. Heating by condensation of a vapor
rather than by resistance wire seems advisable.

IV. A NUMERICAL EXAMPLE: C"

In order to illustrate the application of our
formulas we shall apply them to the design of a
single-stage apparatus for the concentration of
C". Here we are concerned with the concentra-
tion of a heavy isotope at the bottom of the tube.
Our equation for A and all our equations
concerned with the speed of operation apply
here with no change except the replacement of
c& by c2. A formal justification of this rule is
provided by inspection of the fundamental
equa, tions (23) and (48). In these equations we
must interchange c~ and c2, change the sign of
the term in c~c2, since this term changes sign in
rewriting (10) for species 2; and change the signs
of the 7. and v terms, because we are now

concerned with transport dome the tube. When
this is done the equations are unchanged in
form except for a change in sign of the term in

8/Bs This is. proper, since the concentration is
now increasing dowriward instead of upward.

We take as the specifications of our apparatus:
Length of tube, 21= 800 cm; 8=2+r =4x,
Ti =300'K; T2= 600'K; pressure, 1 atmosphere;
and equilibrium concentration, ~,=0.30. Since
the carbon isotope of mass 13 occurs with a
natural abundance" of one part in about 92,
and therefore cg'=0.0108, it follows at once
from (37) that we must have e4"'=39.3, or
A =0.0023/cm.

The required value of the difference in radii,
2m, and the speed of operation are now determi-
nate, once we have selected the molecule which
is to carry the carbon.

Our general discussion of the speed shows

' Vaughan, Williams and Tate, Phys. Rev. 46, 327(A&
(1934).
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that one should use as light a molecule as
possible (cf. Eq. (66)). Methane, CH4, is there-
fore eminently suitable. Extrapolating to 450'K
the data for CH4 given in the International
Critical TaMes, we find

q = 1.60 X10 4 poise,
p=0.433X10 ' g/cm',

D =1.4q/p =0.52 cm'/sec. ,
X=1 20X10 ~ cal./cm-sec. -deg. ,

and by (3)
n =0.0106.

(71)

The conditions on the relaxation length l„
(Eq. (4)), and the Reynolds number (5) are
strongly satisfied, as we shall verify after 2M'

has been evaluated. In the case under considera-
tion, however, it is not true that Eq/X«1, so
that the effect of longitudinal diffusion cannot
be ignored. Thus we must equate not A, but Aq
to the value 0.0023/cm.

Putting the values (71) in (31) and (32), we
find

g=(3.3X10 )/w and Xa/X=(5 1X10 )/w .
Since Aq must have the value 0.0023, we have
by (33),

m' —1 45X10 'm'+5 1X10 '=0.
The larger of the two positive real roots gives
the value 2ui= 0.62 cm. The ratio Kd/X is about
0.58, so that it certainly could not have been
neglected.

In order to discuss the question of speed,
we must know the value of H. We find by (30),

&=2.3X10 ' g/sec.

The range of c& in question, 0.01 to 0.30, is
just within the range of validity of the linear
approximation (44). If we wait a length of time
of the order of the relaxation time, we shall
reach a concentration in the bottom reservoir of
only about 0.194. In this case, we are concerned
only with the range 0.01 to 0.19, and a suitable
value of cI' is 0.10. If we suppose the bottom
reservoir contains 5.0 grams of gas—or approxi-
mately 104 cc—the relaxation time given by
(44) is

t„=[5.0/(2 3X10 )]X[(393)0.8 1]/0 8
=4.9X10' seconds = 57 days.

The speed of production by the discontinuous
method is thus 88 mg/day of methane, or about
66 mg/day of carbon, with a concentration of
19 percent C".

A rough idea of the speed obtainable in
continuous o'peration may be obtained from
Eqs. (58) and (60). These formulae really apply
only in the approximation c&' =0, but should be
fairly reliable for purposes of comparison when
a more accurate value has already been found
for one method. The use of the time t„between
removals in discontinuous operation corresponds
to 8'=1 in (60). Putting 8=1 in (58), we see
that continuous operation at a speed of 88 mg
of methane per day will give a concentration of
roughly -', I(:„or about 15 percent C". To obtain
an estimate of the speed at concentration 19
percent, we put

8/(8+1) = 1 —e-'

and obtain 0=1.72. Since 0 is inversely propor-
tional to the speed, continuous operation will

give roughly 88/1. 72=51 mg/day of methane
at 19 percent C".

