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The new observations of Herb, Kerst, Parkinson and
Plain and of Heydenburg, Hafstad and Tuve are analyzed.
No definite indication of a » wave anomaly or higher phase
shifts is found. The s wave anomaly is the major effect
observed. The phase shift K, responsible for it is compared
with theoretical expectation using potentials which are
constant (except for their Coulombian part) within dis-
tances 0.75, 1, 1.25 in units e2/mc?2=2.81X10"18 cm. The
first of these gives a too rapid and the last a too slow varia-
tion of Ko with energy. The interaction radius e%/mc?
agrees with experiment much better than the others. The
potential energy giving the best agreement with experi-
ment, when superposed on the Coulomb energy within this
distance, is determined within a few tenths of a percent
and is 11.3 Mev. The Gauss error potential de~ with
a=16 and with 9X 10713 cm as the unit of length gives a
too slow variation of Ko, with E. Experiment agrees de-
cidedly better with a~20. An over-all fit can be obtained
with a=21.6, 4 =51.4 mc?. The shortening of the range of
force is about the same as that previously suggested by
Rarita and Present from calculations on the binding energy
of H3, This is surprising since the discovery of the electric

quadrupole moment of H? necessitates a revision of binding
energy calculations. Conclusions about the range of force
derivable from proton-proton scattering experiments are
shown to be sensitive to a possible velocity dependence of
the nuclear potential. The proton-proton and proton-
neutron forces in LS states are compared and it is found
that for both types of potentials the proton-proton inter-
action is less by approximately two percent. This difference
is definitely outside the probable errors in the scattering
experiments and is not very sensitive to velocity dependence.
The absence of p wave anomalies in the data from 1830
to 2400 kev is not sufficiently clear cut to claim a definite
disagreement with Feenberg’s inequality derived from
saturation requirements with exchange forces. The effects
expected are close to the consistency of the measurements.
The paper includes formulas and tables for the, calcula-
tion of anomalies due to phase shifts, discussions of geo-
metrical corrections and of some of the effects of experi-
mental errors on the conclusions. Some of the features that
may be learned by extensions to higher and lower energies
are pointed out. An outline is given in the introduction.

I. INTRODUCTION

BSERVATIONS on the anomalous scatter-
ing of protons by protons have been made
by Wells,! White,? by Tuve, Heydenburg and
Hafstad,® by Hafstad, Heydenburg and Tuve,*
by Herb, Kerst, Parkinson and Plain® and by

Heydenburg, Hafstad and Tuve.® The present

paper concerns itself with the interpretation of
the experiments paying special attention to the
results obtained in the two recent papers just
mentioned. The data of Herb et al. extend the
knowledge of the scattering to an energy of 2.4
Mev for the incident protons. These observations
as well as the new measurements of Heydenburg,

* Now at Princeton University.

1'W. H. Wells, Phys. Rev. 47, 591 (1935).

2 M. G. White, Phys. Rev. 47, 573 (1935).

#M. A. Tuve, N. P. Heydenburg and L. R. Hafstad,
Phys. Rev. 49, 402 (1936); 50, 806 (1936).

4¢L. R. Hafstad, N. P. Heydenburg and M. A. Tuve,
Phys. Rev. 51, 1023 (1937); 53, 239 (1938).

5R. G. Herb, D. W. Kerst, D. B. Parkinson and G. ]J.
Plain, Phys. Rev. 55, 603(A) (1939). Also paper in this
issue. Referred to as HKPP in text.

¢ N. P. Heydenburg, L. R. Hafstad and M. A. Tuve,
Phys. Rev. 55, 603(A) (1939). Referred to as HHT in text,

Hafstad and Tuve have been made with im-
provements in technique which resulted in a
high degree of internal consistency. The analysis
of the observations made below indicates a high
accuracy in the values of the phase shift K,
responsible for the s wave scattering anomaly
recorded in Tables XI, XII and plotted in Figs.
6 and 7. The values obtained in the two labora-
tories join smoothly at the energy 860 kev for
the data of Herb et al. and 867 kev for the data
of Tuve et al.

The extension of the energy region to 2400 kev
made by Herb and collaborators enables one to
determine an average range for the nuclear force
responsible for the s wave anomaly. An over-all
fit between 800 and 2400 kev makes an accuracy
of ~35 percent seem possible. A ‘“‘square well”
potential with a width e*/mc® and a depth
D=10.52 Mev represents this region quite well.
For the Gauss error potential an over-all fit from
670 kev to 2392 kev is obtained for 4Ae—** with
A=351.44, «=21.59 in nuclear units. Fits made
with the Gauss error potential to different parts
of the experimental curve vary by amounts
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illustrated in Table XIX which indicate 20 as
the lower limit and 24 as the upper limit for a.
Rarita and Present” have found it necessary to
use a range corresponding to about a=20 in
order to account for the binding energy of H?2.
They pointed out that with such a range the
mass of He? should be expected to be smaller than
the experimental value. The work of Margenau
and Warren and Margenau and Tyrrell” has
made it doubtful to what extent a shorter range
is called for by the binding energy of H? since the
difficulty according to them can be partly
removed by suitable adjustments of the param-
eter g entering into the expression for nuclear
forces. The new proton-proton scattering experi-
ments show, however, that the range of force
cannot be supposed to correspond to a=16 as
long as the interaction potential is supposed to be
independent of velocity. It is surprising that the
value obtained for « is so close to that obtained
by Rarita and Present’ from the binding energy
of H? since this value gives a too small mass of
He*. The discovery of the electric quadrupole
moment of H? recently made by Rabi and co-
workers® makes the meaning of these binding
energy calculations rather doubtful since the 3S
states are mixed with 3D;. The effect of couplings
of the (o1r)(e.r) type which are demonstrated by
the quadrupole moment has been already con-
sidered for the position of the 3S and 1S terms in
the deuteron® and even for the relatively small
magnitudes expected from relativistic consider-
ations appreciable effects have been obtained.
Larger effects should follow from the mesotron

?W. Rarita and R. D. Present, Phys. Rev. 51, 788
(1937); H. Margenau and D. T. Warren, Phys. Rev. 52,
790 (1937); 52, 1027 (1937); W. A. Tyrrell, Jr., and H.
Margenau, Phys. Rev. 53, 939(A) (1938); H. Margenau
and W. A. Tyrrell, Phys. Rev. 54, 422 (1938); W. Rarita
and Z. I. Slawsky, Phys. Rev. 54, 1053 (1938).

8]. 1. Rabi, J. R. Zacharias, N. F. Ramsey, Jr., and
J. M. B. Kellogg 55, 595(A) (1939); J. M. B. Kellogg,
I. I. Rabi, N. F. Ramsey, Jr., and J. R. Zacharias, Phys.
Rev. 55, 318 (1939).

9S. S. Share and G. Breit, Phys. Rev. 52, 546 (1937);
G. Breit, Phys. Rev. 51, 248 (1937); 54, 153 (1938). First
a priort introduction of (o:r)(0sr) terms for nuclear forces
apart from magnetic effects was made by Wheeler, Phys.
Rev. 50, 643 (1936). See also E. Wigner Phys. Rev. 51,
106 (1937). The existence of the quadrupole moment as an
effect of these terms and other interesting effects have been
discussed by J. Schwinger, Phys. Rev. 55, 235 (1939).
Chica;go meeting American Physical Society, November
25, 1938.
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theory!® and the connection of the range of force
with binding energies is decidedly an open one.
On the other hand, the 1S state remains un-
coupled to the others' so that this interaction
can be investigated independently with the
proton-proton and with the slow neutron-proton
scattering experiments.

On the other hand, the scattering experiments
do not give a unique answer to the question of
range because of the possibility of velocity de-
pendence.’ It will be seen at the end of the paper
that changes of the order of 1.6 percent of the
depth of the potential well through an energy
region of 2.4 Mev for incident protons would
account for the observations using an old
fashioned range of a=16. The mesotron theories
of nuclear forces in their usual form involve the
arbitrary feature of ‘“‘cutting off’’ which presum-
ably introduces errors regarding velocity de-
pendence since the relative importance of long
and short wave-lengths is different for collisions
with different energies of relative motion. This
point is doubtless speculative and controversial
but it was thought of interest to see in a purely
empirical manner to what extent conclusions
about range are affected by the introduction of a
velocity dependence.

The saturation and stability arguments with
exchange forces have led Feenberg® to the
establishment of a lower limit for the repulsion
in the 3P state which should cause a small scat-
tering anomaly to appear at two Mev. Here again
the existence of the electric quadrupole of the
deuteron changes the situation. The assumption

regarding the possibility of representing nuclear

10 H, Yukawa, Proc. Phys. Math. Soc. Japan 17, 48
(1935); H. Yukawa and S. Sakata, Proc. Phys, Math.
Soc. Japan 19, 1084 (1937); H. Yukawa, S. Sakata and
M. Taketani, Proc. Phys. Math. Soc. Japan 20, 319 (1938);
H. Yukawa, S. Sakata, M. Kobayasi and M. Taketani,
Proc. Phys. Math. Soc. Japan 20, 720 (1938); N. Kemmer,
Proc. Roy. Soc. 34, 354 (1938); N. Kemmer, Proc. Camb.
Phil. Soc. 34, 354 (1938); H. Frohlich, W. Heitler and N.
Kemmer, Proc. Roy. Soc. A166, 154 (1938); H. J. Bhabha,
Proc. Roy. Soc. A166, 501 (1938); W. Heitler, Proc. Roy.
Soc. A166, 529 (1938).

11 G. Breit, Rev. Sci.' Inst. 9, 63 (1938). See end of first
column on p. 74. The 1S term remains uncoupled to all
other terms for two particles of spin }.

12J, A, Wheeler, Phys. Rev. 50, 643 (1936). Here the
possibility of velocity dependence for nuclear force is
introduced.

13 E. Feenberg, Phys. Rev. 52, 667 (1937); See also G.
Breit and E. Wigner, Phys. Rev. 53, 998 (1938) for feasible
upper limit on the repulsion.



1020 BREIT,
forces as a mixture of Wigner, Heisenberg,
Majorana and Bartlett interactions cannot be
maintained any longer and this assumption was
made in deriving the inequality. It appears
unlikely, however, that the experiment could
have concealed a negative phase shift of —0.25°
which is approximately the amount expected
using the old fashioned theory with a=16. Un-
fortunately the effect looked for is at the limit
of experimental accuracy and a definite claim for
the absence of such a phase shift cannot be made.
A discussion of the evidence is given under
“Possibilities at low and high energies and higher
phase shifts’’ as well as in connection with Table
X1V and Figs. 3, 4 and 5.

The paper is divided into two longer sections.
The first is concerned with the handling of ex-
perimental material up to the point of obtaining
the phase shifts and is called ‘‘Determination of
Phase Shift from Experimental Data.” The
second is concerned with the interpretation of the
phase shifts in terms of interaction potentials
and is called ‘“Calculation of the Potentials.” The
first part is less speculative than the second. In
the first part the subdivisions are as follows.

1. Coefficients for the calculation of the scat-
tering anomaly. Here tables and formulas are
given for the calculation of the s wave anomaly
in sufficient detail to make the analysis of experi-
mental material easy in the future.

2. Effect of error consisting of a constant
factor. Here the effect introduced into the value
of the s wave phase shift K, due to an error
consisting of a constant factor is calculated.

3. Effect of error in voltage. This is similar
to 2.

4. Estimate of spread of beam due to collisions.
The checks made by Herb et al. on the per-
formance of the apparatus using argon and
krypton scattering showed the presence of an
effect of pressure. The spread of the beam due
to collisions is estimated and is seen to be of the
right order of magnitude. Multiple scattering is
discussed.

5. Values of phase shift derived from experi-
ment. (a) Explanation of tables. The experi-
mental results are tabulated and the comparison
of theoretical expectation is compared in this
section with experiment. (b) Corrections due to
geometry of apparatus. For low angle scattering
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corrections for geometry enter. They are of im-
portance for conclusions regarding higher phase
shifts. (¢) Possible presence of p and d wave
anomalies. Upper limits for their effect on Kj.

The second section contains the following sub-
divisions.

1. The proton-neutron interaction. (¢) Square
wells. Egs. (8.2) and (8.3) for calculation of
depth and Eq. (8.4) for scattering cross section
of 3S. Egs. (8.5) and (8.6) for relation between
depth and scattering cross section for 1S. Con-
nection with virtual level treatment in Eq. (8.8).
(b) Expansions for wells of any shape. Egs. (9.1)
for Taylor expansion of logarithmic derivative
in several parameters. (¢) Formulas for neutron-
proton potential for the Gauss error type inter-
action. Egs. (10.1), (10.4), (10.6), (10.7), (10.8)
and (10.9) for calculation of depth of proton-
neutron potential corresponding to given scat-
tering. Effect of neglecting tail of Gauss error
potential in Eq. (10.91). (d) Intercomparison of
numerical integrations used for proton-proton
and proton-neutron potentials.

2. Coulomb effect for square wells. Calcula-
tions of phase shifts for proton-proton scattering
are made with least trouble using ‘‘square wells”
without Coulomb potential inside. Corrections for
the Coulomb potential inside the well are made
here. See Eq. (11.2) for effect of Coulomb poten-
tial on depth. Necessary quantities collected in
Table XVI. Eq. (11.5) and Table XVII for cal-
culation of phase shift with fixed depth super-
posed on Coulomb potential.

3. Adjustment of range and values obtained
from experiment.

4. Comparison of proton-proton and proton-
neutron interaction. See Tables XX, XXI.

5. Possibilities at lower and higher energies
and evidence regarding p scattering. Some of the
points which may be learned by extending ex-
periments to lower and higher energies are
discussed and the evidence regarding p scattering
available at present is reviewed.

A table of Coulomb functions for L=0 is given
in the appendix.

Notation

M =mass of proton; Mr=mass of hydrogen
atom.
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u=M/2=reduced mass in the collision of
two protons.

v=relative velocity of the two protons
before the collision.

r=distance between protons.

E=kinetic energy of the incident proton.

'=energy in frame of center of gravity=
E/2.

A=h/uw.

k=2r/A, n=¢?/tv, p=Fkr.

L#=angular momentum of colliding particles
around common center of gravity.

Pr=Legendre function.

6=scattering angle in the reference system
of center of gravity.

©=0/2=scattering angle in the laboratory
reference system.

Fr=regular solution of the differential equa-
tion for 7 times the radial wave func-
tion in a Coulomb field normalized so
as to be asymptotic to a sine wave of
unit amplitude at .

K ;=phase shift defined by the asymptotic
form of ¥, =7 times the radial function
in the actual field. The phase of §ir
minus that of Fy, at large 7 is K.

Gr=irregular solution of the same equation as
Fi having K;=7/2.

o=scattering cross section per unit solid
angle in the laboratory system.
P=scattering cross section per unit solid
angle in the center of gravity system.
(AP)y=change in P due to the s scattering
anomaly.
(AP);=change in P due to the p scattering
anomaly.
(AP)s=change in P due to the d scattering
anomaly including interference terms
with K().
Pyr=value of P using Mott’s formula.
X, Y defined by Eq. (1).
Y=yield of scattered protons, per micro-
coulomb, per mm oil pressure.

N =(2uv?/e?)?Py = quantity tabulated in
Table I of BCP.

pu=density of hydrogen in scattering cham-
ber.

2b=width of slit in analyzing system.

A =area of hole in analyzing system. Same
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symbol as depth of Gauss error poten-
tial.
Ry=distance from hole to beam if beam is
very narrow.
f=distance from hole to center of beam if
beam is wide.
h=distance from hole to slit.
®R=P/Py=ratio of scattering to that ex-
pected by Mott’s formula.
p=radius of circular beam.
ory=scattering cross section of neutron having
zero energy with a free proton.
oin=407. '
F=r times radial function for proton-
neutron collision.
E;= —energy of deuteron in normal state.
Dy, Ds;=depths of square wells representing,
respectively, proton neutron interac-
tion in the singlet and triplet states.
x defined by Eq. (8.3).
ro=radius of square well.
a1, az=intercepts on axis of 7 of tangents to F
for zero energy neutrons for singlet
and triplet states.
y=dF/Fdx or d§/{dx.

A, a=constants for Gauss error potential
Ae—7,
A=A4/a.

C=0.577216=Euler’s constant.
Co=[2mn/(e™1—1) %
Co=[1/1.3+ - QL+1) 1 +r/L2Jt- - -
X[1472/12]C,.

II. DETERMINATION OF PHASE SHIFT FROM
EXPERIMENTAL DATA

1. Coefficients for the calculation of the scatter-
ing anomaly

The values of the coefficients of sin K, cos K,
and sin? K, in P/Py as given by Breit, Condon
and Present!* are not quite accurate enough for
the discussion of the newer improved data. The
relation between 7 and the energy in Mev as
used there is slightly inaccurate because of the
use of old values of e, &, m, M, ¢ and it is difficult

1 G, Breit, E. U. Condon and R. D. Present, Phys. Rev.
50, 825 (1936). Referred to as BCP in text. See references
to previous theoretical work in BCP. A more accurate
comparison of the proton-proton and proton-neutron
interactions was made by G. Breit and J. R. Stehn, Phys.

Rev. 52, 396 (1937). This paper is referred to as BS in
the text.
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to interpolate from the tables with sufficient
accuracy. Values of the coefficients obtained by
improved and more systematic calculations are
listed below in Table I. It was found at times
more convenient to interpolate from tables of
the quantities X, 2Y /7 defined by

X =52 cos ag+c~2 cos Bo;
Y=s"2sin ag+c2sin By; €]

ap=7lIns?; Bo=nlInc?

in the notation of BCP. The quantities X, 2Y/9
are, therefore, also listed in the tables. The
relations are

o=4cP, (2)

2X
(2uv?/e?)2(AP)y= —— sin K cos K,
n
4 2Y
+{ —+— ) sin2 Ko---, (2.1)
7
M= (2#‘212/62)2PM= s™44-c—¢

—s~2c2cos 9 ln s%¢2, (2.2)

P=Py+(AP), (2.3)

where ¢ is the collision cross section per unit
solid angle for scattered as well as recoil protons.
The values of 9 are also tabulated. The quanti-
ties —2X/99M, 4/7?9M+2Y/49% can be used
directly for the calculation of P/Py. The relation
of # to E as used in Tables I, II, III, IV, V is
7=0.15818(E/Mev)~%. The conversion factor
0.15818 is not known with an accuracy cor-
responding to the number of figures used above.
If, in future applications, it should be desired
to correct the inaccuracy present in the conver-
sion factors it is sufficient to attribute the values
of the quantities given in the tables to the values
of E that correspond to the tabulated values of 7.

The conversion factors as used in the present
paper correspond to the following values of
the fundamental physical constants: e/mc=
1.7575X107, ¢=4.8036X1071°, ¢=2.9986X10%.
C.g.s. electrostatic units are used here and below.
The value of ¢, as used, is slightly incorrect. The
more accurate value is 2.99796X10%. This in-
accuracy is of no practical consequence in the
present work. From the above numbers one
obtains m=0.9115X10"?. Using R,=109,737
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cm™! for the Rydberg constant for infinite mass
one obtains 2=6.628X10"%", %=1.0549X10~?7,
¢*/hc=1/137.08. The quotient 1 Mev/mc? is de-
termined by the above constants as 10%(e/mc)/c?
=1/0.511(61). For the computation of 5 one
needs besides the ratio Mu/m where My is the
mass of the hydrogen atom. The Faraday con-
stant 9648.9=e¢/Mc¢ where M is the mass of the
oxygen atom divided by 16. Using Mu=1.0081
M one obtains Myu/m=1836.2. It was assumed
that it should be good enough to compute 75
by n={(e?/kc)(c/v) = (e2/tic)c(Mu/2m)*(mc?/ Ve)t
where V is the electrostatic difference of po-
tential through which the protons have been
accelerated. This gives #=0.15810(E/Mev)—#,
1/9=6.3251(E/Mev)}%. There is some question
as to whether one should use the mass of the
hydrogen atom or the mass of the proton in
these calculations. The influence of extranuclear
electrons is presumably negligible in the collision
process itself but it has not been sufficiently
investigated to be quite sure of this point. The
incident particles must be practically entirely
protons which do not have electrons permanently
attached to them. From this point of view it
would have been better to use Mu—m rather
than Mgy as the mass of the particles. On the
other hand, there is spectroscopic evidence for
Mu/m being close to 1838 which corresponds to
(Mu—m)/m=1837. It appeared safest, there-
fore, to use (Mu—m)/m=1836.2 since this is
close to the mean of 1835.2 and 1838. The remain-
ing uncertainty in this number is probably of no
importance for the present purpose particularly
since it enters to the  power. If the ratio of the
mean mass of the oxygen atom and the mass of
O is taken into account the ratio 1836.2 changes
to 1835.7. The effect of the corresponding change
in 7 is not taken into account in the tables.

For most work one can use Tables I and II to
give by interpolation the values of the co-
efficients of sin Kq cos K and sin? K, for P/Py.
For better accuracy, particularly with graphs,
Tables III and IV for X and —2Y/% are to be
preferred. For the lowest energies in Table III
the interval is not small enough to secure on
interpolation a better accuracy in X than about
two percent at ® =15°. It is unnecessary to have
a better accuracy in this region since P/Py is
nearly 1. For higher scattering angles © the
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TABLE 1.* Values of 2X/90N as functions of E and of scattering angle ©.