The speed of production at 19 percent C" can
be calculated exactly from (53). The estimated
value just obtained corresponds to ~ =5.9X 10 '
g/sec. , or no&= r/H=0. 0259. This can be used
as a first approximation in solving (53). It gives
g'=1.0161, tanh 2g'Al =0.95315. The next ap-
proximation is now obtained by solving (53) for
n as it occurs explicitly. The value obtained is
n&'~ =0.0290, and .the value to which the approxi-
mations converge is n=0.0279. This corresponds
to a speed of 55 mg/day.

The power consumption due to conduction,
by (66), is 2450 watts, while that due to radia-
tion, by (67) would be 7000 watts if the tube
walls were perfectly black (Ri ——R2 ——0). If the
walls were a polished metal, however, this vaIue
might well be cut down to less than 500 watts.

The Reynolds number, by (5), is of the order
of 3. Since in the case of pure pressure How

through tubes or between plates this number
must become of the order of several thousand
before spontaneous turbulence occurs, it is
difficult to believe that there could be any
turbulence here.

By (4), the length of tube at each end in
which the temperature gradient differs from
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that determined by conduction is of the order
of 0.4 cm, and thus may certainly be neglected.

The calculations given above for C'3 are
based on the value a=0.0106 which is given by
Eq. (3). This equation is, however, only a rough

guess, albeit the best one possible. It may be
found by experiment that the actual values of
II and A for any given gas are distinctly different
from those calculated from values of o. given by
(3), perhaps by as much as a factor 2. In practice,
therefore, 1't will be necessary to do some pre-
liminary work to find the actual value of n. It is

suggested that this be done by running the
apparatus at a fairly high pressure. For instance,
in the example just discussed, the use of a
pressure of two atmospheres instead of one will

multiply II by 4, and divide A by approximately
4, so that the separation factor will be small,
but so will also be the equilibrium time. If one
now measures c1' as a function of the time, one
will obtain the values of both II and A. Either
one will yield the value of n, by (30), or by (31),

(32) and (33). We may now extrapolate A to
the desired value by changing the pressure, since
we know that H, A and X&/Z vary, respectively,
as the second, inverse second, and inverse fourth
power of the pressure.

Preliminary adjustments such as those just
described will of course be necessary only in the
first work on each gas. Once the correct value of
a is known from experiment, our equations
should make it possible to design apparatus
which will perform in acceptable agreement with
specifications.

One of us (L. O.) is indebted to Dr. G. Akerlof
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ment, and to Dr. C. C. Furnas of the Chemical
Engineering Department of Yale University for
advice in regard to feasible construction and
operation of apparatus on laboratory and in-
dustrial scale. The others (W. H. F. and R. C. J.)
are grateful to Professor K. T. Bainbridge and
Dr. R. Sherr of the Physics Department of
Harvard University for interesting and helpful
conversations.
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N RECENT articles' an explicit and calculable
~ - expression has been derived for the second
virial coefficient of a monatomic gas. This is the
8 in the equation of state,

pU/RT=(1+B(T)/U+C(T)/V'+ )

and, assuming the Einstein-Bose statistics, is
given by the formula,

Bs.s.——— —16%or&X' Q (l+-', )
2 n, even l

)&exp [X'kp'(e, 1)/ap']

—16or~ÃX' Q (l+-,') dkp
even l

Xexp I X'koo/&o'](dpi/dko). (1)
' E, Beth and G. E. Uhlenbeck, Physica 4, 915 (1937);

L. Gropper, Phys. Rev. 51, 1108 (1937).

Here, X'= kp/mkT, ri~ is the phase found from the
wave equation for the relative motion of two
radially interacting molecules,

d'v p m l(l+1) p

+i kp' ——ao'V ]v=0.
dp' E. 52 p2

koo(q, l) are the discrete states for two such
molecules, ao is the Bohr radius, and V is the
interaction potential between the two molecules.

Extensive calculations have recently been
made with formula (1) by Massey and Bucking-
ham' on the inert gases, in particular, helium.
These calculations are based on the use of the
Slater-Kirkwood potential for the calculation of

2 H. S. W. Massey, and R. A. Buckingham, Proc. Roy,
Soc. 168, 378 (1938).