@ =15° 20° 25° 30° 350 40° 42.5° 45° E (KEV) 7
0.1764 0.4773 0.984 1.775 2.892 4.113 4.544 4.704 150 0.40822
.2555 .6190 1.218 2.139 3.426 4.820 5.307 5.488 200 .35353
3224 7396 1.417 2.453 3.889 5.435 5.974 6.174 250 31621
3811 8459 1.595 2.733 4.305 5.988 6.574 6.791 300 .28865
4336 9418 1.755 2.987 4.684 6.494 7.124 7.356 350 . .26724
4814 1.0297 1.903 3.222 5.034 6.964 7.634 7.881 400 .24998
.5258 1.1112 2.041 3.441 5.356 7.404 8.112 8.373 450 .23569
.5662 1.197 2.170 3.648 5.672 7.820 8.563 8.838 500 .22359
.6423 1.328 2.408 4.029 6.245 8.591 9.402 9.701 600 .20411
7105 1.455 2.625 4.378 6.769 9.298 10.172 10.493 700 .18897
7730 1.572 2.826 4.701 7.257 9.956 10.887 11.230 800 17676
8311 1.682 3.013 5.003 7.715 10.572 11.558 11.921 900 .16666
.8856 1.785 3.190 5.289 8.144 11.155 12.192 12.574 1000 .15810
.820 1.660 2.977 4.945 7.623 10.45 11.43 11.79 880 .16854
991 1.983 3.533 5.843 8.982 12.29 13.43 13.84 1210 14373
1.077 2.148 3.816 6.302 9.676 13.23 14.45 14.90 1400 13362
1.161 2.308 4.094 6.753 10.361 14.15 15.46 15.94 1600 - .12499
1.251 2.480 4.391 7.237 11.094 15.15 16.54 17.05 1830 11687
1.314 2.600 4.598 7.573 11.606 15.84 17.30 17.83 2000 11179
1.349 2.668 4.716 1.764 11.897 16.24 17.73 18.28 2100 .10910
1.450 2.862 5.054 8.313 12.728 17.37 18.96 19.55 2400 .10205
1.634 3.216 5.669 9.313 14.24 19.43 21.21 21.87 3000 .091279
1.773 3.483 6.134 10.071 15.40 21.00 22.92 23.63 3500 .084508
1.902 3.732 6.566 10.78 16.47 22.45 24.51 25.26 4000 .079050
2.022 3.965 6.972 11.44 17.475 23.82 26.00 26.80 4500 .074529
2.136 4,185 7.356 12.06 18.43 25.115 27.41 28.25 5000 .070704

* The values of 5 given in the last column of this table were used also for the succeeding tables. The quantities calculated are functions of 7

directly rather than E.

accuracy of interpolation increases rapidly and
similarly for higher energies.

The coefficients for the computation of effects
of higher phase shifts Ki, Ko, are given
sufficiently accurately in BCP. The indications
of the presence of such phase shifts are as yet
not definite enough to make it necessary to have
more accurate calculations.

At the end of Tables III, IV, V are given
numerical formulas which express the values of
X, —2Y/%, 9 in terms of the energy E measured
in Mev. These formulas are usually sufficiently
accurate from 1000 kv on to E= «. They are
obtained from the expansions

2

X=s‘2+0"2——712—[s—2(1n s2)24-c¢~%(In ¢2)%]

+Z—4[s—2(1n s2)44-c=2(In c2)4]— - - - o

= s—2+c—2—T[s—2(ln s?)24-¢~2(In ¢?)?]

0.00002603

[s~%(lns?)*+c2(Inc2)4]—---,

2Y
—=2[s"?In s?4c¢2In ¢?]
"
2

—%[s—z(ln s?)34c*(ln c2)°]

,74
—[s~2(In s2)54-c—2(In ¢2)5]4- - -
+60[S (In s%)°+c~2(In ¢%)*]+ (3.2)

=2[s"?In s?4c21n ¢%]
0.008332
-———E-—[s*?(ln s?)3+c~2(In ¢2)3]

0.00001041

+—E—2—[8“2(In s?)s+c2(Inc?)s]+- - -,
M=s"44c¢—s"%2

4 (n%/2)s~2%c~%(In (s%2))?

—(n*/24)s7%¢~*(In (s*c™%))*+ -

=sTi+ct—s%c?
+(0.01250/E)s—%c~2(In (s%c~2))?
—(0.00002603/E%)s~2c~2(In (s%2))4+- - -.

(3.3)
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TaBLE 11. Values of 4/m?IN+2Y /9N as function of E and of scattering angle ©.

@ =15° 20° 25° 30° 35° 40° 42.5° 45° E (KEV)
—0.1916 —0.1247 0.2120 0.981 2.288 3.849 4.419 4.633 150
- 1731 — .0230 4969 1.603 3.426 5.565 6.340 6.629 200
— .1472 .0869 7190 2.233 4.571 7.286 8.262 8.626 250
- 1171 2012 1.089 2.868 5.719 9.009 10.187 10.625 300
— .0850 3182 1.389 3.504 6.869 10.731 12.111 12.624 350
— .0514 4317 1.692 4.142 8.020 12.455 14.04 14.62 400
— .0165 .556 1.995 4.781 9.16 14.179 15.96 16.62 450
+ .0189 677 2.300 5.421 10.32 15.90 17.89 18.62 500
.0911 919 2,910 6.702 12.63 19.35 21.74 22.62 600
1648 1.163 3.521 7.985 14.94 22.80 25.59 26.62 700
2393 1.408 4.134 9.27 17.24 26.25 29.44 30.62 800
3143 1.653 4.747 10.55 19.55 29.70 33.29 34.62 900
3897 1.899 5.360 11.84 21.86 33.15 37.14 38.62 1000
2994 1.604 4.624 10.30 19.09 29.01 32.52 33.82 880
.5489 2.416 6.65 14.53 26.71 40.40 45.23 47.02 1210
.693 2.884 7.82 16.98 31.09 46.95 52.55 54.62 1400
846 3.378 9.05 19.55 35.71 53.86 60.26 62.62 1600
1.022 3.946 10.46 22.51 41.02 61.79 69.12 71.82 1830
1.152 4.365 11.50 24.69 44.95 67.66 75.66 78.63 2000
1.229 4.613 12.12 25.97 47.26 71.11 79.52 82.63 2100
1.459 5.353 13.96 29.83 54.18 81.46 91.07 94.63 2400
1.919 6.84 17.65 37.54 68.03 102.2 114.2 118.63 3000
2.303 8.07 20.73 43.98 79.58 119.4 133.4 138.64 3500
2.687 9.31 23.80 50.40 91.12 136.7 152.7 158.64 4000
*3.072 10.55 26.88 56.84 102.67 153.9 172.0 178.65 4500
3.456 11.78 29.95 63.26 114.21 171.2 191.2 198.64 5000

TABLE I11. Values of X as function of E and of scattering angle ©. In expansion E is in Mev.

0=15° 20° 25° 30° 3s° 40° 42.5° 45° E (xzv)

7.79 6.60 5.484 4.700 4.203 3.928 3.863 3.841 150

9.69 7.34 5.807 4.856 4.283 3.978 3.904 3.881 200
10.87 7.79 6.004 4.950 4.332 4.006 3.929 3.904 250
11.68 8.09 6.136 5.013 4.365 4.026 3.946 3.920 300
12.27 8.31 6.232 5.058 4.388 4.040 3.958 3.932 350
12.72 8.48 6.304 5.092 4.406 4,050 3.967 3.940 400
13.07 8.61 6.360 5.119 4.418 4.059 3.974 3.947 450
13.35 8.71 6.405 5.140 4.431 4.065 3.980 3.952 500
13.78 8.87 6.473 5.172 4.447 4.075 3.988 3.960 600
14.09 8.99 6.521 5.195 4.459 4.082 3.994 3.966 700
14.33 9.07 6.560 5.212 4.468 4.087 3.999 3.970 800
14.66 9.19 6.609 5.236 4.480 4.095 4.005 3.976 1000
14.48 9.13 6.582 5.223 4.473 4.090 4.002 3.973 880
14.89 9.28 6.645 5.253 4.489 4.100 4.010 3.980 1210
15.16 9.38 6.687 5.273 4.499 4.105 4.014 3.986 1600
15.32 9.44 6.712 5.285 4.505 4.109 4.018 3.988 2000
15.36 9.45 6.717 5.287 4.506 4.110 4.019 3.988 2100
15.44 9.48 6.730 5.293 4.509 4.112 4.020 3.990 2400
15.55 9.52 6.747 5.301 4.513 4.115 4.022 3.992 3000
15.66 9.56 6.764 5.309 4.517 4.117 4.024 3.994 4000
15.73 9.58 6.715 5.314 4.520 4.118 4.026 3.995 5000
16.00 9.68 6.816 5.333 4.530 4.124 4.031 4.000

_ _ _ _ _ _ Expansion
—1.364/E —0492/E 0.2083 0.0975 0.0500 0.0297 0.0254 0.0240 at Fe w. In
E E E E E E expansion E is
in Mev.

40.02075  4-0.00472  +0.00128 0.00038  +0.00012  +0.00004 +0.00003  4-0.000024
72 F2 E2 F? 2 E? E2 E2
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TABLE IV. Values of —2Y/n as function of E and of scattering angle ©. In expansion E is in Mev.

8 =15° 20° 25° 30° 35° 40° 42.5° 45° E (KEV) 4/n?
65.46 32.45 18.22 11.27 7.711 5.991 5.600 5.472 150 24.003
69.12 33.55 18.60 11.42 7.77 6.021 5.619 5.488 200 32.005
71.39 34.22 18.83 11.51 7.81 6.032 5.633 5.501 250 40.006
72.89 34.67 18.98 11.56 7.83 6.041 5.639 5.506 300 48.007
74.02 34.99 19.09 11.61 7.84 6.050 5.646 5.512 350 56.008
74.88 35.23 19.18 11.63 7.86 6.06 5.65 5.519 400 64.009
75.50 35.42 19.24 11.66 7.87 6.06 5.66 5.52 450 72.01
76.03 35.59 19.29 11.68 7.88 6.06 5.66 5.52 500 80.01
76.85 35.81 19.37 11.71 7.89 6.07 5.66 5.53 600 96.01
77.42 35.97 19.43 11.73 7.90 6.07 5.66 5.53 700 112.02
77.84 36.09 19.47 11.74 7.90 6.08 5.66 5.53 800 128.02
78.42 36.26 19.53 11.77 791 6.08 5.68 5.53 1000 160.02
78.08 36.18 19.49 11.76 7.90 6.08 5.67 5.53 880 140.82
78.84 36.39 19.56 11.79 7.92 6.08 5.67 5.54 1210 193.63
79.27 36.53 19.62 11.81 7.92 6.08 5.67 5.54 1600 256.04
79.63 36.61 19.65 11.82 7.93 6.09 5.68 5.54 2000 320.05
79.711 36.62 19.66 11.82 7.94 6.09 5.68 5.54 2100 336.05
79.84 36.69 19.66 11.82 7.94 6.09 5.68 5.54 2400 384.05
80.00 36.74 19.68 11.82 7.94 6.09 5.68 5.54 3000 480.08
80.25 36.79 19.71 11.84 7.94 6.09 5.68 5.54 4000 640.11
80.35 36.83 19.72 11.84 7.94 6.09 5.68 5.54 5000 800.13
80.86 36.97 19.77 11.86 7.95 6.094 5.680 5.545

—2.457 —0.704 —0.238 —0.0891 —0.0356 —0.0161 —0.0123 —0.01110  Expansion at E

E E E E E E E E = . In expan-

: sion E is in Mev.
+0.0224 4-0.00405 +-0.00088 +-0.00021 +0.000054 +0.000014 +0.000008 +0.000006
E? E2 E? E2 E? E2 E? E2

TABLE V. Values of M as function of E and of scattering angle ©. In expansion E is in Mev.

8 =15° 20° 25° 30° 350 40° 42.5° 45° E (KEV)
216.4 67.79 27.29 12.97 7.121 4.679 4.164 4.000 150
214.4 67.05 26.98 12.84 7.073 4.669 4.162 4.000 200
213.2 66.59 26.79 12.76 7.045 4.663 4.160 4.000 250
2124 66.28 26.66 12.71 7.026 4.658 4.159 4.000 300
211.8 66.06 26.57 12.67 7.012 4.655 4.158 4.000 350
211.3 65.89 26.50 12.64 7.002 4.653 4.158 4.000 400
211.0 65.76 26.45 12.62 6.999 4.651 4.157 4.000 450
211.0 65.65 26.41 12.60 6.988 4.650 4.157 4.000 500
210.2 65.49 26.34 12.58 6.978 4.648 4.157 4.000 600
209.9 65.38 26.29 12.56 6.971 4.646 4.156 4.000 700
209.7 65.29 26.26 12.54 6.966 4.645 4.156 4.000 800
209.4 65.17 26.21 12.52 6.959 4.644 4.156 4.000 1000
209.5 65.24 26.24 12.54 6.963 4.644 4.156 4.000 880
209.1 65.09 26.18 12.51 6.954 4.642 4.155 4.000 1210
208.7 64.93 26.11 12.48 6.944 4.640 4.155 4.000 2000
208.6 64.88 26.10 12.48 6.942 4.640 4.155 4.000 2400
208.4 64.84 26.08 12.47 6.940 4.639 4.155 4.000 3000
208.3 64.78 26.05 12.46 6.936 4.639 4.155 4.000 5000
208.0 64.68 26.01 12.44 6.930 4.638 4.154 4.000
+1.387 +-0.494 +0.198 4-0.0803 +40.0288 +0.00635 -+0.00153 Expansion at E= «,
E E E E E E E In expansion E
is in Mev

—0.0200  —0.00421  —0.00096 —0.00020 —0.000030  —0.000002
B2 B2 E2 B2 B2 L2




1026

In these expansions E is in Mev and 7E? was
taken to be 0.1581.

The number of counts expected according to
Mott’s formula is practically independent of the
choice of fundamental constants. It can be ex-
pressed in terms of the Faraday constant, the
velocity of light and the density of hydrogen in
the scattering volume. In addition there enters
m of Eq. (3.3) which is 4 for ©=45° at all
energies and depends only little on the energy at
other angles. For one microcoulomb of incident
protons the yield of scattered protons is:

e 204
Y= 10—35pH( )c“—im(lO*“Vabs)”2 cot O.
HC ob

Here the absolute coulomb and absolute volt are
used as units, pg=density of hydrogen, ¢=ve-
locity of light, Muy=mass of neutral hydrogen
atom. The quantities 4, 2b, Ry, h refer to the
detector system for counting protons. The
notation is 4 =area of hole, 2b=width of slit,
Ry=distance from hole to beam, h=distance
from hole to slit. Using e/ Mc¢=9648.9 abs.-e.m.u.
g-equiv.7l, ¢=2.99796X 10! cm sec.”t and com-
puting px for one mm of oil having density 0.864
with hydrogen at 0°C one obtains

204
Vabs=581.0——9M (107 Vaps)~2 cot O.

o

Here M is taken to be the mass of the average
oxygen atom. Supposing that average hydrogen
contains 0.04 percent of O;; and 0.20 percent O
one has M= (7)X1.000275X mass of O atom
=(1.000275/1.00813) M. The density of hydro-
gen at 0°C and normal atmospheric pressure was
taken as 8.988X 10~ g/cm3; the presence of
deuterium was neglected. Boyle's law was as-
sumed, and normal atmospheric pressure was
used as the pressure due to 760 mm of mercury
having density 13.5951 with the acceleration due
to gravity having the value 980.665 cm sec.”.
The deviation of the acceleration of gravity in
Madison (980.365 cm sec.”?) from the standard
was taken into account. In international volts and
coulombs (International volt=1.00045 abs. volt;
International coulomb=0.99993 abs. coulomb)

204

Yintern =580.5 m(lo—(i Vintern)—z cot @. (3.4)

ol

BREIT, THAXTON AND EISENBUD

This is the Mott yield per international micro-
coulomb of incident protons neglecting the geo-
metrical corrections which will be discussed later.
The final adjustments to the reduction of data
from both laboratories have been made from
the above formula.

The assumption of the validity of Boyle’s law
and the compressibility of Apiezon oil B (the
latter has been pointed out by Mr. L. E. Hoising-
ton) introduce small errors in the above constant.
The compressibility of oil presumably makes it
necessary to decrease the above number by
about 0.01 percent. Assuming the equation be-
tween volume and pressure for hydrogen to be
pv=0.99938-+40.00062p, with p in atmospheres,
one has for small v; 1/9=1.00062p. The above
result should be increased therefore by 0.06
percent on account of the inaccuracy of Boyle’s
law. Both of these corrections were omitted as
insignificant.

2. Effect of error consisting of constant factor

Because of an error in the measurement of the
slit system through which the protons are ad-
mitted to the ionization chamber there may be
present in the measurements an error consisting
of a factor which does not depend on the scatter-
ing angle. Errors in the operation of the scale-of-
ten counter that do not depend on the pulse size
entering the amplifier are independent of scatter-
ing angle. Similarly some of the errors in the
calibration of the Faraday cage used for measur-
ing the primary current enter in the same way
for angles and errors in the operation of the
Faraday cage during the scattering measure-
ments may depend on the primary energy but
should be independent of the scattering angle.
Similarly an error in the measurement of the
pressure comes under the present head. An effect
of an error in the measurement of the energy of
the incident particles is also mainly of the nature
of a constant factor for all angles but is slightly
more complicated. It will be treated as a separate
error in another section.

It is found on calculation that in the range
1400-2400 kev a factor independent of angle
does not introduce an apparent presence of a p
wave to an important degree. If the scattering is
due to an s wave anomaly alone then a reason-
ably small error of this'sort produces very nearly
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the same error in K, at all scattering angles that
are used in the experiments for determining K.
This condition can be expected to persist at the
higher energies because the Coulomb scattering
becomes increasingly less important. Spherical
symmetry in the system of the center of gravity
which is characteristic of s scattering cannot be
destroyed by an error which is independent of
scattering angle and, therefore, a p wave anomaly
cannot be introduced by such an error. On the
other hand, in the lower energy region 600-900
kev, the Coulomb scattering becomes more im-
portant. The spherical symmetry of the scatter-
ing in the center of gravity system is then
destroyed. A factor constant at all angles pro-
duces in this energy range effects on K, which
depend on the scattering angle used. An ap-
parent p wave anomaly can be introduced at
these energies by such an error. Since one may
expect theoretically that p and d anomalies
increase with energy this circumstance is fortu-
nate for judging experimental data as to presence
in it of errors of this nature. For if the data
indicate at the higher energies that the anomaly
is due to s scattering alone then, even though the
value of K, obtained from the data may be
incorrect, there is no p scattering and, therefore,
there should be no p scattering at the lower
energies either. If, in addition, the 600-900-kev
range shows no p scattering, then the absolute
values in this voltage range must be right because
otherwise a constant factor at all angles would
introduce p scattering. There is at present no
indication of a p wave in the 1400-2400-kev
range and the above criterion can be used. Errors
which are represented by a factor which depends
on the scdttering angle are, of course, not taken
care of by the above type of test.
Let ®=P/Py =then

2Y
+— ) sin 2K, (4)
M

——=———cos 2K+
6K0 'r]ST(

IR 2X 4
(e

gives the sensitivity of ® to K, and

ae=(57.3°/100)/(0®R/®RIK,); (R—1.01®) (4.1)

represents the error in Ky due to one percent
error in ®. In Table VI values of this error are
listed for different scattering angles, energies
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and phase shifts. The latter were obtained from
theoretical calculations with dn interaction po-
tential having a constant wvalue through a
distance e?/mc®. The negative of the potential
energy (depth of well=D) within this distance
in Mev is given in the last column. Outside the
distance ¢?/mc® the Coulomb field e?/r was
assumed to represent the potential energy. The
phase shifts used correspond approximately to
the experimental values. For D=11 Mev the
phase shifts in this table were obtained by
extrapolation from D=10.0 and D=10.5 Mev.

It is seen from the table that at ®=15° and
20° the accuracy for determining K, is frequently
poorer than at other scattering angles. For
K(,=34.8°, E=880 kev, ®=15° the accuracy is
especially poor. This is because close to this
energy the ratio ® is practically independent of
K,. At all energies the optimum range of angles
for determining K is around ©=45°. It should
be pointed out again that at the higher energies
the same percentage error in ® gives practically
the same error in K, except at ®=15° while
from 1600 kev down there is a noticeable change
in 6K, with O. :

The changes of sign in 8K, which occur in
Table VI are somewhat confusing, and it is at
times better to express the results in terms of the
percentage by which the apparent ® differs from
the ® that is theoretically expected using the
apparent K, as derived from the data at ®=45°.
If the correct ® is changed at all angles into
(14+e)®=@®’, then the value of K, using
O=x/41is Ko+ (6Ko) /4 where

(6K0)r/s= e[ R/ (3R /0K ) I a-

From this phase shift the expected ® at other ©
is ®+(0®R/9K,) (6K )x/4. One has

(R//[(R'{- (a(R/aKo) (BKo) 1r/4]
=14 (¢/6K0)[6Ko— (6K o) /4]

=1+4(¢/ae)(@o—ars). (4.2)

The quantity (ag—ax/4)/ag is thus the ratio of
the apparent percentage deviation of ® from the
value to be expected at scattering angle ® from
the apparent K, at ®=45° to the percentage
error in ®. Values of this ratio are given in
Table VII.
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TABLE V1. Values of error in phase shift Ko in degrees due to one percent error in measured scattering.

0 =15° 20° 25° 30° 35° 40° 42.5° 45° E (xEV) Ko D (MEvV)
—-23 —0.97 —0.51 —0.28 —0.16 —0.10 —0.087 —0.082 175 5.5° 10.395
—1.4 - .1 — .40 - .23 - 12 — .061 — .045 — .039 275 9.6° 10.395
—-1.2 — .64 — 42 - .29 - .19 - .091 — .038 - .013 375 13.7° 10.395
-1.1 - .67 - .55 - .85 + .34 + .049 + .023 + .017 450 16.4° 10.395
-1.1 - .85 —-3.1 + .29 + .088 + .047 + .041 + .039 550 19.8° 10.395
-1.2 —2.2 0.50 14 .083 .068 .065 .064 650 23.8° 10.500
—-1.5 +3.1 .27 12 .094 .085 .084 .083 750 26.6° 10.500
—-2.2 +0.85 21 12 A1 .102 .101 .101 850 29.2° 10.500
-2.7 .70 .20 13 A1 A1 A1 A1 880 30.0° 10.500
1.8 .30 .18 .16 15 15 15 .15 1210 36.2° 10.500
0.94 .26 19 A7 A7 A7 A7 A7 1400 39.0° 10.500
.66 .25 .20 .19 19 .19 .19 .20 1600 41.4° 10.500
51 .25 21 21 21 22 22 22 1830 43.8° 10.500
46 25 22 22 22 23 .23 23 2000 45.1° 10.500
43 .25 .23 .23 23 .23 24 24 2100 45.7° 10.500
.39 .26 24 25 .25 .26 .26 .26 2400 47.6° 10.500

3. Effect of error in voltage

If the experiment is performed at an energy E
and if there is only an s wave anomaly the ratio
®=P/Py is given by Eqgs. (2) with a suitable K.
If the energy at the scattering volume is incor-
rectly judged to be

E'=E+4E

one obtains an apparent experimental value ®’
for that ratio at the energy E’. This value cor-
responds to an apparent phase shift K, if Egs.
(2) are used. In this section

BK():KO,—KO

will be called the error in the phase shift. This
nomenclature is not the best because it takes no
account of the fact that at the energy E’ the
correct phase shift differs from K,. This circum-
stance will be discussed later in connection with
the variation of K, with E and the effect of a
possible error in voltage on the magnitude of the
interaction potential. It will then be seen that

only a fraction of K, matters for conclusions
drawn from experiments at the higher energies.
It is seen in Table V that 9 changes very
slowly with energy. It is thus sufficiently accurate
to consider Py as being proportional to E~2. The
apparent value of ® at energy E’ is then

&' = (E'/E):® =(1+23E/E)&.
This may be equated to
R+ (IR /IE)SE+ (0®/0K o) oz, oKo.
One obtains thus
dx, gKo=(2R/E—9®/OE)SE/(d®/dKo)---. (5)

Treating again 9 as independent of the energy
one has

IR sinKocosKo(X X
e Xy
oE Eqo an
sinfKoz4 Y
(—+———— (5.1)
Em \9* 95 07 '

TABLE VII. Percentage by which apparent ratio to Mott is higher than value calculated from apparent phase shift Ko determined
at © =45° if at all angles the measured yields are too high by one percent and if the anomaly is due only to s scattering.

Quantity tabulated is (ag—ar/4)/ag. Values

of Ko correspond to ro=e?/mc?, D=10.5 Mev.

e=15° 20° 25° 30° 35° 40° 42.5° E (XEV) Ko
1.04 0.85 0.46 0.164 0.043 0.008 0.002 880 30.0°
92 .50 14 .02 —.003 —.002 —.001 1210 36.2°
81 34 .064 —.0004 —.009 —.003 —.000 1400 39.0°
.70 22 .015 -.019 —.013 —.004 —.001 1600 41.4°
.58 A2 .019 —.028 —.015 —.004 —.001 1830 43.8°
.50 .07 -.032 —.032 —.016 —.004 —.002 2000 45.1°
.46 .051 —.038 —.033 —.016 —.004 —.001 2100 45.7°
34 —.001 —.052 —.037 —.017 —.003 —.001 2400 47.6°
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TABLE VIII. Values of error in phase shift Ko in degrees due to one percent error in voltage of scattering volume.

0 =15° 20° 25° 30° 35° 40° 42.5° 45° E (xEV) Ko D (MEvV)
—4.6 —2.0 —1.05 —0.60 —0.36 —0.23 —0.20 —0.19 175 5.5° 10.395
-2.9 —-1.5 —0.86 — .51 - .30 - .17 - .14 - .13 275 9.6° 10.395
—2.4 —14 - .91 — .65 — 46 — .26 - .15 - .10 375 13.7° 10.395
-2.3 —-1.5 —1.19 —1.8 + .63 + .027 — .031 — .045 450 16.4° 10.395
—2.3 —-1.8 —0.65 +0.51 + .081 — .004 - .014 - .018 550 19.8° 10.395
—2.6 —4.6 + .90 A7 .049 .018 .013 .012 650 23.8° 10.500
—-3.2 +6.1 41 12 .055 .038 .035 .034 750 26.6° 10.500
—4.7 +1.6 .27 .10 .067 .056 055 .055 850 29.2° 10.500
—5.7 1.26 .25 .10 071 .063 .061 .061 880 30.0° 10.500
+3.6 0.43 A7 A2 114 113 113 114 1210 36.2° 10.500
1.7 .33 A7 .14 .14 .14 .14 14 1400 39.0° 10.500
1.1 .29 .18 .16 .16 .16 .16 .16 1600 41.4° 10.500
0.83 27 .19 .18 .18 18 .19 19 1830 43.8° 10.500
J1 .26 .20 .19 19 .20 .20 .20 2000 45.1° 10.500
.66 26 .20 .20 .20 21 21 21 2100 45.7° 10.500
.56 .26 22 22 22 23 23 .23 2400 47.6° 10.500

Computing this one obtains the numbers in
Table VIII.

The phase shifts, energies and depths of well
in Table VIII correspond to those in Table VI.
The effect of an error in voltage is seen to become
nearly independent of the angle at the higher
energies. In this respect the effect of an error in
voltage is very similar te that of an error due to
a factor independent of angle.

The effect of an error in voltage is somewhat
simpler when it is expressed in terms of the per-
centage by which the observed scattering at an
angle © differs from the scattering to be ex-
pected, when only an s scattering anomaly is
assumed and when the observed scattering at
©=45° is used. This can be done using the num-
bers tabulated in Tables VI and VIII. The
quantity recorded in the latter table is

be=0.573Edg, oK /SE. (5.2)

The quantity ® is a function of K, and E and in
the absence of exact knowledge of the voltage
the value of ® theoretically expected at the angle
0 and the apparent energy E’ using observations
at @=x/4is
®R(Ko+ g, »/aKo, E+SE)

=R+ (0R/0K)dz, =+ Ko+ (dR/IE)SE=R".

The ratio of the apparent value ®’ to this
expected value R’ is then

®R'/R"=14+(0R/RIK ) (dr, 0K o— 6z, z/4K0)

=1+ (3E/E)(be—bx1)/ae. (5.3)

By means of Eq. (5.3) and Tables VI and VIII
one can obtain the ratio ®’/®’. The percentage
by which the observed value at scattering angle
® should differ from the value to be expected on
the basis of measurements made at ©=45° is
seen to be the percentage of error in the voltage
multiplied by

(be_br/‘i)/ae-

Values obtained in this way are tabulated in
Table IX.

4. Estimate of spread of beam due to collisions.
Discussion of pressure effects in argon and
krypton. Multiple scattering

As the beam goes through the scattering
chamber it becomes spread on account of the
many small collisions that each bombarding
particle makes with the hydrogen atoms of the
gas. The purpose of the present section is to make
estimates of the order of magnitude of the addi-
tions to the width of the beam due to this cause.
The diameter of the beam must be kept some-
what smaller than the diameter of the foil used
to admit the protons into the evacuated Faraday
cylinder connected to the current integrator. The
fluctuation of the direction of the beam due to
changes in the accelerating tube makes it unne-
cessary to have more than estimates of order of
magnitude.

The relatively numerous small angle collisions
may be considered in first approximation as
changing the direction of motion without chang-
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ing the energy of the particle. The vector repre-
senting the velocity is changed at each collision
through the addition of a small vector perpen-
dicular to the initial direction and the probability
of the occurrence of a single such change in a
short path can be calculated by means of
Rutherford’s or Mott’s scattering formula. For
the first collision the change of direction occurs
in a plane perpendicular to the original beam,
but in later collisions it takes place in planes
having slightly different directions. Since the
total deflection is supposed to be small the change
of orientation of the planes will be neglected. The
additions to the velocity may then be considered
as taking place in the same plane but each suc-
cessive addition must be considered as taking
place in a random direction with probabilities
determined by Rutherford’s formula. Instead of
using the velocities one may also deal directly
with vectors having absolute values equal to the
angular deflections and drawn in the direction
of the velocity changes. The problem is thus very
similar to that of “random flights’ in a plane.

A set of random radial displacements in a
plane having equal magnitude « gives resultant
displacements for which the Cartesian coor-
dinates x, y, and distance, 7, have (7%)n= (2x%)a
=(2y)%= (na®)a. For large n the average devi-
ations of the squares correspond to a Gauss error
distribution. It is shown in Rayleigh’s Theory of
Sound'® that the distribution is of the Gauss
error type even if one deals with the composition
of a large number # of components with am-
plitude «, a large number #’ of components with
amplitude B, etc. The chance of a resultant dis-
placement of amplitude between 7 and 7-+dr, is
then according to Rayleigh

P(r)dr=2(no2+n'g24-- )"l
Xexp [—7*/(na?+n'g+- - ) Jdr.

The number of deflections taking-place in an
infinitesimal angular range is, of course, not
infinite and it is not justifiable to apply this
formula since the numbers #, #’, --- are not
infinite. It may, nevertheless, be expected to give

1 Lord Rayleigh, Theory of Sound, second edition (Mac-
millan Co., 1894), Vol. I, p. 41; G. N. Watson, Bessel Func-
tions (Cambridge University Press, 1922), p. 419 for refer-
ences.
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the result approximately because the angular
range may be divided into finite rather than
infinitesimal intervals and because the validity of

(=o't

does not depend on #, #’, - « - having large values.
In the remainder of the discussion (#%)y=(6%)y
(6=angular deflection) will be calculated and it
will be assumed that the distribution is not far
from that given by Rayleigh’s formula. Since the
latter drops off steeply at and beyond [(6%)a 3,
the values of this quantity will be used as
estimates of the probable angular spread.

For scattering from a heavy nucleus such as
that of argon Rutherford’s formula applies. It
will be supposed that the scattering by an atom
of argon becomes zero when the impact parameter
(distance from nucleus to orbital asymptote at-
) is greater than some suitably chosen distance
p of the order of nuclear dimensions. Corre-
sponding to this distance there is an angle of
minimum deflection w which, when small, is
given by

w=Z22Z'¢®/Ep, (6)

where Ze, Z'e are the charges of the colliding
nuclei and E is the kinetic energy of the scattered
particle. The chance that one small angle col-
lision should take place into an angular range 6,
6-+d0 on going through a thickness / of gas having
#n atoms per cm?® is
Ko-3d9,
where

K=2rnl(ZZ'e*/E)*. (6.1)

For large angles this is not true. The number of
large angle collisions is, however, quite small and
they will be neglected in studying the spreading
of the beam. One has then

9m ax

(EO))w=K f -36°d0=K In (fmex/w), (6.2)

where Omax, is a suitably chosen upper limit for
elementary deflections that need to be taken
into account. For an argon pressure of 60 mm of
oil having a density 0.866 one has a pressure equal
to that of 3.83 mm of mercury so that #=2.70
X 1019 3.84/760=1.36X10'". For E=2mc one
has then K=1.21X10"* for a path length /=22
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cm. Assuming p = Bohr radius=0.528 X108 cm,
one has at an energy of 2mc® the wvalue
w=18e?/2mc*an=9(e?/hc)?=4.79X10~%.  The
number of single deflections into Aw is ~Kw3Aw
=500Aw/w. Thus practically every proton suffers
several small angle collisions. Using Opax=7/2
one has In (Opax/w)=8.1 and using Omax=1°
=1/57.3 one has In (Opax/w)=3.6. The result is
seen to be insensitive to the choice of 0y4x. Using
Omax=1m/2 one obtains Table Xa. In the last row
is given the quantity 2/A6/3. This is an approx-
imate estimate of the linear spread of the beam.
The root mean deviation A is assumed here to
give sufficiently well the direction of motion of
the root mean deviation of the linear displace-
ment Ax so that,

l
Ax=A0 | (y/D)idy=2IA0/3.

0

This assumption is crude, but should be good
enough for estimates of order of magnitude. The
values in Table Xa are probably too high since
Omax=m/2 is an overestimate. With 60..=2°
=0.0349 values given in Table Xb are obtained.
These may still be somewhat too high because
for this Om.x at E=2mc? one has K0n.x2=1.2
X 1074/(0.035)2=0.10. There is, therefore, only
a chance of 1/10 that a proton will be scattered
into a 2° range at the rate at which scattering
occurs at 2°. However, this chance increases
rapidly towards smaller deflections.

In order to obtain the same spread at E =4mc?
as at E=2mc?, the pressure must be increased
nearly four times so as to compensate by means
of # the change in E and to obtain the same K.
For 6,,:=0.0349 the factor In,(0m.x/w) increases
from 4.30 at E=2mc® to 5.00 at E=4mc?. Hence
the pressure should be increased in this case not
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quite by the factor four but by 4X4.30/5.00
=3.4. If Omax=mw/2, the increase in pressure
required to produce the same spread at 4mc? at
a higher pressure as at 2mc? at a lower pressure
is 4X8.1/8.8=3.7. The accidental fluctuations
of the direction of the proton beam and the im-
possibility of knowing precisely its width make
it difficult to determine just how the loss of some
of the incident protons through multiple small
angle scattering will affect the measurements at
a given energy as the pressure is varied. A better
test of the origin of the observed deviations is to
vary the energy and the pressure in such a way
as to obtain the same apparent deviation from
Rutherford’s scattering. Then according to the
estimates just made the same deviations should
be obtained at two Mev at a pressure of about
3.4p as at one Mev at a pressure p. These pre-
liminary estimates will be improved presently
by using Eq. (6.6).

In hydrogen at the pressures used the spread
of the beam due to multiple small angle scatter-
ing should be much smaller than in argon because
the large scattering anomaly at ©=45° makes it
unnecessary to have as large a small angle scat-
tering in hydrogen. In this case the chance that
one small angle collision should take place into
an angle between ® and ©®+4d0 on going through
a thickness / of gas having # atoms per cm? is

KH ®_3d®,
where

Ku=2wnl(e®/E)2. (6.3)

For E=2mc? and a path length /=22 cm through
hydrogen gas at 12 mm Hg pressure one has
n=8.5X10, Kg=2.34X10"%, w=2.66X10"°.
The probable angular spread must be less than
[KIn7/40]#=0.0049 =0.28°. The probable linear

TABLE IX. Percentage by which apparent R is higher than value calculated from apparent phase shift Ko determined at © =45°
if the voltage measurements are too high by one percent and if the anomaly is due only to S scattering. Quantity tabulated
is (bg—bx/1)/ag. Values of Ko correspond to ro=e?/mc?, D=10.5 Mev.

©=15° 20° 250 30° 3s° 40° 42.5° E (XEV) Ko
2.09 1.72 0.95 0.34 0.090 0.017 0.003 880 30.0°
1.9 1.04 33 .064 .004 —.002 —.002 1210 36.2°
1.7 0.74 17 .014 —.009 —.003 —.001 1400 39.0°
1.5 52 .085 —.013 —.015 —.005 —.001 1600 41.4°
1.3 34 .021 -.029 —.020 —.006 —.001 1830 43.8°
1.1 .25 —.005 —.036 —.021 ~.006 —.002 2000 45.1°
1.0 21 —.018 —.039 —.020 —.006 —.001 2100 45.7°
0.84 A1 —.042 —.043 —.021 —.004 —.002 2400 47.6°
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TaABLE Xa. Estimate of linear spread of proton beam with

Omaz assumed to be w/2.

E=1mc? 2mc? 3mc? 4mc?
- [((ze)2)n Tt =3.4° 1.8° 1.2° 0.93°
Ax=2IA0/3=0.88 cm 0.46 cm 0.31 cm 0.24 cm

displacement must be less than 0.07 cm. Accord-
ing to Table Xb this linear displacement cor-
responds to a pressure of (0.07/0.33)2X60 mm
=3 mm of argon at an energy of 2mc? According
to Fig. 10 of the paper of HKPP a pressure of
3 mm of argon at 860 kev shows no definite
difference from Rutherford’s scattering and may
be in agreement with it. Although the evidence
for this is not very definite it would be surprising
if this error could be serious for hydrogen since
there is good agreement of absolute yields in the
overlap region between HHT and HKPP.

The above estimates are too crude for a com-
parison of argon and krypton scattering since
screening is taken account of too roughly. An
idea of the effect of screening can be obtained
using the Thomas-Fermi field. The effective
nuclear charge for force as a function of the
distance # will be called Z.(#). For small deflections

/2
0= (¢*/pE) f Z.(p/cos o) cos edo
0

and

f nl0%20dQ

© /2 2
=Kf {f Z.(p/cos @) cos godga} p~idp.
»(min) (¢ 0

On account of the inapplicability of the formula
for 6 at large 8 the integration over the distance
of closest approach is cut off at a suitable pmin.
The Fermi-Thomas field gives Z,=Zf(#) with
£=7Z%/(0.885ax). The function f({) starts at
f=1 for £=0, decreases roughly linearly up to
£=2 and approaches f=0 asymptotically for
large £ At £=8 it is ~0.1. The function will
be approximated by

f(§)=A—B¢

through the region in which the above expression
gives positive values. For larger £ it will be
supposed that f=0. This is admittedly an ap-

(4, B>0)
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proximation. The integrations give
1 5
fnlo%dﬂ-:-KA?[Eg“mz sin? {m—z sin? {,,

3 3
+E§'m sin {n COS g‘m—zf mi—In cos ;m], (6.4)

where
tan {n— {n=0.885auZ~43(E/e*)bmax/B,

(6.5)
cos {m=(B/A)Z*(min)/(0.885¢x).

The last equation determines ¢, in terms of
p(min) which is the smallest impact parameter
admitted by the requirement of using a formula
for 9 valid only for small 6. The equation before
last similarly determines ¢, in terms of Omax.
The large value of au/(¢®/E) makes the right
side of Eq. (6.5) of the order of 100 which makes
Em~m/2. Setting

(m=m/2—¢
one has
1/e=0.885aaZ~*3(E/€?) Omax/B
+x/24+---, (6.5

((26))n=KA —5/4—2/16
+In (1/€)+met---] (6.6)

where K is given by Eq. (6.1). The result in the
form of Eq. (6.6) is similar to Eq. (6.2). It is
more suitable for the purpose of comparing
krypton with argon because the screening is made
to vary with Z in accordance with the Fermi-
Thomas distribution. Using Omux=1%, B=1%,
A=1 one has at 860 kev 1/ex21.40X104Z—43
which gives for the coefficient of KA?in Eq. (6.6)
the values 2.92 for krypton and 3.83 for argon.
The number of argon atoms n, that would be
expected to give the same effect as nx krypton
atoms should be therefore #,=4(2.92/3.83)nx;
=3.0nx,. The experimental ratio of the argon
pressure to that of krypton for the same per-
centage difference from Rutherford is approxi-

TABLE Xb. Estimate of linear spread of proton beam with
Omaz assumed to be 2°.

E=1mc? 2mc? 3mc? 4mc?
[((Z0))n]t=2.4° 1.3° 0.91° 0.70°
21A0/3=0.61 cm 0.33 cm 0.23 cm 0.18 cm
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mately 2.3. The discrepancy between these two
numbers can be reduced by using a larger B.
There is some justification for using a larger B
because most of the contributions to ((Z6)?)a
come from small p and the values of £ that
correspond to pmin are, with the above constants,
0.04 for krypton and 0.02 for argon. The values
of £,=2%/(0.885ax) that make important con-
tributions are <0.4 and one may therefore use
the initial rectilinear portion of the f(£) curve.
For this A=1, B=1% are fair values. Also
Omax = 1/20 corresponds better to Table Xb than
fmex=14. Making these changes one obtains
na=4(1.71/2.62)ng,=2.6nx,. This is not far
from the experimental value 2.37k.. The co-
efficient of K in Eq. (6.6) is smaller than in the
computation of Table Xb. The difference is less
than a factor 2 and does not affect seriously the
linear spreads.

The scattering in argon at 860 kev can be
compared with that at 1830 kev. Comparing the
pressures giving 16 percent difference from
Rutherford’s formula one has a ratio 3.1. The
ratio of energies is 2.13. The ratio of pressures
expected on account of the variation of K with
energy is therefore 4.5=(2.13)2. The ratio
4.5/3.1=1.5 must be accounted for by the
change in the bracket in Eq. (6.6). Here again
it is favorable to assume a large B and a small
Omax. With B=% and 6m.x=1/20, the bracket is
2.62 for 860 kev and 2.62+1n, 2.13=23.38 for 1830
kev. The corrected expectation for the ratio of
pressures is (2.13)2(2.62/3.38)=3.5. This is in
fair agreement with the experimental 3.1. Here,
as in the comparison with krypton, the coefficient
of K does not change quite as rapidly as experi-
ment requires. It appears from the above com-
parisons that the large scattering observed at
high pressures is due to the spreading of the
beam. On the 'other hand, the agreement between
expectation and experiment is sufficiently imper-
fect to allow at least partly another explanation.

Double scattering in which the first deflection
is greater than 5° will be seen to contribute little.
The percentage difference caused by it should
vary as nZ%/E?. Experimentally » must be varied
more slowly than Z2?/E? in order to give the same
percentage difference. This speaks against at-
tributing a large part of the effect to double
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scattering in which the first deflection is >5°.
The chance that a proton will be scattered into a
cone between 6, and 6, is (K/8)(1/sin? 6:/2
—1/sin? 65/2). For a path of 10 cm at 860 kev
through argon at 60 mm oil pressure K/8=10-5,
The total number of protons scattered beyond 5°
is according to this 0.5 percent of the number of
incident protons. The change in the proton
energy due to argon recoil is negligible for such
a small fraction of the whole number. The effect
of the change in direction can be estimated from
a formula for second-order corrections caused by
the divergence of the beam which is considered
at the end of the section on ‘‘Geometrical Cor-
rections.” According to this the fractional in-
crease in the scattering due to spreading the
proton beam uniformly on the surface of a cone is
256%/402 where O is the angle between the axis
of the cone and the central line of the analyzing
system while 6 is the scattering angle for the
first deflection. It is assumed that the angle 6 is
small. The chance of 6 being between 6 and

9+do is Kd6/6%. The fractional increase in

scattering is
(25K /40%) In (Omax/ Omin)-

For Omax=m/2, Omin=>5°% 0=20° this gives for
argon at 860 kev, with path length /=10 cm, at
a pressure of 60 mm of oil an effect of 1.1 percent.
Decreasing 0mi, to 2.5° increases this to only 1.4
percent. This effect is seen to be not serious since
the total deviation from Rutherford’s formula is
~25 percent. There should be an additional
smaller effect due to having a large deflection
first and a small one afterwards. This effect is
expected to be smaller because the distance from
the analyzing slit to the beam is ~3 cm. Since
for larger ® these corrections decrease as ©2
they account for only a small part of the whole.

For double scattering in which the first de-
flection is of the order of 1° or less it ceases
to have meaning to consider only double scatter-
ing because the spread of the beam due to
multiple scattering is of this order of magni-
tude. It is also incorrect to use the expression
(25K /402) In (0max/0min) for too small values of
Omin because it was supposed, in deriving it, that
the major part of the beam suffered no deflection
comparable with 6,;,. The contributions due to
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double scattering in which the first angle is very
small will be considered, therefore, as part of
the effect of multiple scattering at small angles
followed by a large deflection. The fractional
effect due to this cause is (25/4)((£6)%)n/0% For
a path of 10 cm in argon at 60 mm oil pressure
at 860 kev for © =20° the above expression gives
1.0 percent. This effect should have the same
value for a given value of the expression (6.6)
and the estimates of the way » varies with Z
and E made for the effect of missing the Faraday
cylinder apply to this effect also. Double scatter-
ing through larger angles as well as multiple
scattering through small angles followed by a
large angle deflection give, with the approxima-
tion used here, fractional increases which vary
directly with the pressure. It is surprising that
the experimental curve gives also a linear varia-
tion with pressure for the fractional increase,
but it is difficult to predict the law of increase
with pressure without knowing more about the
structure of the beam. There appears to be no

objection so far, therefore, to attributing the

pressure effects in argon and krypton primarily
to the spreading of the beam and the too low
value for the number of incident protons.

5. Values of phase shift derived from experiment

Explanation of tables.—In Table XI are given
values of the ratio to Mott ® as obtained from
experiment by Herb, Kerst, Parkinson and
Plain. These represent the mean of several ob-
servations at energies close to the value listed in
the first column. Where necessary corrections
have been applied by them for the rate of change
of yield with voltage in reducing the values to a
common energy. The table consists of six sections
each section of which refers to one energy. The
first line of each section gives the value of ®
tabulated by HKPP in their Table I. The second
line gives the corrections which have been ap-
plied to this ®. The corrections are expressed in
percentage of ® and are in each case a sum of
corrections for temperature of oil used in the
manometer and a correction for fundamental
units. The latter was made so as to reduce the
values to Eq. (3.4). It amounts to a uniform
increase of all values by 0.381 percent. The
corrections for oil temperature are listed by
HKPP in their Table I(a) and have been added
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to the correction for fundamental units. The
final corrected value of ® is listed in the third
row. The fourth and fifth rows give values of ®
for two values of K, differing by 1° and repre-
senting approximately the experimental values.
The object in listing these numbers is to show
the sensitivity of ® to K,. In the sixth row are
given values of K, obtained from each scattering
angle on the assumption of a pure s anomaly.
The arithmetic mean of the values so obtained
from ©=30° 35° 40° 45° stands in the sixth
row and last column. The values of K, obtained
for smaller scattering angles were not used in
taking the mean because the accuracy in the
determination of K, is expected to be poorer for
them. It is satisfactory to note, however, that
for ®=25° the experimental mean K, and the
derived K, agree quite well and that the only
large deviations for ®=20° are 0.6° for 1200 kev
and 0.4° at 2105 kev. For ©=15° the deviations
from the mean are large and are probably due to
the poor sensitivity caused by the predominance
of Rutherford scattering and by the presence of
a slight systematic error caused by the variation
of the scattering yield within the scattering angle.
The seventh line contains values of ® computed
for the mean K, on the assumption of absence of
higher phase shifts and the eighth gives the
percentage difference of the observed (line 3) and
computed ®. This last line contains information
regarding the presence of higher phase shifts.
The experimental values used above corre-
spond to the calibration of -the ballistic gal-
vanometer for current measurement by the
“current time method.” In addition Herb et al.
have used a calibration by the ‘‘air condenser
method.” The latter gives values of ® greater
than the “‘current time’’ values by 0.76 percent.
Reasons for considering the current time method
as more reliable are given in the paper of HKPP.
The effect of using the air condenser values is,
therefore, not tabulated. An alternative inter-
pretation of the data would consist in increasing
all experimental values of HKPP by 0.38 percent.
According to Table VII the percentage difference
between the observed and computed ® (eighth
row of each section in Table XI) will be affected
at the higher energies by negligible amounts
except at ©®=15° where ~0.2 percent would have
to be added. The uncertainties in geometrical
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TaBLE XI. Phase shift analysis of data of Herb, Kerst, Parkinson and Plain.

0=15° 20° 25° 30° 35° 40° 45° =15 20° 25° 30° 35° 40° 45°
E=860 kev E=1200 kev
® from HKPP 0.750 0.672 0.811 1.317 2.229 3.38 3.90 |® from HKPP 0(.743 0.901 1.590 3.20 5.90 8.93 10.32
Corrections 327%  327% 3279 0.327% 0.327% 0.3279% 0.327%)]Corrections 5269  526% 0.525%, 0.526% 0.525% 0.525% 0.525%
Final ® 752 674 814 1.321 2.236 3.39 391 |Final® 47 .906 1.598 3.22 5.93 8.98 10.37
®R (Ko=29°) 724 670 811 1.288 2.184 3.278 3.821 |R (Ko=35°) 715 .860 1.516 3.004 5.511 8.43 9.87
® (K=30°) 721 679 853 1.394 2.395 3.608 4211 |®R (Ko=36°) 718 .888 1.605 3.209 5.897 9.02 10.56
Ko from ® 29.45 29.07 29.31 29.25 29.34 29.23  |Kofrom ® 36.60 35.92 36.05 36.08 35.93 35.72
Mean Ko from ©=30°, 35° 40°, 45°=29.28° ’ Mean Ko from ©=30°, 35°, 40°, 45°=35.94°
®R (K0=29.28°) 0.723 0.673 0.823 1318 2.243 3.370 3.930 |R (Ko=35.94°) .718 0.886 1.600 3.197 5.874 8.98 10.52
Diff. obs. and Diff. obs. and
comp. R 4.0% 0.1% -—-11% 0.2% 0.3% 0.6% =—0.5% comp. ® 4.0% 23% —0.1% 0.7% 0.96% 0.0% —14%
0=15 20° 25° 30° 35° 40° 45° 0=15° 20° 25° 30° 35° 40° 45°
E=1390 kev E=1830 kev
® from HKPP 0.777 1.080 2.196 4.59 8.23 12.74 14.88  |® from HKPP 0.884 1.661 3.862 8.24 15.04 23.12 27.28
Corrections 436% 0.436% 0.436% 0.436% 0436% 0.436% 0.436%|Corrections 491% 0.460% 0.460% 0.491% 0.460% 0.491% 0.460%
Final ® 780 1.085 2.206 4.61 8.27 12.80 1494 |Final ® .888 1.669 3.880 8.28 15.11 23.23 2741
®R (Ko=38°) 740 1.046 2.098 4.34 8.019 12.28 1435 R (Ko=43°) .851 1.598 3.676 7.86 14.53 22.18 25.91
®R (Ko=39°) 747 1.086 2.214 4.602 8.506 13.01 1521  |R (Ko=44°) .868 1.665 3.854 8.24 15.26 23.25 27.14
Ko from ® 38.97° 38.93° 39.03° 38.51° 38.71° 38.69° |Kofrom ® 44.06° 44.14°  44.10°  43.79°  43.98°  44.22°
Mean Ko from @=30°, 35° 40°, 45°=38.76° Mean Ko from ©=30°, 35°, 40°, 45°=44.02°
® (Ko=38.76°) .745 1.076 2.186 4.539 8.389  12.83 15.00 R (Ko=44.02°) 0.868 1.666 3.858 8.25 15.27 23.27 27.16
Diff. obs. and Diff. obs. and
comp. R 4.7% 0.8% 0.9% 1.69% —149% —029% —04% comp. } 2.3% 0.2% 0.6% 04% —1.0% —0.2% 0.9%
0=15° 20° 25° 30° 35° 40° 45° 0=15° 20° 25° 30° 35° 40° 45°
E=2105 kev E=2392 kev
@® from HKPP 0.993 2.098 4.95 10.54 19.98 29.1 35.0 ® from HKPP 1.124 2.51 6.17 13.31 24.4 374 42.9
Corrections .601% 0.601% 0.601% 0.601% 0.601% 0.601% 0.601%]Corrections 0.604% 0.604% 0.604% 0.511% 0.511% 0.511% 0.604%,
Final ® 999 2.110 4.98 10.60 20.10 29.3 35.2 Final ® 1.131 2.52 6.21 13.38 24.5 37.6 43.2
® (Ko=46°) 963 2.058 4.926 10.58¢ 19.562  29.75 3472 |®R (Ko=47°) 1.055 2.428 5924 12.76 23.54 35.77 41.71
® (Ko=47°) .986 2.142 5.144 11.046 20.403 31.02 36.18 |R (Ko=48") 1.083 2.524 6.173  13.29 24.51 37.21 43.37
Ko from ® 46.62°  46.25° 46.03° 46.64° 45.64° 46.40° |Kofrom R 47.96° 48.15° 48.17°  47.99° 48.27°  47.90°
Mean Ko from @=30°, 35°, 40°, 45°=46.18° Mean Ko from ©=30°, 35°, 40°, 45°=48.08°
® (Ko=46.18°) .967 2.073 4.965 10.667 19.714 29.98 34.98 |R (Ko=48.08°) 1.085 2.532 6.193  13.33 24.59 37.33 43.50
Diff. obs. and Diff. obs. and
comp. } 3.3% 1.7% 03% —0.6% 2.0% —23% 0.9% comp. R 4.2% —047% 044% 037% —037% 0.729% —0.69%

corrections at this angle are greater than this
amount and the evidence regarding higher phase
shifts at these energies is thus unaffected. At 880
kev somewhat larger effects are produced. But
even here they are practically negligible giving
0.3 percent at 20° 0.17 percent at 25° 0.06
percent at 30°. Inasmuch as one expects the
effects of higher phase shifts to increase with
energy, these effects at 880 kev have little inter-
est. According to Table VI the values of the
“Mean K, would increase by ~0.04° at 860
kev, ~0.08° at 1830 kev and ~0.10° at 2400 kev.
Such changes will affect the magnitude of the
interaction by ~0.01 Mev for a ‘‘square well”
of depth 10.5 Mev or ~0.1 percent and will
shorten the range of force by an amount cor-
responding to an increase of « in Ae~** by less
than 0.2. The fit to the data by a fixed potential

cannot be made consistently to this degree of
precision and such a small effect in the range is
of little interest. The difference between the
values obtained by the ‘‘current time’ and ‘‘air
condenser’’ methods is seen to be insignificant
and the values obtained by the latter will be
disregarded from now on.

In Table XII the data of Heydenburg, Tuve
and Hafstad are analyzed. The arrangement is
similar to that used in Table XI. The table has
three sections for 670, 776 and 867 kev, respec-
tively. The observations of HHT have been made
at scattering angles differing by 2.5° from ®=20°
to ©@=45° The observed values of ®& have been
plotted by HHT on a large scale and smooth
curves against scattering angle have been drawn
by them. The numbers in the first row for each
voltage in Table XII have been obtained from
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these curves. These numbers are then increased
by 0.43 percent so as to reduce the units to those
used in Eq. (3.4). Since the acceleration of
gravity is different in Washington from that in
Madison the 0.43 percent takes into account this
difference also. The value of the mean phase
shift in Table XII was computed as the arith-
metic mean of the values calculated from © = 30°,
35°, 40°, 42.5°, 45°. In other respects this table
is just like Table XI. The percentage differ-
ence of observed and computed ® will be dis-
cussed after a consideration of the geometrical
corrections.

Corrections due to geometry of apparatus.—It is
-seen that in all cases the experimental value of
® for ®=15° is higher than the computed
number by two percent or more. If the scattering
yield into the infinitesimal angular range is
f(®)d® and if the actual spread is A® then

Bot+40/2

f F(©)d0/f(0)A®
[2)
=214 (A0)2f"(00)/24f(00)

—AB/2
gives the ratio of the yield which should be
observed to that which would be expected from
the scattering at the average angle ®, through
the scattering range A®. If f(®) is approximated
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by const/®% we may expect the experimental
values of f(0,), omitting the correction for f”,
to be too high by the factor

1+(5/4)(A6/06)2.

In order to account for the systematic deviations
from expectation at ® =15° without using higher
phase shifts this factor must be 1.033 which
calls for A®=2.4°. For a defining slit of the
analyzing system 1.07 mm wide (slit A, Fig. 3
of paper by Herb, Kerst, Parkinson and Plain)
placed 28.2 mm from the hole of the counter each
point of the hole receives protons through an
angular range of 2.2° which is of the correct
order of magnitude to account for the observed
effect. Since the average scattering angle is
different for different points in the hole the cor-
rection may be expected to be larger than the
above amount. On the other hand, some of the
scattering angles responsible for the protons
received’ have the same values for different
points of the diaphragm.

The geometrical corrections have been worked
out approximately on the assumption that the
velocities of all the protons in the incident beam
are parallel to each other and perpendicular to
the edge of the slit of the analyzing system. This
assumption does not correspond to fact com-

TaBLE XI1I. Phase shift analysis of data of Heydenburg, Hafstad and Tuve.

9=20° 25° 30° 35° 40° 42.5° 45° 0©=20° 25° 30° 35° 40° 42.5° 45°
E=670 kev E=1776 kev
@ from HHT 0.654 0.600 0.730 0.980 1.330 1.482 1.545 |® from HHT 0.705 0.738 1.078 1.584 2.284 2.580 2.722
Corrections 43% 439 439  43% 043% 0.43% 0.43% |Corrections 43%  43% 043% 043% 043% 043% 043%
Final ® 657 .603 733 984 1.336 1.488 1.552 |Final ® 708 .41 1.083 1.591 2.294 2.591 2.734
QR (Ko=24°) .653 .600 .669 .899 1.223 1.347 1393 [® (Ko=27°) 653 .698 0.976 1.550 2.275 2.542 2.641
QR (Ko=25° 652 615 721 1.010 1.406 1.555 1611 |® (Ko=28°) 657 727 1.058 1.717 2.540 2.842 2.954
Ko from ® 24.20°  25.21° 24.77° 24.62° 24.68° 24.73° |Kofrom ® 28.44°  28.30° 27.25° 27.07° 27.16°  27.30°
Mean K, from ©=30°, 35° 40°, 42.5°, 45°=24.80° Mean Kofrom ©=30°, 35° 40° 42.5°, 45°=27.42°
R (Ko=24.80°) .652  0.612  0.711 0988  1.369 1513 1567 |R(Ko=27.42°) .651 0710 1.010 1.620  2.386  2.668 2.773
Diff. obs. and Diff. obs. and
comp. } 08% —15% +43.1% —049% -—249% -—17% —=1.0% comp. R 8.8% 4.4% 72% —18% —38% —29% —14%
©=20° 25° 30° 35° 40° 42.5° 45°
E=867 kev
® from HHT 0738  0.852 1360 2324  3.360 3.808  4.008
Corrections 439, 439, 043% 043% 043% 043% 043%
Final ® 741 856 1.366 2.334 3.374 3.824 4.025
® (Ko=29°) 671 816 1.300 2.209 3.315 3.7117 3.866
® (Ko=30°) .680 857 1.407 2.422 3.650 4.093 4.259
Ko from ® 29.98°  29.62°  29.59° 20.18° 29.40°  29.40°
Mean Kofrom ©=30° 35°, 40°, 42.5°, 45°=29.41°
R (Ko=29.41°) .675 0.833 1.344 2.296 3.452 3.871 4.027
Diff. obs. and
comp. ® 98% 28% 16% 1.7% —23% -—12%  0.05%
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pletely but the divergence of the beam is difficult
to estimate. The corrections for a very narrow
proton beam will be considered first and the
effect of the width of the beam will be taken into
account later. In Fig. 1 the hole in front of the
ionization chamber (hole ¢ of paper by Herb
et al.) is in the plane OXY. The plane OXZ is
perpendicular to the slit face and goes midway
between the slit edges. The Y axis is made
parallel to the slit edges and the Z axis is made
to intersect the beam. The element dS receives
from the element dB

Nno(®)R~2 cos xdSdB
= Nne(0) cos xdSdO®/R sin ® (7)

protons, where N 'is the number of protons that
passed in the beam, % is the number of protons
per unit volume in the scattering gas, ¢(0®) is the
scattering cross section per unit solid angle, R is
the distance between dS and dB and x is the
angle between the normal to dS and R. The
d0® is the change in © for fixed d.S which corre-
sponds to the change dB. The scattering angle
for the point P(B=0) is called ©y and the dis-
tance PO=R,. The slit width will be called 25.
In the figure scattered protons pass just under
the upper slit edge. One has

cos x=(Ro—B cos B)/R,
R2= (Ro—B cos ©g)2+y?
4+ (x—B sin Bg)?,
R?sin? @ = (Rysin @g—x cos Bg)2+y?,
B=R;,cos B¢+« sin B
—(cos ©/sin O)[ (R, sin O,
—x cos O)24y%]},

(7.1)

where (x,y) are the coordinates of dS. The
limits of integration for B are given by
x— B sin O,

xFb
Ro—Bcos®o— b '

Letting
£= ® - ®0y

Co=cos By, So=sin O

one finds the approximate expansions valid to
second-order quantities in x, vy, £
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FiG. 1. Geometrical relations for the analyzing system.
The slit is slit 4 of Fig. 3 of paper of HKPP. Element of
area d.S is in the plane of the round hole in front of ioniza-
tion chamber. The direction of scattered protons is shown
for special case of just missing the slit edge. Angle x is
formed by normal to d.S and distance R.

X yzco Ro xCo Ryco
B=—— + (._.._____. —_— 2 ,
S 2ReS¢ So  So? S¢?
Ry—B cos 0 1 xCo  x2Co2
= (1+ +

R?sin © ROSO Ruso Ro2502

002—2 EZ

+ y2_"—' )
2R02S()2 2

and for the limits of § corresponding to the
slit edges

—x+b coy?
h ZROZSO.

In these expansions, powers of £, x, y higher than
the second are neglected. Expanding ¢ in powers
of £ and integrating over d.S one obtains for the
number of protons received

Nn 2b CoXav Co2(x2)Av
—Ao(Bp)—1 1+
oS b SORO Sl)2R02
CCe2—2 b? (x2)kv
OOn——
2R%s¢? 6h?  2h?

0'(®0)|’ Xy ' Co(y2)ay cO(xZ)Av]
0‘(@0)[. h TZSOROZ S(].R()b

0"(00) £ B (2w
- —- . 7.2
o(0q) \6h?  2h? )] (7.2)

For a circular hole of radius @, (x?)a = (3*)n=0a?/4.
The terms in xy can be eliminated by setting the
counting system in symmetric positions with
respect to the incident beam and using the mean
of the counts so obtained. In the experiments of
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Herb et al. the mean direction of the beam was
determined by finding by trial the two positions
or orientations of the collector system with
©=15° for which the scattering is the same.
Protons scattered symmetrically with respect to
this direction were counted and their mean was
used. This procedure admits of simultaneous
errors due to slightly incorrect © and due to the
presence of xa. Since counts to both sides of the

beam have been used the first-order effects of.

these errors disappear. If we write
a(00) {1+ -} =0 (00) + f(O0)xn+2(B0)

the error € in the determination of the beam
direction for 15° scattering is found from

0(Oot+e€) +f(Oo+e)xn=0(0o—¢) — (B

—e)xm,.

Denoting the argument ®, by subscript zero
this gives sufficiently accurately

€= —'xAva/ﬂ'O,y

where differentiation is denoted by the prime.
For low ®( Rutherford’s formula can be used and
one has approximately

e= (xn/h) (1+1h/4R0),

so that with the dimensions of the apparatus
used by Herb et al., ex2—0.23° for x,,=0.1 mm.
The mean of the counts for settings @€ is to
within second-order quantities

o1+ g1+ 30" e 4xnfie.

The fractional error introduced by xy and e is
thus

2 " rgt
L L

2 L201  01fo

T
with
f=0c/Rs—o’/h.

Substituting this into the expression for é one
obtains

xn? f @oCoh 2(a, h /o ‘cy
Y )
1;12 ﬂ'o/SoRo 2(71 0181
o’ aoCoh)
) os
01 6o'soR
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The value used in the experiments is ©y=15°.
On account of the smallness of this angle the
approximations oy’ /o= —4/0,, ¢o/sp=1/0, are
good enough. One then has

1 —aocoh/e0’SeRo=141h/4R,.

If, in addition, the angle ©; is also sufficiently
small to make the scattering approximately
Rutherfordian and to have ¢;/s;=1/0;, then
one has

5= —10(xn)?h—2(1+h/4R0)20,~2

For ©,=15° xs,=1 mm, h=28.2 mm this
formula gives §= —0.23 percent. If xy is ~0.1
mm the experimental values must be raised,
therefore, by about 0.2 percent and by about 0.1
percent at ©;=20° at the lower energies for
which scattering at this angle is still roughly
following Rutherford’s formula. For angles close
to 45° the scattering is approximately spherically
symmetric and is very nearly so at higher ener-
gies. In this region the cross section can be
approximated by

(7.4)

o=Kc,

where K is independent of the angle. With this
approximation the general formula for § gives
for the large scattering angles

(o) h 2
5= ( 14—
h? 4R,

o))/ (v

For ©®;=45° x,=0.1 mm one obtains on sub-
stitution the quite negligible error —0.001(5)
percent. This estimate is not very accurate be-
cause the approximation ¢=Kc¢ is not very good
for the calculation of ¢'’/¢. Graphs of ¢ as a
function of ® indicate that it is correct as to
order of magnitude. Checks on the mechanical
construction made by Herb et al. after the scatter-
ing measurements showed that xn~0.01 mm
which decreases this error by 1/100.

Most of the quadratic terms in Eq. (7.2) have
negligible values for the experimental arrange-
ment. With Ry=56 mm, h=28.2 mm, a=0.365
mm, 5=0.536 mm ©,=15° the values of the
terms are in order of occurrence in Eq. (7.2)

} (7.5)
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Co2a?/48¢2R*=0.000148 =0.015 percent;
a*(co®—2)/8Ry%s¢?= —0.008 percent;
—b%/6h2= —0.006 percent;
—a?/8h?= —0.002 percent.

Approximating ¢,'/e¢ by —4/0, and ey’ /ey by
20/0? one has also

00,00 a? a?

( — ) =0.090 percent;
0080 \8R? 4Roh

o) 7 b2 a?

6h2+___) =2.35 percent.
G0 \ 0D

8h?

The last correction is the largest. It represents
the effect of the curvature of the plot of ¢ against
® which was discussed qualitatively by means of
the approximate formula

14 (5/4) (A0 /0)2.

The sum of the above corrections is 2.4 percent.
The observed scattering may be expected to be
too high by this amount for the geometry used
at ©=15° if the incident proton beam is very
narrow and if the correction 6 due to a possible
dissymmetry of the counter hole and counter
slit is negligible. For small scattering angles at
low energies this error is approximately propor-
tional to the inverse square of the scattering
angle. For high energies the scattering differs
markedly from Rutherford’s even at ®=20° and
the correction term (oy"/o0)(b2/6h%+a?/8h?) is
then much smaller than at ® =15°. If ¢ is plotted
against O for K,=47.95° at 2392 kev, K(=43.92°
at 1830 kev, K(=29.25° at 860 kev and ¢'' /o is
estimated graphically at ®=20° the correction
term (oo’ /o) (62/6h2+a?/8h?) is estimated to be
at this angle 0.2 percent at 2392 kev, 0.6 percent
at 1830 kev, 1.4 percent at 860 kev.

On account of the finite width of the beam
there are additional corrections which will now
be estimated. Fixed coordinates X, ¥ will be
used in the plane of the hole with origin at the
foot of the perpendicular from the center of the
beam as shown in Fig. 2. The filaments in the
beam will be specified by coordinates «, 8 with
B parallel to Y and « in the direction shown in
the figure. The distance from the hole to the
center of the beam will be called ¥. The distance
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from the point P to the hole will be called R,.
The point P is the intersection of the beam fila-
ment with the plane perpendicular to the slit
face and passing midway between the slit jaws.
The central filament of the beam is AB. The
filament over which averaging is performed is
PQ. Eq. (7.2) will be averaged over different
positions of PQ by letting

x=X, y=Y—B, Ry=¥+a/sin O,.

The averaging will be carried out on the assump-
tion that the center of the beam is in line with
the center of the hole. The effect of lack of such
alignment is partially taken care of in the discus-
sion of 8. The cross section of the beam will be
supposed to be circular of radius p and the proton
density will be supposed to be uniform within
this cross section. One has

(1/Ro)a=1/ ¥+ (a?)n/ (¥ sin? ©y)
=1/¥+5*/(4¥ sin® Q).
This introduces the fractional error
5%/ (472 sin? @y).

For p=1.25 mm, ¥=56 mm at ®,=15° it is
0.00184=0.18 percent but for $=2.50 mm it is
0.72 percent. In addition corrections arise from
an increase in the averaged (y?)s. One has

@n=(Y)u+(B)a= (a®+ %) /4.

On account of the extra term in $2/4 there is the

additional fractional error
002 —2 0’0’00[52
12 |

P .
81’2502 80‘050 2

With the above values of g, ¥, @, the first term
is —0.10 percent for p=1.25 mm, —0.40 percent
for p=2.50 mm; the second term using the ap-
proximation ey /oo= —4/0; is —0.4 percent for
p=1.25 mm and —1.4 percent for p=2.50 mm.
For the larger of these beam widths the total
error at ®;=15° due to beam width is —0.90
percent and for the smaller beam width it is
—0.28 percent. Since the beam width is not
accurately known it is impossible to set close
limits on this error.

The major part of the negative error caused by
beam width is due to the term in e//oy. It is



1040

F1G. 2. Geometrical relations used for estimating effect
of width of incident beam. Coordinate system «, 8 1s used
for designating different filaments of the beam. Coordinate
system X, Y describes position of dS.

a result of the increase in the average scattering
angle caused by the lateral extension of the
proton stream. For high energies o4 /oy at
©=20° is much less than it would be on Ruther-
ford’s formula and this part of the error is cor-
respondingly smaller. The value of ¢y /o0 was
estimated graphically. One obtains in this way
the values given in Table XIII.

The numbers in the column under ‘‘sum”
should be compared with wvalues of (oo /o)
X (b?/6h?+a?/8h?%) which are 0.2 percent at 2392
kev, 0.6 percent at 1830 kev, 1.4 percent at 860
kev for ®=20° and 2.3 percent for ®=15°. The
net expected error due to the above causes may
be thus expected to be between one percent and
two percent for @=15°.

The divergence of the incident proton beam
also introduces an error the order of magnitude
of which will now be estimated. The finiteness of
the angular opening of the analyzing system will
be neglected and the beam will be supposed to
be very narrow. The angle made by the direction
of protons which are being counted with the
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mean direction before scattering will be called
©. The angle between the mean direction of the
beam and the line of motion of the proton before
scattering will be called 6. One finds discarding
effects of higher order than the second in 6 for
an axially symmetric beam that

(0/8)w=(o0/80)+ ((6%)a/4)
X[(co/s0)(0/8)d’+(a/s)"].

If the foil in front of the first hole of the col-
limating system acts as a source of protons then
the chance of protons leaving an element of area
in the foil and passing through an element of
area of the last hole of the collimating system is
nearly proportional to the product of these
elements of area. Introducing rectangular coor-
dinates (x1, y1)(x2, ¥2) in the foil and in the last
hole with origins on the axis of symmetry one
has

02=[(x1—x2)2+ (y1—y2)?]/ L%

where L is the distance between the foil and the
last hole. By averaging this expression over the
two circles it is seen that

(og)kv = (612+ 022)/2’
where

01=a1/L, 63=as/L

with @, a; standing for the radii of first and last
hole of the collimating system. The angle 6, is
subtended by the radius of one hole at a point
in the other hole. For small scattering angles one
obtains thus approximating ¢ by const./@*

(0/s)n/(0/8)o=1+25(0:246,%) /86"

TABLE XII1. Errors due to beam width.

52 c?—2 , @o'Cop?
b ©o 4r?s? 8risg © 80Sor? Sum (xev)
2392
1.25 mm 15° 0.189%, —0.109% —0.36% —0.289%, 1228
2392
2.50 mm 15° 729, — .409% —1.429, —-1.19% lggg
o o —0.02% 0.83% %ggg
1.25 mm 20° A1 — .06 - .05 .00 (
’ ’ - 1% - 129 860
- .09% .09% 2392
2.50 mm 20° 429, - 249 - .20% — .029, 1830
— .69% - .51% 860
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With ¢;=1.08 mm, ¢;=1.40 mm, L=15 cm, the
measurements should be too high, because of
the divergence of the beam, according to the
above formula by 0.6(3) percent at ©=15° It
may be, however, that the original direction of
the beam is partly preserved. If so, the above
estimate is an upper limit to the error.

It should finally be mentioned that deviations
of the incident beam from the plane of the scat-
tering chamber may increase the scattering angle
and - decrease the yield. Professor Herb has
estimated the magnitude of this error and finds
it to be negligible.

It is a pleasure to acknowledge our indebted-
ness to Professor Herb for discussions concerning
the construction and operation of the apparatus
which have helped in the work of this section.
Dr. S. S. Share has kindly checked the geo-
metrical relations and other formulas.

Possible presence of p and d wave anomalies.
Upper limits for their effect on Ko—The geo-
metrical corrections just discussed appear to be
sufficiently large to account for the consistently
too high values at ®=15°. For K;=—0.04=
—2.29° one expects the following contributions
to ® listed in Table XIV. The largest effects in
® are seen to be for ®=230°. It appears fair to
claim that at 2392 kev the observations indicate
a scattering agreeing within two percent with
prediction in the vicinity of ®=25° when only
an s wave anomaly is used. This sets a provisional
upper limit of (0.123/1.03)2.29°=0.27° on |K,|
at 2400 kev. At 1830 kev an upper limit of
two percent in scattering at ©=25° gives
(0.0772/0.87)2.29°=0.20° as the upper limit of
|K1|. At 860 kev it appears safer to claim three
percent which gives (0.0243/0.55)2.29°=0.10°
for the upper limit. The data of HHT shown in
Table XII indicate the possible presence of an
excess of actual scattering from ©=20° to
®=230° over that expected for a pure s anomaly.
The order of magnitude of the excess in ® at this
angle at 800 kev is from Table XII, 0.050 which
corresponds roughly to K;= —0.2°. It appears to
be premature, however, to conclude that this is a
real effect because at ®=40° the experimental
values are below the values expected using only
K. Since no such effect is apparent in the data of
HKPP and since its theoretical explanation
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TaBLE XIV. Contributions to R=P/P y due to phase shift
2.29°.

1=

E(KEV) | ©=15°| 20° 25° 30° 35° 40° 45°
2400 045 | 077 1 1.03 | 1.10 | 082|030 | O
1830 0.39 | 0.65 | 0.87 [ 0.92 | 0.69 | 0.25 0

800 0.25 | 0.41 | 0.53 | 0.55 | 0.41 | 0.15 0

would require a somewhat complicated superposi-
tion of effects due to p and d waves it appears sim-
plest at present to reserve judgment as to its
origin. It is planned to analyze the data of HHT
using observed counts rather than graphically
interpolated values and to eliminate in this way
personal judgment present in the above analysis.
The geometrical effects are more difficult to esti-
mate in the apparatus of HHT since settings at
4+ 0 were not taken for each point so that first-
order effects in xp could remain. It should be
noted that it is not easy to distinguish with the
present experimental accuracy the effects of
K, from those of K, and that the effects of K,
can be very important for the final conclusions
about the range of force if K is large enough. In
Table XV is shown the effect of K at 2400 kev.
In the first row (I) are listed the values of the
change in the ratio to Mott (AR).=(AP)s/Pur
due to K»=1° for K,=48°. In the second row
(IT) are listed the values of 14 (AP)o/(APxy) = Ry
which would be the ratios to Mott if this K5 were
absent. The sum of the numbers in rows I.and
IT is the expected ratio to Mott for K,=48°,
K;=1°. The third row contains values of the ratio
to Mott for Ky=45.349°, K, =0. This value of K,
was taken so as to give a value of ® for ®=45°
equal to that for Ky=48° K,;=1°. The angular
distribution of ® expected for K,=45.349°
differs relatively little from that for K,=48°,
K,=1°. The difference between the values of ®
that would hold for K,=48° K;=1° and those
for Ky=45.349°, K5=0 is recorded in the last
row of the table. Comparison of these numbers
with those in the second row of Table XIV shows
that deviations from the angular distribution
expected for s scattering are rather similar for
small K; and K,. Allowing for a deviation of two
percent from scattering expected for a pure s
anomaly for ®=25° at 2400 kev one would set
an upper limit on |K3| of (0.123/0.81)°=0.15°
which according to line I of Table XV would
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limit the error in 14 (A®)q at ® =45° to 4-0.6(7)
or =#+1.5 percent in scattering. According to
Table VI the value of K, would be in error by
#+0.4°. Such an error would not affect seriously
conclusions about the comparison of the proton-
proton and proton-neutron interaction that are
made below and it would only affect slightly
conclusions about the range of force if this K,
were present at 2400 kev but not at 860 kev. One
expects K to vary at least as fast as E52. At
1000 kev the upper limit for |K.| is thus pre-
sumably 0.15°/(2.4)52=0.017°. At this energy
Ky;=1° produces an effect of —1.2(K,=32°,
K;=1°) on the ratio to Mott at ©®=45° so that
the expected error is ~=0.022 in ® which
~ 0.2 percent in the scattering and causes a
negligible error in this energy range.

In the above discussion Table XV was used.
The effect of a finite change in Ko(=1°) was
computed for it. The changes in K, which have
been considered for the discussion of experi-
mental data are much smaller than 1°. The linear
interpolation used may, therefore, be ques-
tioned. A calculation of

AR [IR/OK, IR
Pl

(")Kz a@»/aKo 9=45°6K0
shows that the last row of the table can be used
for linear interpolation to obtain the effect of a
very small K, to within a few percent. The last
number (—4.41) in the first row is then taken
place of by (d®R¢/0K32)4:0/57.3=—4.53 and is
sufficiently accurate. At small scattering angles
the above formula gives values about ten percent
higher than the numbers in the first row. These,
however, are not needed in the above discussion
since the determination of K, relies on the scat-
tering angles from 30° to 45°. Theoretical
estimates of K, from the Gauss or exponential
type of potential indicate that it is of the order
of 0.01° at 2400 kev, i.e., roughly 0.1 of the value
used above. If such estimates apply when con-
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1 EFFECT OF K;-2°

F1G. 3. Observed and computed scattering on assump-
tion of pure s scattering anomaly for ©=45° 40°, 35°
Ordinates give ratio to Mott divided by the square of
the energy. Abscissae give the energy. Observations of
HKPP are represented by circles; those of HHT by large
upright crosses. The diagonal circles give values computed
using the mean K, of Tables XI and XII. The effect of
K= —2°is roughly indicated by the length of the arrows.

stant potentials are used one may expect the
effect on K, to be ~0.03° which is negligible in
the applications made below.

In Figs. 3, 4 and 5 the agreement between
expectation from a pure s scattering anomaly and
observations can be seen in a different way. The
curves are drawn for ®&/Em..? as ordinate and
Enev as abscissae. The ordinate varies in nearly
the same way with energy as the observed scat-
tering. The curves are drawn through the diag-
onal crosses for which values of ® have been
computed with the ‘“mean K, derived from
experiment and tabulated in the last column of
Tables XI, XII.-The circles represent the experi-
mental points of Herb ef al. and the upright large
crosses are the experimental points of Tuve et al.
There is a surprising absence of systematic
deviations of the experimental points from the
curves as one goes to higher energies indicating
the probable correctness of the interpretation
using a pure s scattering anomaly. In Fig. 3 the
effect of K;= —2° is roughly indicated by the

TaBLE XV. Effect of K> at 2400 kev.

Ko K2 0=15° 20° 25° 30° 35° 40° 45°
48° 1° (AR)2=0.054 0.165 0.148 —0.34 —1.63 —3.45 —4.41 I
48° 0 Ro=1.085 2.534 6.20 13.34 24.59 37.35 43.52 11
45.349° 0 Ro=1.014 2.279 5.54 11.94 22.06 33.56 39.11 111
0.12 0.42 0.81 1.06 0.9 0.34 0.00 I4+I11-111
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Fi1G. 4. Observed and computed scattering on assumption
of pure s scattering anomaly for ®=30°, 25°. Notation is
the same as in Fig. 3. The effect of K;=—1° is roughly
indicated by the length of the arrows.

length of the arrow and in Figs. 4 and 5 the same
is done for one-half of the effect of K,=—2°
which is roughly the effect of K;=—1° The
agreement between the two groups of experi-
menters is seen to be very good for the scattering
angles 45°, 406°, 35° but at 30°, 25°, 20° the ob-
servations made in Washington give higher
values than those in Madison. The practice of
averaging observations made at +© and —©O
which was followed by Herb ef al. is an argument
for assigning more weight to their measurements
at the smaller angles. This leads to the cancel-
lation of first-order errors as has been discussed
under ‘‘geometrical corrections.” The origin of
the discrepancy is not known, however, and it
would be desirable to have further observations
on this point. The apparent absence of K; at
the higher energies will be discussed again in the
“Concluding Remarks.”

ITI. CALCULATION OF THE POTENTIALS

1. The proton-neutron interaction

The scattering cross section of slow neutrons
by protons determines the interaction potential
for the antiparallel spin orientation (1S state)
when account is taken of the scattering in the 3S
condition. The experimental material is com-
plicated by the effect of chemical binding of the
protons to other atoms in hydrogen containing
substances. The Fermi correction’® for this
binding has been discussed by several authors
" 16E, Fermi, Ricerca Scient. 7, I1, 13 (1936); H. A. Bethe,
Rev. Mod. Phys. 9, 71 (1937); N. Arley, Proc. Danish

Academy 16, 1 (1938). We are indebted to Prof. Wigner
for discussions concerning these questions.
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Fi6. 5. Observed and computed scattering on assumption
of pure s scattering anomaly for ®=20°. Notation is the
same as in Fig. 3. The effect of K;=—1° is roughly
indicated by the length of the arrows.

and will not be gone into critically here. Even
though its complete quantitative justification is
doubtful, there is some experimental evidence for
its approximate validity through measurements
of the scattering cross section for neutrons having
several volts energy. Thus Carroll and Dunning’
obtain 6.59X 10724 cm? as the lower limit for the
collision cross section of neutrons having zero
energy while unpublished measurements of V. W,
Cohen and H. H. Goldsmith? indicate that the
collision cross section for the Rh band neutrons
is 20X 10724 cm? which would change Carroll and
Dunning’s figure to 80X107%* cm? if Fermi’s
factor four were applicable. The difference
between 65.9 and 80X 10724 cm? is not of primary
importance for the determination of the 1S
interaction and allowance will be made for such
variations in the experimental results.

The scattering cross section of a zero energy
neutron having a statistical spin orientation with
a free proton will be called ¢,. One has

40',”,= 127ra32+47ra12. (8)

Here the quantity a is the intercept on the axis
of 7 of the tangent to the graph of F against 7,
where 7 is the distance between proton and
neutron. The tangent is taken at a sufficiently
large distance to make the interaction negligible.
The radial function is F/7 and the a’s will be
positive if the tangent cuts the axis to the left
of the origin. The values of a for triplet and
singlet states, respectively, are a3<0, a;>0. For

17 H, Carroll and J. R. Dunning, Phys. Rev. 54, 541

(1938); V. W. Cohen and H. H. Goldsmith, Phys. Rev. 55,
597(A) (1939).
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7 >7 the graph of F against 7 is a straight line so that 7 can be increased indefinitely without am-
biguity in the meaning of a. One has

(Fd?’/dF) 1‘0=a+1’0. (81)

Square wells—For ‘‘square wells’’ the potential energy has the constant amount —D for <7y
and is zero for r >7,. For the triplet state one obtains

Dy 7% 2 4 32 8 320 32
——=—at—t1l——t —"-——)x (——+— p e
E; 4x* x w2 rt 372 wt ot
(8.2)
2.4674 2
= +—-+0.59472+40.05832x — 0.00434x 2+ - - -,
XX x
where x=(—ME;/h?)tr,, (8.3)

which gives with the fundamental constants chosen
x=0.3126(romc?/e?)(— Es/mc?)}=0.4370(rgmc?/e?) (— E3/Mev)i.

The energy of the deuteron is denoted by E3(= —2.17 Mev). For this value x=0.6433 r¢mc?/e®. The
series of Eq. (8.2) is sufficiently accurate for the calculation of D3 with known E; and assumed 7,
for values of 7~2.8X10713 cm. The intercept a3 can be expressed as

as= —ro[ 1+ (x+eax+eax®+---)71]
with
2 16 5
=%, ¢3;=—=0.20264, c4=——+—=0.08905; c;=0.0419.
2 mt 27
This formula is good to about 0.2 percent for 7o~e?/mc?. One obtains
127052 =127(— 52/ ME3)[1+x+ (3/4—2¢3)x2+ (cs—2ca) x*+ - - - ] (8.4)

=3.058 X102 (—mc?/Es)[1+x+0.34472x240.02454x% —0.0117x*+ - - - ] cm?
The first two terms in the brackets have been given by Wigner.® For 7o=¢?/mc? the last two terms
give nine percent of the first two. The terms omitted in the above formula for 127as® decrease its
value by about 0.1 percent for ro~e?/mc? as is found from exact solutions.

For the singlet state one has to determine the depth D; from a knowledge of ¢; which results from
the experimental ¢,, and the computed 127a 2. With

x1="0/(@1+70) (8.5)

one finds
M 72 4 320 32
zl=—Diyr?=——2x,——x1*+ (——— X+ ( ——’*‘"— xi*t-- (8.6)
n? 4 T 372
which becomes with the adopted choice of fundamental units
D=5.2332,2(e?/romc?)? Mev
=5.233(2.4674— 21— 0.40528x:2—0.05832x,3— 0.00434x,%— - - - ) (e?/remc?)? Mev. (8.67)

18 B, Wigner, Zeits. f. Physik 83, 253 (1933).
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This series converges rapidly, the approximate value of x; being 0.1. The third term in brackets is
about 0.2 percent of the whole. The series has been checked by comparing the results with solutions
obtained by means of trigonometric tables. The use of the above series is simple and convenient.
The quantity x, is positive for a virtual level since @, is positive. For a real and only slightly stable
level x; is negative.

The calculation of the depth of the square well which corresponds to a given value of the scattering
cross section by means of Egs. (8), (8.5), (8.6) is closely related to the customary use of the virtual
level. The energy of the latter may be defined as a positive energy E; such that if the energy of the
singlet state is —E; and if F is regular at #=0 then

dF/Fdr=(ME,/#%}; (E=—E,). (8.7)
At zero energy (thermal neutrons) one has then approximately
dF/Fdr=(ME,/1*)t— MroE./(24%) =1/(a1+r0)
since 9/0E(dF/For) ~ — Mry/2#* when the phase at ro~=/2. Hence
a1 2h(ME,)~t—ry/2
and
dra 2 =4w(h%/ ME,)[1— (ME,\/%*)¥r],

which is the customary formula for the scattering cross section in terms of E;. It should be noted
that in order to obtain this form it was necessary to assume that Eq. (8.7) holds at E= — E; and not
at the energy of the virtual level.

The quantity x; is related to E; in the present approximation by

x1=ro/(a1+70) =ro(ME)} h—r! ME,/(24?)

so that the depth D; is given by (see Eq. (8.6))

2

w22 8 Tt 4
D,= (1——X1+° . ')= ——(E1Dy)}, (8.8)
4 Mry? w? 4 Mry?

™

the latter form being directly obtainable® from the definition of E;. Eq. (8.8), useful as it is for rapid
estimates, is not quite accurate enough for the calculations needed here. On the other hand, Eq.
(8.6") is sufficiently accurate and avoids the introduction of a virtual level which is seen to be
artificial when the range of force is of importance in the correction for range in the cross section.

Expansion for wells of any shape.—For the Gauss error potential the wave equation was solved by
numerical integration. In order to have a check on the accuracy of the numerical work the values of
the logarithmic derivative of the function needed in the determination of the proton-proton and
proton-neutron potentials were checked against each other also by using a power series expansion.
The method consists in obtaining a power series in k— ko, A—Xo, u— uo for dF/Fdx =7y where F is the
solution, regular at x=0, for

0*F /a4 [k Np(w) + ux (%) JF =0, ©)
Eliminating F one obtains the Riccati equation
dy/dx+y2+k+No(x) + ux(x) =0.

19 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).
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For fixed x the value of v is a function of «, N\, u. Partial differentiation with respect to these quan-
tities will be designated by suffixes as follows

YA=0Y/9N, Yru=0%/INdp.

Differentiating the above differential equation successively one obtains ordinary differential equa-
tions for these derivatives:

dy./dx+2yy+1=0, dya/dx+2yya+2yan=0,
dynx/dx+2yyxx+2yx2 = 0; dyqu/dx+2yyx)\u+zy)\yux'i_zyyyx)\"}’zyxy)\u =0.

For x=0 the function F should be a power series in x beginning with a term of power 1. Therefore,
y(0)=1
independently of «, A, u. Hence
Ye(0)=yx(0)= - - =yau(0)=0.

The values of y,, etc. are, therefore, determined by the above linear differential equations and these
boundary conditions. One obtains '

y,\z—F_Qf Fdx yx=—F‘2J Flodx ; y,,:—F""] Fixdx ;
0 0 0

x

Vix = —2F—2[ VEFdx; ya= —2F_2f Y ;
o0 0
Y= —6F*2f yynFrx; o= —F_Zf (4y>\yxp+2y>\2yn)F2dx§ (9-1)
0 0
You=—2F? f eyt IVt i) Frda ;
0

Yow=—2F2 f Yy FINY Y idoer YVt YoV w +Veudn +Yoyru) Frdx.
0

The last formula applies to a differential equation including a fourth linear parameter ». From the
last formula one obtains the other derivatives of the fourth order by equating indices in ¥,. The
Yar... can be evaluated by means of the above formulas with numerical quadratures, and the needed
values of F and y can be obtained from one numerical integration for F. The formulas for the first-
order derivatives have apparently been given for the first time by BCP where they have been obtained
by a slightly different method. In Wigner's Princeton lectures for 1936 the same formulas for first-
order derivatives are obtained from Riccati’s equation which suggested the extension to higher
derivatives made here. An obvious extension to parameters entering nonlinearly can be made and is
used for Eq. (12) below.

Formulas for neutron-proton potential for the Gauss error type interaction.—In the calculation of the
proton-neutron potential use can be made of the simplication due to the fact that experiments are
concerned with zero energy. The wave function is, therefore, practically a linear function of the
distance beyond the region where the Gauss error function potential has an appreciable value. The
effect on y of a change in the potential can be calculated for any distance greater than this and its
effect on the collision cross section will be the same. It may be expected, therefore, that this distance
can be eliminated from the calculations. In order to do this the distance will be made infinite. In
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nuclear units the differential equation for the Gauss error potential and zero energy is
d2F/drt+Ae—"F=0. (10)
Substituting x =ra? one has
A*F/dx*+rp(x)F=0; o(x)=e"%"; A=A4/aq, (10.1)
which is of the form of Eq. (9). The intercept on the 7 axis is called a. It is connected with the col-
lision cross section of neutrons with free protons by
o=4mna?
and with properties of F by Fdr/dF=a+r. In terms of x one has for any x beyond which ¢ is negligible
y=dF/Fdx= (x+aa?)~L (10.2)

It will be supposed that ¢ has been modified to be exactly zero beyond a certain distance. The
limiting value of the result for an infinite value of this distance will be taken at the end of this cal-
culation. To every A there corresponds a definite value of the intercept and hence also of aat which
by Eq. (10.2) determines y. One has thus asymptotically for large x:

y=yo~ (@oate* — aat)x~2, (10.3)
where v, a correspond to A, a and yo, ao to X9, ap. By the method explained for Eq. (9) one may expand
Yy—Yoas

Y=30= (A=) +3(0—Xo) ¥+ § (A =00yt - -,

where ¥y, ¥a, ¥aa are to be evaluated for A =2%¢. This series can be calculated for a finite x and can
be used directly in the above form as has been done in some of the calculations for interchecks
between numerical integrations. The limiting form of the series will now be worked out for x— .
For finite x outside the potential hole one has

0

ya=— I (x+aoae?) 2, I1=f Fo?(x) o(x)dx, (10.4)
0

where Fo(x) is the solution of Eq. (10) regular at x=0 evaluated for \. The solution F, is normalized
so as to have outside the potential hole:

Fo:x+(loao%. (10.5)

Similarly
) @
ya=—2 (x+a0a0;)*2|: [ Fozyxzdx'f‘f Fo2I12(x+aoao%)“4dx].
*20 20

Here x9<x and x, is also outside the potential hole. From Eq. (10.5) the last term can be integrated
and gives

— I12(x+aoa0%)_l+]12(xo+aoao%)_1-

The sum

0
f Foy2dx~+ 1% (x0+aoao?) !
0



1048 BREIT, THAXTON AND EISENBUD

must be independent of x, since yx does not depend on it. One has thus
ya=—2(x4aoaet) [ Lo— I/ (x+aoae?) ],

where
0 z0
Iz=j F02yx2dx=f Fo’y\*dx+1:2/(x0+aoaot). (10.6)
0 0 .

The object of expressing I, as a sum is only that of having a form convenient for numerical evalu-
ation. Proceeding similarly for y\ it is found that

Y= —6(x4aa?) [ I3— 211 I:(x+aoe?) 1+ I13(x+aoae?) 2],

where

o

0

I3=f Fozy)\y)\x(ix=f F02y>‘y>\)\dx+2I112(xo+aeao%)‘1—Il"(xo—l—aoao%)*z. (107)
0 0

Substituting the values of y, ¥an, ¥aa into the Taylor expansion and equating for large x the

governing terms in x~? one obtains with Eq. (10.3)

da%—aoaoé—:Il(l—3\.0)‘*—[2(9\.—9\,0)2-**[3(3\.—10)3"!" cty, (108)

which is convenient for the calculation of aa? for different & using a single numerical integration for
%o. The above series can be inverted and gives them

A—do= (G/a%—doao%)ll_l - I2I1—3(aa§—-agao*)2+ (2[22— I1I3)I1~5(l10z% —aoaoé):’-f- s,

which determines & through ¢ and «. One obtains in this way for Ay=2.35 evaluating the integrals
at x=3.5 for the Gauss-error potential

A/a=2=2.35+40.037032(aat— aoaxot) —0.004102 (act — aoao?) 2+0.000454 (ac — aoae?)3— - - - ;  (10.9)
aoao§= 79535

This formula becomes poor for large a but is convenient for the values indicated by present experi-
mental material. The choice Xo=2.35 was made so as to be able to start a corresponding expansion
for proton-proton calculations. ' _

It is also useful to have the following expansion for v as a power series in A —2, for 49=2.35, x=23.5,

y=0.08731—0.2059 (A —25) —0.1303 (2 —20)2—0.0847 (A —2o)?- - - (at x=3.5),

which can be used with Eq. (10.2) for the calculation of a. This series has been checked against a
direct numerical integration for A =2.25 which gave (dF/Fdx) —3.5=0.10668. Exactly the same value
is obtained by means of the series the successive terms contributing 0.087314-0.02059 —0.00130
-+0.00008=0.10668.

A slight error is made by extending the numerical integration to finite rather than infinite values
of x. This error can be estimated using the formula for v, already explained. Using x= ¢ instead of
x= o in the calculations amounts to neglecting the part of ¢ in §<x < . The first-order correction
due to taking into account ¢ from £ to 4 is

y(n) —yo(n) = "'3'(77"}‘(10010*)_2[ (x+aoao?)20(x)dx,
4
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where @oao? is the value obtained for aa? by breaking the potential off at &, and yo() is the value of
v(n) obtained in the same way. On the other hand,

y(n) —yo(n) = — (aat —acae?) /(n+aat) (n+aoao?).

Comparing the two values of y(5) —yo() for infinite 5 one has the first-order correction
aa%——aoao%=lf (x-l—agao*)%(x)dx.
¢

For ¢(x) =¢* this becomes approximately
aat—agagt=(A/28)(§+aoat)2e ¢, (10.91)

For2=2.35, £=3.5, aoao? ="7.95 this estimate gives (aat —aoao?) /aoae =2.7 X 10~% which is negligible.

Intercomparison of numerical integrations.—In order to avoid unknown cumulative errors in
numerical integrations the series solutions have been carried out in a few cases to x=1 and the
cumulative effect of the term in §*F’’ has been taken into account. The integration from x=1 to
higher values has been carried out at intervals of 0.1 in x. For the numerical integrations used for
proton-proton scattering the series solution usually stopped at x~4. An intercheck between the
numerical integrations for proton-proton scattering for a=20, 4 =47.17, E=200 kev, r=2.00288,
x=2.8000 was made with the numerical integration used for proton-neutron scattering with & =2.35.
The differential equation for the proton-proton functions is

A*§/dx*+(de~ =" —B/x+7)F =0

and $=0.06990, v=0.009773, 2=2.3585 have béen used. With these values the direct numerical
integration gave df/§dx=0.15250. The first-order corrections are

y28h+ Y585+ 348y = — 0.001984-0.08258 — 0.01668 = 0.06392.
The second-order corrections are

29 (82)°+3768(36)* + 571 (07) 2 +¥250068+y2, 8907 + 5,688y = —0.000008 — 0.00764
—0.00020-+0.00049 — 0.00007 4-0.00238 = —0.00505.

The numbers are given in the same order as symbols. Most of the third-order corrections are neg-
ligible, only five being large enough to affect y(x) in the fifth place. These are

7588(38)*+ 3758+ (38)*0Y + 587 (88) 6%+ 5751708(57) *+ 6512886762 = 0.00086 — 0.00014
—0.00004540.000025+-0.000025 =0.00072.

Not all of the fourth-order corrections have been taken into account but the following give appre-
ciable effects:

(1/24)y5885(58)*+ 27585, (68) 367 + v 585 (88)*62 = — 0.000099 — 0.000019 — 0.000006 = — 0.00012.

The value of y for A=2.35, B=v=0 by numerical integration is 0.09315. The expected value of y
for 3=2.3585, 8=0.06990, v=0.009773 is, therefore,

0.093154-0.06392 —0.00505+0.00072 —0.00012 =0.15262.

This is to be compared with y=0.15250 obtained by numerical integration for these &, 8, ¥. The
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error in xd{/Fdx due to the remaining discrepancy is 0.00034. The corresponding error in K, is
given by

xdF xdF  Po*\2 6K,
(D)= a3y
Fdx Tdx o/ sin? K,

In the present case it is —2.66K,. The error 0.00034 in xd/Fdx produces therefore §Ko= —0.00013
= —0.007°. At this energy such an error corresponds to roughly 0.2 percent error in scattering
and is considerably below possible accuracy of an experiment. At higher energies the experimental
accuracy is higher but here also an accuracy of 0.01° in K, is sufficient.

2. Coulomb effect for square wells

The depth of the square well inside of which the Coulomb repulsion between two protons is
assumed to act must be somewhat greater than if this repulsion is supposed to exist only outside the
well. It is necessary to take this effect into account because it amounts to about 0.8 Mev and affects,
therefore, the comparison between proton-proton and proton-neutron interactions. In the work of
BCP the effect of the Coulomb repulsion inside the potential hole was taken into account by two
different methods. In the first method the wave functions inside the hole have been computed taking
into account the Coulomb repulsion and using power series. This method is somewhat laborious.
In the second method the first-order effects on the logarithmic derivative due to introducing the
Coulomb repulsion and due to increasing the depth of the hole have been taken into account. This
gave rise to the formula

e’z | (sin?z/z)dz
0 e?s[In 2240.5772- - - — C1(22)] ® cos %
- | Cix)=— f

z 7o(z—sin 2 cos z)
rof sin? zdz
0

2=[2uh 2 (D4+E)]}, 7o=0.4371(remc?/e?)(D+E' )} (Mev)—t.

0D = du,

u

(11)

The two methods agreed to within the accuracy desired then. The requirements for precision in the
calculations are higher now on account of improvements and extensions in the experiments. The
second method has been extended, therefore, so as to include second- and third-order effects. The
differential equation is

a2y 2u e?
—+~(D+E'——)%:0. (11.1)
dr? h? 7
Here it is convenient to set
Bs=2pue?/h?, y,=dF/Fdr. (11.11)

For fixed  and E’ the quantity y; is a function of D, g,. Using the formulas previously described in
connection with the Gauss error potential one obtains

dys C+ln 22— Ci(22)

= ;. C=0.577216---;
9B 2sin?z
(11.12)
Vs u(z—sin z cos 2)
=—— k=Qu(E'+D)i )%
aD A2k sin? g

The values of these derivatives correspond to 8,=0. Similarly, letting
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IDD':f (sin 2)~%(2—sin 2 cos 2)2d3,
0
Isp= f (sin 2)~2[ C+In 23— Ci(22) ](z—sin z cos 2)dz, (11.13)
0

Igp= f (sin 2)7*[C+In 25— Ci(25) )%z,
0

one has

9%y, Igg 9%y, udsp %y, 2ptlpp

98,2 2k sin? g ' 8,836D_ A2k? sin? g " D2 hik,® sin? z

In the present approximation 8D, the increase in the depth due to the Coulomb repulsion inside the
potential well, is connected with 3, by

9Ys 9%y 9%y 9%y,
6D+ B2+ B:6D+
oD 2082 980D 20D?

8,
Peg i (D)2 =0,
%6

so that sufficiently accurately

e?z[In 22+4-0,577216— Ci(2z2)]

= 1 (11.2)
ro(z—sin z cos 2)
where
0%ys/0B*  0%y/0B:0D 0%ys/dD* 9y,
~ Taay/as. " ay/oD | 2ay./aD)op.
so that
F=14Bs¢/xs, (11.3)
where
B:s ey Mc? \? 0.223
o e E’+D) " [(E'+D)/Mev]:
and
o Igs/2 + Igp I C+I1n 23— Ci(23) (11.4)

C+1In 22— C2(22) z—sin g cos 2 DZ(z—sin 2 Cos 2)*
Some numerical values of e and of the coefficient of €?/7, in the first-order approximation for 6D are
given in Table XVI. The experimental values for nonvelocity dependent potentials lie close to z=1.4.
The depth of the well is in this case 10.5 Mev so that 8,/k;=0.069 for low proton energies and is
smaller than this at the higher energies. Hence f=1—0.069X0.029=0.9980. The second-order cor-
rection is thus —0.2 percent of the first-order correction. This extreme smallness of the second-order
effect should not be interpreted as an indication of a similar ratio of third- and second-order terms in
the series for 6D because the three terms in Igs, Igp, Ipp approximately cancel each other. The three
contributions for z=1.2 are —0.257;4-0.393,—0.159s= —0.023. Even though the third-order correc-
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TaBLE XVI. Values of 2[in 2240.5772- - - — Ci(22) J(z—sin z cos 2)7! and of e.

= 10 1.1 12 1.3 1.4 1.5 1.6 1.7
o 022405772 Ci22) ooy 1.566 1.580 1.506 1.613 1.633 1.655 1.679
Z2—SINn 2 COS 2
e=—0019  —0021  —0023  —0026 —0029 —0031 —0034  —0.038

tion cannot be expected to be as small as 0.002 of the second there is no reason to expect it to be
more than (0.02)?2=0.0004 of the first-order effect. The solution as used above can be thus expected
to be good enough. :

It will be noted that the first-order effect varies slowly with 2. Since z itself varies slowly with E
it also changes slowly with proton energy. As a good approximation, therefore, a range of force which
fits experiment if the Coulomb effect is neglected inside the potential well fits it also if this effect is
assumed to be present. The main change due to the Coulomb potential inside the potential hole is
nearly a constant increase in the depth of the hole for a fixed range of force, energy and phase shift.

The accuracy of Eqgs. (11.2), (11.3) and (11.4) for the computation of the correction to the depth
of the square well due to the introduction of the Coulomb interaction inside of it has been tested
using the third-order correction for the effect of the interaction on the wave function. Analogously
to the formulas preceding Eq. (11.2) one obtains by the method of Egs. (9.1) an expansion for y,
the first three terms of which give

rd BsLC+1n 23— Ci(22)] Bs22 Bs®
(—"" =70Ys =23 cot 3+ - — - T g+ Tga, (11.5)
Tdr/ ro 2k, sin? g 4k:2sin? 3 4¢3 sin? g
where
Iggg=f [C+1n 2z— Ci(23) (1 gp/sin? 3)dz. (11.6)

0

Here 2 is the internal phase defined in Eq. (11), 8, is defined in Eq. (11.11), «, in Eq. (11.12), Iz in
Eq. (11.13). The expansion in Eq. (11.5) is seen to be in powers of 8,/k.. It converges rapidly for
radii ~e?/mc? in the energy range tried. The last term is slightly less than 0.0001 up to 2600 kev and

can be neglected in most applications. The term in Iz is more important and is ~ —0.002.

According to Eq. (11.2) a square well of depth
De=D+6D with Coulomb interaction acting
inside of it gives nearly the same rdf/{dr as a
square well of depth D without the Coulomb
interaction inside of it. For the latter »d{/Tdr
can be evaluated as 2 cot 2 using z as in Eq. (11).
At the same time 7d/dr for De with Coulomb
potential can be computed using the more
accurate method of Eq. (11.5). With D=10.500
Mev and 7o=¢?/mc? the two ways of computing
rd$) Tdr agree to within 0.0001 for E=200 kev
and 0.0002 for E=2600 kev. This accuracy is
higher than any present requirement. Eq. (11.2)
may be, therefore, considered as being sufficiently
accurate for the calculation of the depth of a
square well taking account of the Coulomb
interaction down to r=0.

The value of 6D depends slightly on the proton
energy. For D=10.500 Mev-one finds 6D =0.826,
0.830, 0.834 Mev for E=200, 1400, 2600 kev,
respectively. The variation in D¢=D+4§D=11.33
Mev is less than 0.1 percent in the above range
of energies. For most purposes, therefore, one
can first calculate without taking into account
the Coulomb interaction inside the well and then
increasing the depth by the same amount 6D
throughout the present energy range.

The accuracy of this procedure has been tested
directly as well. The phase shift was computed
for ro=e€*/mc?, D=10.500 Mev and with no
Coulomb potential inside 7o. It was then also
computed for 7o=¢?/mc?, D*=11.3302 Mev, and
with the Coulomb potential taken into account
by means of Eq. (11.5). The value of K, for D¢
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minus its value for D varies slightly with energy
changing from 0.02° at E=200 kev to 0.06° at
E=2600 kev. This change is invisible on the
graphs for K, against E. '

It is useful to have the numerical values of
the functions of 2z that occur in the expansion
of 7d/Fdr in Eq. (11.5). The necessary quan-
tities are given in Table XVII.

3. Adjustment of range and values of interaction
constants obtained from experiment

A ‘“square well” potential of depth D=10.5
Mev (no Coulomb repulsion inside well) and
radius e?/mc? gives values of the phase shift
which agree approximately with experiment.
The comparison is shown in Figs. 6 and 7. In the
first of these there are three curves for radius
e?/mc? and another set for a radius 1.25 e?/mc2.
In the second of these figures graphs for a radius
0.75 €2/mc? are used instead of for the radius 1.25
e?/mc?. In both cases experiment is seen to favor
the range e?/mc? in preference to the other two.
The measurements of HKPP speak for a range
slightly smaller than e?/mc? indicating perhaps
0.95 e?/mc? as the better value. Combined with
experiments of HHT a better average fit is
obtained for a slightly larger range. The graphs
show that the range 0.75 ¢?/mc? is too small and
the range 1.25 €2/mc? is too large if it is desired
to represent the data as a whole. It is seen from

TaBLE XVIIL. Table of quantities for computation of
logarithmic derivative of wave function for square well and
Coulomb potential by means of Eq. (11.5). The second column
gives the coefficient of B./2xs in Eq. (11.5). The last two

columns have been computed with Stmpson’s rule at intervals
of 0.1 in 2.

C+ n 22— Ci(22)

z siN? 2 sIN? 2 Igg Iggg
0.4 1.027 0.1517 0.021 0.0022
.5 1.043 2298 .042 .0053
.6 1.063 3188 .072 .0112
i 1.088 4150 114 .0212
8 1.118 .5146 A7 .0368
9 1.154 6136 244 .0602
1.0 1.197 7081 .335 .094
11 1.247 7943 447 142
1.2 1.307 .8687 .583 .207
1.3 1.378 9285 745 .296
1.4 1.463 9711 937 415
1.5 1.564 9950 1.162 574
1.6 1.687 9991 1.426 .783
1.7 1.836 9834 1.733 1.061
1.8 2.020 9484 2.091
1.9 2.251 .8955 2.511
2.0 2.545 .8268 3.004

F1G. 6. Comparison of experimental and calculated phase
shift for square wells of radii e?/mc® and 1.25 e*/mc2.
Circles represent observations of HKPP, upright crosses
those of HHT. The depth of well is given in Mev. Coulomb
interaction is supposed to take place outside the well only.

Figs. 6 and 7 that through the region 700-2400
kev a change of depth with fixed range produces
a displacement of the curve by approximately a
fixed amount. On the other hand, a change of
range produces in addition a rotation. These
relationships are only approximate but are help-
ful in forming an opinion regarding the range and
depth of potential indicated by experiment. They
are also true for the Gauss error potential which
gives nearly the same shape of the (K,, E) curve
as the square well. The same percentage change
in the range produces approximately the same
amount of turning for the two types of potential.
This relationship is true also for other potentials
as long as the main part of the interaction occurs
within a small distance. The effects of changes in
depth and range are seen more clearly using a
plot of (1/C¢?) tan K, against E. Such plots are
shown in Figs. 8 and 9 the ranges for which
correspond to Figs. 6, 7. The quantity plotted is
chosen so as to give approximately horizontal
curves through the present energy range as well
as the region below 600 kev. The crowding of
curves which occurs at low energies for the graphs
of K, against E is seen to be absent for the plots
of (7/Co?) tan K,. With either type of graph it
is possible to adjust the two constants in the
Gauss error type of potential so as to make K,
have the desired values at two energies.

In view of the possibility of cumulative errors -
in the numerical integrations the range was ad-
justed also by means of formulas. This enables
the calculation of corrections to 4 and a by
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F1g. 7. Comparison of experimental and calculated phase
shift for square wells of radii e?/mc? and 0.75 ¢2/mc?. Nota-
tion and conventions are the same as for Fig. 6.

numerical integrations for values of these con-
stants determined by rough inspection of the
graphs. Several procedures have been found
useful. In the first the range was fixed arbitrarily
and the depth was determined at several energies
so as to give the desired phase shift. If the range
is too great the depth increases with energy.
For small changes 6o, 64 of depth and range
the phase shift remains unchanged if

0 0 6A
=[ f F2e~*"dx / f %2x26‘x’dx]~——
0 0 A

The integrals in this formula having been de-
termined by numerical integration at two or
more energies, one knows the ratio of the per-
centage changes which must be made at two
energies in order that the phase shift be un-
changed. Hence one can determine the value of
da which is needed for obtaining the same 4 at
the two energies. Roughly the same results can
be obtained by noting how rapidly 64/4 de-
creases with an increase in a and extrapolating
to 0. It is helpful to note that 64/4 varies
approximately linearly with energy. This crudest
method will be called the ‘“‘percentage method.”
A third way involving numerical integrations for
only one set of 4 and « is to use the approximate
linear equations

ECIREEIIE
L)l

(12)
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ECIRREIE

h
+[ (%ar)] 54, (122)
where
d /rdg xA e v
a(gg; =a2%2£xe %dx, (123)
S A VL dx, (124
il %—é—r)—_a%?‘ 06 Fdx, (12.4)

and suffixes 1, 2 denote values of derivatives and
changes for energies Ei, E; at which the adjust-
ment is to be made. Evaluating the coefficients
on the right side of (12.1), (12.2) by means of
(12.3), (12.4) and computing the left sides by
using the relation between K, and 79 /Fdr, one
obtains éa and 84.

Applying Eq. (12) to numerical integrations
made for a=18, 4 =42.8 and requiring a fit with
the square well 7o=¢?/mc* at E=200 kev and
E=2000 kev one obtains «=20.6, 4 =48.6. The
percentage method indicates using numerical
integrations for a=16 and a=18 at 200, 800,
1400, 2600 kev that one must take o> 18 in order
to obtain a fit with the square well for any pair
of these voltages and that the approximate
value of « is 20.

A set of accurate numerical integrations was
made for «=20, A=47.17. The Gauss error
potential was broken off at the distance 3 e?/mc?
and the joining of internal to external wave
functions was made at this distance. As expected
this range is slightly too great (7, is too small) to
fit the square well and is, therefore, definitely too
great to fit experiment. The comparison is shown
in Table XVIII.

The last figure is uncertain in this table but
it is seen that «=20 is too small. In the range
800-2600 kev the phase shift curve for this po-
tential is turned by roughly the same amount
under the curve for D=10.5, ro=e€?/mc? as the
experimental curve is turned above it.

From the accurate integrations for 4 =47.17,
a=20 the values of 4, a needed to fit the square
well D=10.500, 7o=e€?/mc? at 1400 kev and 2600
kev are found by means of Eqs. (12.1) and (12.2)
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to be 4=51.55, «=21.70. By fitting the square
well at 800 and 2600 kev one similarly finds
A=51.76, «a=21.78 and fitting it at 200 kev and
1400 kev one obtains 4 =751.85, «=21.83. It is
seen that in the present energy region nearly
constant values of 4 and « are needed to give
results equivalent to a square well.

The sensitivity of the value of « to changes in
K, can be computed using Egs. (12.1) and (12.2)
together with the relation of 7%/ Fdr to Ko. One
obtains in this way the values in Table XIX. In
this table the first row is labeled E1, E; and gives
the values of the energies at which the adjustment
of range is made. In the second row are listed
the changes made in K, at the energies E;, E,.
Here the entry (0, 0.4°) means that no change is
made at the lower energy and that the phase
shift is changed by 0.4° at the higher energy.
The third row gives the resultant change in «,
denoted by da. The last row gives the resultant «,
which is obtained by adding é« to the value of «
which corresponds to the pair E;, E, and fitting
the Gauss error potential to the square well of
radius 7o=e2/mc? and depth D =10.500 Mev. The
lowest « obtained in Table XIX is 19.8. To make
the value so low it was necessary to raise the
phase shift by 0.4° at 800 kev from the value
obtained for ro=e?/mc?, D=10.500 Mev. Such
an adjustment of range appears to be decidedly
too low for a, since at 800 kev the 776 kev, 867
kev and 860 kev-experimental points lie prac-
tically on the curve for ro=e€?/mc?, D=10.500
Mev and since at 1830 kev, 2105 kev and 2392
kev the experimental points lie decidedly above

E (ke

Fi1c. 8. Effect of change of range for square wells as
shown by (y/Ce) tan K, for the radii ¢?/mc® and 1.25
e?/mc? with depths in Mev. Note that change of range
turns a curve and change of depth moves it up and down.
These graphs are useful for interpolation eliminating the
need for Coulomb functions at too many energies. The low
energy point lies decidedly off the curve 7¢=1.00, D =10.500
Mev when plotted in this way.
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Fi1c. 9. Effect of change of range for square wells as shown
by (n/Ce?) tan K, for the radii e2/mc? and 0.75 €2/mc2.

this curve. It should be noted, on the other hand,
that at 670 kev the experimental phase shift
lies above the value expected for 7o=e?/mc?,
D=10.500 Mev so that the correction of «
towards smaller values appears to be called for
from this point of view. It is probable, however,
that such a correction is better represented by
the last column in Table XIX where the phase
shift is increased by 0.4° at 800 as well as 2400
kev. This adjustment requires according to the
above calculation a=21.59, 4 =51.44.

These values of 4 and « are in good agreement
with the two ends of the experimental curve
giving a good fit at 670 kev as well as at 1830,
2105 and 2392 kev. At intermediate voltages,
however, the experimental phase shifts are con-
sistently lower than the calculated, the larger
deviations occurring at 1200 and 1390 kev where
they are about 0.5°. The comparison of this curve
with experiment is shown in Fig. 10. The theo-
retical curve is seen to be slightly bulged at
intermediate voltages. The same tendency is
noticed also for square wells with 7o=e?/mc?,
D =10.500 and 10.520 Mev. It appears premature
to conclude that these small deviations indicate
an impossibility of representing the interaction
by fixed potentials of the types discussed. It is
remarkable, nevertheless, that the experimental
points fall very beautifully on a smooth curve so
that there appears to be some justification for
requiring a better fit than has been attempted.

A better judgment regarding the validity of
such conclusions can be obtained also from a
direct comparison of observed and expected
scattering shown in Fig. 11. This figure is to be
compared with Fig. 8 of the paper of HKPP. In
both of these figures the observed number of
counts per microcoulomb is plotted against
energy for fixed scattering angle. In Fig. 11 of
the present paper the averages of the experi-



1056

mental observations are plotted as circles from
Table I of HKPP instead of results of different
runs. Fig. 11 gives, therefore, an optimistic
picture of the data since it does not show the
scattering due to the errors in individual runs
shown in Fig. 8 of HKPP. The observations of
HHT have been reduced to what they would be
in the apparatus of HKPP and are plotted as
upright crosses. The diagonal crosses show the
scattering that would be expected for a pure s
anomaly with mean values of the phase shift
obtained in Tables XI, XII from the experi-
mental data. Such values are referred to here as
“empirical.” The empirical phase shift for Fig. 11
was obtained by plotting the experimental
values of K, against E as in Fig. 10. There are
shown besides in Fig. 11 three sets of theoretical
curves. In order to avoid complicating the figure
the empirical phase shift curve is not drawn.
The full curves are for a square well with
ro=e*/mc?, D=10.500 Mev. The curve with
short dashes is for a square well with 7=1.25
e*/mc?, D=6.34522 Mev and the curve with long
dashes is for the Gauss error potential a=21.59,
A=251.44. The conclusions arrived at in the
comparison of computed and observed phase
shift in Figs. 6, 7 and 10 are seen to be supported
by Fig. 11. The comparison of Figs. 6 and 7
corresponds to the use of a mean of the curves
for ®=45°, 40°, 35° and 30° and is somewhat
more consistent in its indications concerning
range than either of these curves. It is, never-
theless, seen also in the comparison with scatter-
ing that the range 1.25 e?/mc? for a square well
is decidedly too wide. The curves corresponding
to it either cut across the region covered by ex-
perimental points or else they fit experiment at
the lower energies but deviate from it markedly
at the high energy end. The observations of HHT
are seen to speak against the interpretation by
ro=e?/mc?, D=10.500 Mev and to favor rather
ro=1.25¢€*/mc?, D =6.34522 Mev or else a=21.59,
A =51.44. It is interesting to note that this indi-

TaBLE XVIII. Comparison of phase shift obtained for

Gauss error potential 47.17¢~2 with square well D = 10.500,
ro=e%/mc?.

E= 200 800 1400 2000 2600 kev
Ko(D =10.5 Mev) = 6.78° 27.90° 39.00° 45.10° 48.62°
Ko(A =47.17, «=20) = 6.80° 27.83° 38.77° 44.71° 48.16°
Difference = —0.02° 0.07° 0.23° 0.39° 0.46°

BREIT, THAXTON AND EISENBUD

TaBLE XIX. Sensitivity of range to changes in phase shift.

(E1, E2) =(1400,2600)  (800,2600)  (800,2600)  (800,2600 kev)
(81K, 82K0) =(0, 0.4°) (0.4°, 0) (0, 0.4°) (0.4°, 0.4°)
da= 2.7 —2. 1.8 —0.2
a=24.4 19.8 23.6 21.6

cation is particularly marked for ©®=30°. For
this angle the scattering as a function of the
energy should have a minimum at about 600 kev
while the points of HHT lie too high and indicate
that the minimum is at a lower energy. Inasmuch
as the agreement of HHT and HKPP at ©=25°
is not as good as desirable and inasmuch as the
agreement of the points of HHT with 7o=e?/mc?,
D=10.500 Mev is fair at this angle a final con-
clusion regarding this question appears to be
premature. At ©®=20° and 15° the expected
scattering is nearly independent of the potential
assumed, the difference being too small in most
of the region to show on the scale used. These
curves have been drawn for 7o=e¢2/mc?, D =10.500
Mev. For ®=15° the experimental points are
consistently above the theoretical curve indi-
cating the presence of geometrical corrections.
This point has already been discussed in connec-
tion with Table XI.

The adjustments for range that have been
considered do not take into account the finer
features of the experimental phase shift-energy
curve. The three energies investigated in Wash-
ington when taken by themselves would give a
definitely longer range than the phase shift
curve taken as a whole. Similarly, the high energy
part corresponds to a shorter range than the
average values arrived at. It may be hoped that
further experimental work will show whether
such finer deviations of phase shift from theory
are real. It appears that they indicate a possi-
bility of inferring the shape of the potential as
well as the range and that it may be possible to
obtain from them information concerning a
possible velocity dependence of the forces such
as has been first proposed by Wheeler.

It is probable that the information concerning
fits with phase shift curves corresponding to the
simple potentials of fixed magnitude can be ob-
tained by extending the experiments to higher
as well as to lower energies. The possibilities for
this will be discussed in the last section of the

paper.
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4, Comparison of the proton-proton and proton-
neutron interactions

The comparison of the proton-proton and
proton-neutron interactions made by BCP and
by BS" indicated that in the 1S state the proton-
neutron attraction is slightly greater than the
corresponding quantity for two protons. The
experimental situation has improved consider-
ably since then. The two types of scattering are
known better and scattering experiments on
neutrons in ortho- and parahydrogen indicate
according to Teller and Schwinger and Teller?®
that the LS level of the deuteron must be virtual.
The newer values support the previous view
regarding the relative magnitude of the two
interactions. In Table XX the comparison is
shown for square wells.

The value 68.8X1072¢ cm? corresponds to one
of the possibilities in Table I of BS and has been
used here so as to make it unnecessary to go into
the effect of range. According to Carroll and
Dunning 65.9X10~%* cm? is the probable lower
limit for ¢4 and according to Cohen and Gold-
smith the probable value of o is (80-£8) X 10~
cm?. There appears to be no doubt, therefore,
that for the square well potential the proton-
neutron attraction should be taken as the
stronger. It should be noted that this conclusion
is not sensitive to the range assumed as is seen
in Table I of BS. It is also quite insensitive
to the value used for the binding energy of
the deuteron because with E=—2.17 Mev,
127a?=12.9X 102 cm? which is relatively small
compared with ¢4 [See Eq. (8)]. Since as® is
approximately proportional to 1/E; even a ten
percent change in E; is of no importance as is
seen from Table XX. ‘

- In Table XXI a similar comparison is made
for the Gauss error potential. For this table the
value of 127as? was redetermined using the
Gauss error potential for the 3S state. Since
127as? need not be known very accurately the
value =20 was used. This gives 4(3S)=85.5
and 127a=12.6X10"2¢ cm?. The difference be-
tween this and the corresponding value for the
square well is seen to be practically immaterial.
According to Table XXI the relative values of

20E. Teller, Phys. Rev. 49, 420 (1936); J. Schwinger
and E. Teller, Phys. Rev. 52, 286 (1937).
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F1c. 10. The Gauss error potential with A4 =351.44,
a=21.59 compared with experiment and the square well
potential r¢=e2/mc?, D=10.500 Mev. The effect of in-
creasing the depth of the square well by 0.02 Mev is shown
by the diagonal crosses. Circles give observations of HKPP,
upright crosses those of HHT.

the proton-proton and proton-neutron interac-
tions are much the same for the Gauss error
potential as for the square well. It appears,
therefore, very probable that as long as the po-
tentials are assumed to have fixed magnitude
and the same range for the 1S and 3S interactions
the proton-neutron potential should be taken as
having a value roughly three percent higher than
the proton-proton potential. The last row in
Table XX shows that in order that this conclu-
sion be materially affected by a change in the 3S
scattering cross section it is necessary to increase
127as® by roughly 30X10-2% cm? i.e., by more
than twice the value expected on the simple
views used here.

5. Possibilities at low and high energies and
higher phase shifts

In Fig. 12 are shown graphs of a quantity
proportional to the expected scattering in the
region 200-600 kev. The quantity plotted is
4(c/s)M®R/E%ev. By means of Eq. (3.4) one can
obtain from it the number of counts per micro-
coulomb per mm oil pressure in the standard
design of apparatus. The graphs are plotted for

TaBLE XX. Comparison of proton-proton and proton-
neutron interactions for the square well potential.

Tth IN D, Derr
10724 cm? IN MEV IN MEv
80 11.75 11.3540.03
68.8 11.65 ‘“ ‘
52 11.4 ‘ ‘
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the square well potentials D=10.500 Mev,
ro=e2/mc* and D=19.6905 Mev, ro=23e?/4mc .
The scattering expected for these potentials at
about 2200 kev is the same. Either of them may
be looked at as representing satisfactorily the
high end of the experimental region that has been
investigated. It is seen from the figure that rela-
tively large differences can be expected at about
500 kev as well as around 350 kev at scattering
angles near 45°. The curves for the two ranges
intersect in the vicinity of 400 kev and thus for
each scattering angle there is an energy region
_insensitive to the range of force. At 300 kev for
45° scattering one expects a relative difference
between 25 percent and 20 percent for the
shorter and longer range of force. At 450 kev the
condition is even more favorable the scattering
for the shorter range being roughly % of that for
the longer. The steepness of the curves at 250 kev
and lower energies presumably introduces diffi-
culties on account of the necessity of having an
accurately defined energy of the incident protons.
From this point of view measurements at 500
~and 600 kev are more practical.
The first set of measurements published by
Tuve, Heydenburg and Hafstad includes a point

at 600 kev. Relatively good agreement was ob-

tained with the expected angular distribution as
is seen in Fig. 6 of BCP. The value of K, so
obtained was fixed at the time between 21° and
22°. Even the higher of these values would speak
for a shorter range than e?/mc? for a square well
as is seen in Figs. 6 and 7. It partly balances
the new point of HHT at 670 kev which indicates
a longer range. It will doubtless be of value to
have more observations in this region. The
counting difficulties at 45° caused by the low
proton energy can be avoided by making meas-
urements at smaller scattering angles. Measure-
ments at 300 kev will have the obvious additional
value of extending the phase shift curve over a
wider energy region. The observations of Haf-

TABLE XXI. Comparison of proton-proton and proton-
neutron potentials for the Gauss error interaction.

O¢h IN

10724 cm? a Axy Arr
80 20 48.9 47.2
80 22 54.0 52.4
65.9 20 48.3 47.2
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F1c. 11. Comparison of expected and observed scattering.
This figure is to be compared with Fig. 8 of HKPP.
Averages of their observations are plotted as circles. For
scattering at 15° the observations are plotted as double
circles. The upright crosses represent observations of HHT
reduced to the scale of the apparatus of Herb et al. The
diagonal crosses, designated as ‘‘empirical’’ are computed
using the ‘“‘mean Ky’ of Tables XI, XII interpolating
graphically for K, and assuming a pure s scattering
anomaly. All the curves are theoretical assuming a pure
sscattering anomaly. Note the definite effect of a 25 percent
change in the range of force and the too high scattering
expected for the Gauss potential (4=351.44, a=21.59)
around 1400 kev. The latter shows that the data contain
more information than just about the range of force and
depth of the interaction potential.

stad, Heydenburg and Tuve made in this region
with a point counter were intended as a test of
the attractive nature of the force and are hardly
quantitative enough for the determination of the
range of force. A comparison of the values ob-
tained by Heydenburg, Hafstad and Tuve for
the ratio of scattering at 45° to that at 25° is
shown in Fig. 13. The values are obtained from
their Table II. The high sensitivity of scattering
to energy apparent in Fig. 12 must have intro-
duced errors into these measurements in addition
to those due to difficulties with the point counter.
Only the point at 335 kev falls appreciably off
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the theoretical curves. The points appear to
favor even a shorter range than e?/mc® for a
square well but such a conclusion from this
energy region should obviously be postponed
until more complete information is available.

In Fig. 14 are shown graphs for the scattering
expected with the potentials D=10.500 Mev,
ro=e*/mc? and D=46.78 Mev, ro=¢*/2mc? on the
assumption of pure s scattering. The curves are
drawn for ©=15° 25° 35° 45° and cover the
energy range up to nine Mev. It is striking that
the small angle scattering shows at the higher
energies pronounced effects of range. This is to
be expected since the scattering anomaly is
spherically symmetric in the center of gravity
system and since it becomes more important at
high energies than the Coulomb scattering. To
some extent this is a disadvantage because a
check on the absolute values using small angle
scattering becomes more difficult. Measurements
in which the technique is tested around two Mev
would be very valuable.

The high energy region is expected to yield
valuable information regarding higher phase
shifts. The initial effect per —1° for K; is given
in Table XXII. The effect of K; is known to be
simply additive to that of K, as is seen e.g., in
Eq. (6.6) of BCP. The first row for each energy
in the table gives the rate of change of the
contribution to the ratio to Mott with respect to
K, which is expressed in degrees. This rate of
change is computed for very small K; and the
effect tabulated is, therefore, the initial effect
when K, just begins to make itself felt. In the
second row for each energy the value in the first
row is expressed as a percentage effect in the
value expected for s scattering alone. The
Mott ratio used in the denominator is that for
D=10.500 Mev, ro=e?/mc? except for 1.83 Mev
where the experimental values were used. For
negative K, i.e., repulsive interaction, the effect
of K, increases and remains positive as K; in-
creases. For positive K1, on the other hand, the
initial effect of K is negative, but as K increases
the effect becomes zero and then positive. This
is analogous to the very small 45° scattering
which is found at about 400 kev and represents,
a contest between the interference effect with the
Coulomb scattering and the direct effect of
the scattering anomaly represented by the term
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F16. 12. The low energy region. The curves show how
additional information may be obtained by observations
at low energies. The quantity plotted may be used to-
gether with Eq. (3.4) to obtain proton counts per micro-
coulomb of incident protons.

1087~2P%sin? K; in Eq. (6.6) of BCP. One ex-
pects, therefore, a qualitative difference in the
behavior for repulsive and attractive p waves
which should show itself for rather small values
of K;. Thus at 2400 kev for ®=20° one expects
the compensation to occur at K;~10° and at
0©=30° for K;~5° At eight Mev the compen-
sation is expected to occur for @ =20° at K1~5°
and for ®=30° at K;~3°. If the interaction is
attractive it may therefore be missed at some
angles. It does not seem probable that such com-
pensations have already occurred using the some-
what old fashioned types of theory with exchange
forces. But this possibility, nevertheless, exists
and should be pointed out particularly since a
form of mesotron theory has been proposed by
Bethe?! in which the direct contribution of the
p wave anomaly is much larger than with ex-
change forces. This comes about on account of a
strong dependence of the phase shift on the
coupling between spin and orbital momentum,
the phase shift being positive for 3P; and negative
for 3P, and 3P,.

The value of K; expected for potentials in-
volving no spin-spin interactions can be obtained
by substitution into formulas which express the

22 H. A. Bethe, Fifth Washington conference on Theo-
retical Physics.
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Fi6. 13. Comparison with point counter experiment of
Hafstad, Heydenburg and Tuve. Quantity plotted against
energy is ratio of counts at 45° to that at 25° as given in
their Table I1. Note misprint in table assigning at 640 kev
S15/S20°=0.038 to Sys/Sase. The figure shows the possi-
bility of using ratios of scattering at two angles for ob-
taining information about the range of force.

requirement of smooth joining of internal and
external functions. For small phase shifts and
for small effects on the wave function one can
use Taylor’s approximation? which in the present
notation is

Kp=— f (V/E)§r2dp.

For the potential Ae—>" this gives

|4| 7 E )'(2L+1)/2

K| =
mc?* \mc?
713  2L41
X2 —ms s a—(@L+3)[2
222 2 :

and where the Coulomb function power series
&, is approximated by unity and the unit of
length is %/(Mm)*c. For A=38, a=16 calcula-
tions for 2400 kev using numerical integration
and joining of wave functions gave -0.47° for
an attractive potential and —0.33° for a repul-
sive one. The above approximation gives
| Ky|=0.41° which is just about the mean of the
two values computed by numerical integration.
The value of K, is sensitive to the extension of
the potential towards the larger distances. Thus
using a repulsive square well potential of absolute
value 10.4 Mev through a distance e?/mc? one

2 H. M. Taylor, Proc. Roy. Soc. A134, 103 (1931).

BREIT, THAXTON AND EISENBUD

obtains K;= —0.15°. This value of K} is roughly
3 of the value for the Gauss error potential while
they give about the same phase shift for the s
wave. For the potential B exp (—2#/b) used by
Rarita and Present, Taylor’s approximation is

K= (B/mc2)CL2(E’/mC2)(2L+1)/2
X(2L+2)!/(2/b)**+3,

the unit of length being again %/(Mm)¥c. For
B=137 mc?, b=0.200 this approximation gives
| K| =0.54°. No attempt is made here to give
exact values for the expected K; but it is intended
to bring out the sensitivity of this quantity to
the shape of the potential and the consequent
difficulty of assigning to it a definite value.
According to Feenberg one expects from satur-
ation inequalities the repulsive interaction in the
5P state to be at least as great as (1/3)72 mc?
e~1%* which leads one to expect |K;|>0.25° at
2400 kev. According to Table XXII one would
expect an effect of about four percent at 15° and
of about three percent at 20° for the total scatter-
ing. At 1830 kev the expected phase shift should
be about 0.63 of 0.25° or 0.16°. One would expect
then ~2.7 percent of total scattering at 15° and
~2.2 percent at 20° to be due to the p wave.
Table XI shows no consistent evidence of the

E (Mev)

Fic. 14. High energy region. Quantity plotted against
energy represents the number of counts per microcoulomb
per mm oil pressure that would be expected for the scatter-

‘ing chamber of HKPP at energies up to nine Mev for an s

scattering anomaly. Note the pronounced effect of the
range of force. Also the definite divergence of the two
theoretical curves at ®=20° indicating the subordination
of Rutherford scattering to the scattering anomaly.
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presence of suich an effect. There is no indication
of a systematic difference between 20° and 25°
scattering which could be considered to be
greater than the experimental error. On the other
hand, the percentage of scattering expected due
to the p wave at 25° should be about one-half of
that at 20°. The data at 15° recorded in Table X1
should be higher by a few percent than the
expected values for a pure s scattering anomaly.
There is thus no conclusive evidence from this
scattering angle. The average percentage of the
difference between observed and computed
values taken for 2400, 2105, 1830 kev is 0.5
percent at 20° 0.4 percent at 25° 0.1 percent
at 30°, 0.2 percent at 35°. From these numbers
it appears surprising that the expected effect of
~2 percent at 20° did not appear and it may be
that this should be taken as an indication against
the customary saturation arguments with ex-
change forces. The evidence is not strong enough,
however, to make a definite conclusion safe since
the variations of the percentage differences at
the separate energies are just about of the order
of magnitude of the expected effects and since
the expected effect of |K,| is sensitive to the
shape and range of the potential. For a=20 the
minimum |K;| expected from saturation argu-
ments corresponds to a repulsive potential
(85/3)e~2", The effects expected for this po-
tential are ~0.67 of those used above.

IV. CoNCLUDING REMARKS

It is seen from the above attempt to represent
the experimental material that the range of force
for the customary Gauss error type of potential
cannot be taken as large as has been customary.
The constant « in Ae~ = cannot have the value
16 but must be taken to be about 21. This is
approximately the change tried by Rarita and
Present. In their work this change of range was
indicated by the binding energy of H3. Their
calculations with the potential Be~?7/ in which
a corresponding change of range was made give
a too low value for the mass of Het. Analogous
but less accurate calculations made by them
using the Gauss error potential give also a too
low value for this mass. They pointed out that
one cannot, therefore, fit the binding energies
of H?® and He* consistently using the simple

OF PROTONS BY PROTONS
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TaABLE XXII. Percentage effect on scattering per K= —1°.
Quantity tabulated is — 100(AR)1/ RAK°. It represents the
slope of 100(AR)1/ R plotted against — K, which is expressed
in degrees.

0= 15° | 20° | 25° | 30° 35° |E (MEv)
—(A®R)/AK°=| 0.15| 0.24 | 0.29 | 0.29 | 0.21 1.83
Percentage =|17 14 7.5 [ 3.5 [1.49% | 1.83
—(A®R),/AK°=| .18 .27| 33| 33| .24 24
Percentage =(16 11 5.5 |25 |1.0%| 24
—(AR),/AK,°= 35 43| 42 .30 4
Percentage = 69 [34 |15 6% | 4
—(AR)/AK,°= 49| 61| .60 .43 8
Percentage = 45 |22 | 1.0 49% 1 8

exchange force theories. The degree to which this
difficulty may be important has appeared in a
different light in the calculations of Margenau
and Warren and of Margenau and Tyrrell who
have encountered relatively smaller difficulties
in fitting the binding energy of H?® with the
Gauss error potential with a=16. It is seen
from the above analysis that such a fit, interest-
ing as it is, cannot be made consistently with the
scattering experiments. It appears likely from
their results also that one will have difficulty in
fitting the mass defects of both H® and He®.
Particularly for the latter a too low energy is
expected. It is thus impossible to use fixed
interaction potentials of the types assumed in
these calculations. It may be that a solution of
the problem will be given by a development of
the mesotron theories of nuclear interactions.

It should be mentioned, however, that the
behavior of phase shift with energy is sensitive
to a velocity dependence of the potential. It has
been pointed out by Wheller that exchange forces
are special cases of a more general class of velocity
dependence. It is also obvious from relativistic
arguments that fixed exchange or ordinary
potentials can only be a first approximation. By
introducing a velocity dependence of the poten-
tial one can fit the experimental phase shift using
a longer range of force. The approximate depths
needed are seen in Table XXIII.

The table shows that one needs an approxi-
mately uniform increase of depth with energy
and that the amount is relatively small. The
adjustment is made so as to make the Gauss
error potentials give the same phase shifts as the
square well 7o=¢?/mc?, D=10.500 Mev. The
latter approximates the experimental phase shift
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curve from 800 to 2400 kev. The increase in
depth from 200 to 2600 kev is only 1.6 percent
for a=16 and 0.7 percent for «=18. One can thus
try to interpret the results using a range of
2.25X10~% cm (a=16) but with a progressive
increase in depth of the well amounting to 1.6
percent per 1.2 Mev of the relative kinetic energy
of the two protons. The change 1.2 Mev in the
relative kinetic energy is ~10 percent of the
kinetic energy which the two protons have inside
the potential well. The velocity dependence sug-
gested by the experiment is thus of the order of

1.6 percent
—————100 percent=16 percent
10 percent

of the change in kinetic energy of relative motion.
The depth of the square well potential 11.3 Mev
would change on this basis to only roughly 9.5
Mev if the relative energy of the two protons is
*—10 Mev. If such a velocity dependence were
speculatively supposed to show itself also in the
3S interaction then it is imaginable that the
degree of binding in such a nucleus as He? will
be seriously affected. The sign of the effect does
not appear to be immediately obvious since the
distribution of relative momenta of the particles
is important and this in turn depends on the
structure of the nucleus which follows from the
assumed interaction. The 3S interaction may,
however, be changing in a direction opposite to
that of 1S. A more careful analysis of this question
would be helpful. It is clear, however, that even
a relatively slow velocity dependence can affect
quite fundamentally the conclusions from the
binding energies of light nuclei.

If itds supposed that the 1S interaction depends
on velocity then the difference between the
proton-neutron and proton-proton’ interactions
becomes partly explicable. The relative kinetic
energy of the two protons is smaller when they
are close to each other on account of the Coulomb
repulsion. At the boundary of a square well of
radius e?/mc? the difference in relative kinetic
energy for a proton-neutron and a proton-
proton collision of low energy is 0.51 Mev. Inside
the square well the difference is larger on account

BREIT, THAXTON AND EISENBUD

TaBLE XXIII. Velocity dependence needed to account for
the s phase shift.

E 200 800 1400 2000  2600KEV  a
4 36.8(7) 36.9(7) 37.1(8) 37.3(0) 37.4(5) 16
4 419(0) 41.9(7) 42.0(5) 42.1(3) 42.2(0) 18

of the increase in Coulomb energy. As a rough
approximation one may estimate 0.83 Mev which
is the correction for square well depth due to the
Coulomb effect. The  velocity dependence ob-
tained from a=16 would lead one to expect then
a decrease of the interaction potential by 0.16
X0.83 Mev=0.13 Mev. The difference to be
accounted for is 0.4 Mev. The effect due to this
velocity dependence appears to be too small. It
may, nevertheless, be significant that it is of the
right order of magnitude and in the right direc-
tion. Interactions emphasizing the effect of short
distances would increase it.

The discrepancy between the scattering of
fast and slow neutrons may also be connected
with a velocity dependence of the forces of a
slowly progressive type. An increase in inter-
action depth with velocity would decrease the
scattering cross section for fast neutrons. At 2.8
Mev for incident neutrons the depth of the well
could be expected to be increased by ~0.2 Mev
which would produce only a very small effect in
the right direction on the position of the 3S level
and hence on the scattering. The observed dif-
ference of ~17 percent needs presumably a dif-
ferent explanation along the lines of Schwinger's
use of (o1r)(osr) types of coupling. These terms
are now necessary in view of the experimentally
established quadrupole moment of the deuteron
and the proton-proton scattering experiments do
not appear as yet to throw much light on inter-
actions of this type on account of the pre-
dominance of the s wave anomaly.

The s wave anomaly is dissociated from the
other phase' shifts. The interactions of the
(o1r) (oor) type do not couple the LS wave to other
types of waves. This is a fortunate circumstance
for the simplification of the analysis of experi-
mental material but it also has made it impossible
so far to relate the proton-proton experiments to
the noncentral nature of nuclear forces.
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With fixed interaction potentials it is possible
in theory to distinguish between wells of different
shapes. Shapes of potential wells having con-
siderable extension to larger distances give a
relatively small slope for the K, E curve at large
energies. The curves have as a result a bulge in
the central energy range (1400 kev) and cannot
be fitted to this range if they are made to agree
with experiment at 2400 kev and 800 kev. The
relatively good agreement of the square well
potential with experiment is presumably due,
from this point of view, to the fact that it has no
extensions to high energies. The mesotron type of
potential appears hopeful in this connection. It
will be reported on in another publication.

Summarizing the main results it has been
found that: (a) There is no consistent evidence for
p or d scattering above experimental error. The
absence of the p wave is surprising from the
point of view of Feenberg’s lower limit for the 3P
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repulsion but the experimental error is too large
to make a definite conclusion safe. () The s
phase shift depends on the energy so rapidly as
to indicate a shorter range of force than has been
customary to use in calculations with the Gauss
error potential. This conclusion holds only if the
potential is independent of velocity. A velocity
dependence amounting to one-sixth of the change
in relative kinetic energy would bring the range
of force back to its old value. (¢) The proton-
proton interaction determined from the experi-
ments is definitely smaller than the proton-
neutron interaction in the 1S state. The difference
is approximately the same as that obtained by
Breit, Condon and Present and by Breit and
Stehn using the older observations of Tuve,
Heydenburg and Hafstad. The difference is
roughly three percent of the whole. This con-
clusion, however, is subject to modification in
case the contribution due to 3S scattering to the

APPENDIX
Table of Coulomb functions. The table gives the quantities needed for Eq. (7.8) of BCP.

EIN REV| ®o*/Po $000 Co2pdo? Bo*/ Do 3080 Co2p®o? Do*/Po %000 Co2pdo? Do*/Po 3000 Co2p®o?
r=0.5¢2/mc? r=0.75¢2/mc? r=e?/mc? r=1.25¢2/mc?
200 | 1.0227 0.9034 0.01957 | 1.0327 0.8793 0.02997 | 1.0419 0.8606 0.0409 | 1.0502 0.8452 0.0522
400 | 1.0212 9148 .04215 | 1.0292 .8946 .06453 | 1.0356 8786 0877 | 1.0403 .8649 1115
600 | 1.0193 9212 .06158 | 1.0259 .9017 .0940 1.0293 .8855 1274 ] 1.0307 .8702 1614
800 | 1.0180 .9247 .07865 | 1.0221 .9053 .1199 1.0231 .8872 11620 | 1.0209 .8690 .2045
1000 | 1.0164 .9269 .0940 1.0186 .9065 .1431 1.0168 .8861 1927 | 1.0111 .8641 2425
1200 | 1.0148 9282 .1081 1.0150 .9063 .1642 1.0105 .8829 .2206 | 1.0012 .8567 2765
1400 | 1.0133 .9288 .1211 1.0114 9051  .1837 1.0040 8787 2461 | 0.9914 8478 3074
1600 | 1.0117 9290 .13335 | 1.0080 .9031 .2017 0.9979 8732 .2695 9814 .8376 .3355
1800 | 1.0100 9288  .1448 1.0044 9007 .2187 9914 8672 2914 9714 .8267 .3614
2000 | 1.0086 .9282 . .1557 1.0007 .8978  .2347 .9850 .8606 3119 9614 .8151 .3853
2200 | 1.0068 .9275 .1661 0.9972  .8945  .2497 9787 8534 .3309 9513 .8030 4074
2400 | 1.0054 .9265 .1759 9937  .8909  .2640 9724 .8459 .3489 9413 7904 4280
2600 | 1.0037 .9255 .1853 9900 .8871  .2777 .9659 .8381 3659 9312 177 4472
2800 | 1.0022° .9242 .1944 9864 .8831  .2907 9595 .8299 .3820 9210 7646 4652
r=1.5¢2/mc? r=2e2/mc? r=2.5¢2/mc? r=3¢2/mc?

200 | 1.0578 0.8323 0.0638 1.0702 0.8113 0.0883 1.0796 0.7942 0.1142 | 1.0858 0.7791 0.1412
400 | 1.0438 .8522  .1358 1.0456  .8283 .1859 1.0413 .8034 2369 | 1.0307 7757 2881
600 [ 1.0298 .8547 .1958 1.0207 .8212  .2651 1.0023 7817 3333 | 0.9742 7350 .3984
800 | 1.0157 .8493 .2471 0.9956 - .8032 .3308 0.9627 7468 4100 9166 .6798 4817
1000 | 1.0014 . .8392 .2917 9702 .7796  .3863 9224 .7058 4719 8575 6187 5444
1200 | 0.9871  .8265 .3312 9444 7526 4337 .8815 6613 5222 7970 .5556 5917
1400 9728 8117  .3666 9184  .7237 4748 .8405 .6156 .5626 .7352 4931 .6259
1600 0584  .7958 .3984 8925 .6933  .5099 7978 5698 .5960 6714 4320 .6504
1800 9440 7786 4271 8659  .6626 .54006 .7550 .5240 .6223 .6066 3731 .6661
2000 9293 .7613  .4534 8391  .6313  .5673 7113 4792 .6430 .5396 3170 6748
2200 9146 .7433 4774 8121 .6004 .5903 .6667 4355 .6589 4712 2638 6774
2400 8998 .7251  .4993 .7849 5692  .6101 6214 3928 6704 .4007 2139 .6752
2600 8849 7065 .5194 7574 5386  .6273 5755 3518 .6780 .3280 1673 .6688
2800 8702  .6879  .5377 7293 .5085  .6419 .5282 3123 .6826 2520 1237 .6585
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slow neutron scattering cross section is strongly
affected by the interaction of 3S with D as has
been pointed out by Schwinger. For a given
range the data determine the proton-proton
interaction probably to within better than 0.3
percent.

We would like to acknowledge our indebted-
ness to the two groups of experimenters for their
whole hearted cooperation and to Messrs. Share,
Hoisington and Kittel for occasional help. We are
especially indebted to Professor Herb and Dr.
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Tuve for many discussions which have helped to
clarify the interpretation. Grateful acknowledg-
ment is made also of the financial assistance
received from the Wisconsin Alumni Research
Foundation, the Carnegie Institution of Wash-
ington and the WPA project in natural sciences
at the University of Wisconsin.

Note in proof.—According to Lennart Simons [Phys.
Rev. 55, 792 (1939)7] o7y =14.8 X 10724 cm? so that o:3 =59
X1072 cm? and D,,=11.5(2) Mev. This differs by only
1.5 percent from D,,°=11.35 Mev. Potentials such as the
meson potential which are more concentrated at small 7
may reduce this difference to zero.

JUNE 1, 1939

PHYSICAL REVIEW

VOLUME 5§55

Reflectivities of Evaporated Metal Films in the Near and Far Ultraviolet

GEORGE B. SABINE*
Department of Physics, Cornell University, Ithaca, New York

(Received April 10, 1939)

The reflectivities of evaporated metal films from the visible to 450A have been determined for
the following metals: Aluminum, antimony, beryllium, bismuth, cadmium, chromium, copper,
gold, iron, lead, magnesium, manganese, molybdenum, nickel, palladium, platinum, silver,
tellurium, titanium, zinc and zirconium. Photographic methods were used. From the visible to
2400A, a quartz mercury arc with calibrated wire screens and a quartz prism spectrograph were
employed. From 2400A to 450A it was necessary to use a vacuum spectrograph with grating, a
discharge tube, and oiled photographic film. The accuracy of the work in the near ultraviolet is
of the order of three percent and in the far ultraviolet not better than five percent. Curves of
reflectivity against wave-length for these metals are included.

1. INTRODUCTION

HE purpose of this paper is to extend the
available information on the reflectivities of
evaporated metal films. Most previous work has
been confined to the determination of the re-
flectivities of metals in bulk or of sputtered and
electrolytically deposited films. The reflectivities
reported here are those which would normally be
expected under ordinary laboratory conditions
where the mirrors are exposed to air. They do
not necessarily give the true reflectivity of the
metallic surfaces before contamination by vapors
and gases.

2. APPARATUS AND PROCEDURE

The method of evaporation and the equipment
used are similar to that described by Williams

* Now at the Kodak Research Laboratories.

and Sabine.! The metal to be evaporated was
placed in a conical helix of fifteen-mil tungsten
wire which could be heated by an electric current.
In some cases, it was found to be advantageous
to wrap two or three inches of the metal to be
evaporated, if it were obtainable in wire form,
around a short length of twenty-five-mil tungsten
wire. This proved to be particularly "useful in
the case of metals which attack tungsten when
molten or which evaporate only at very high
temperatures.

The films were deposited on special scratch-
free plate glass which had been washed with a
strong solution of potassium hydroxide, then
with hydrochloric acid, and finally dried in
front of a fan with ethyl alcohol. Rubber gloves
were worn on the hands and the glass was held

1R, C. Williams and G. B. Sabine, Astrophys. J. 77, 316
(1933).



