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and, therefore, since (¥o)So=1v0(*0)
€= [V(T()) “‘Eo]lﬁoz(f’o)?}. (12)

From Eqgs. (11) and (12) we see that the first-
order perturbation energy is zero if the sphere .Sy
is only -deformed without a change of volume.

§5
Higher approximations

The higher approximations cannot usually be
calculated without solving a partial differential
equation.
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We do not intend to go into any detail of this
question. We just want to mention that it is
possible to eliminate the potential from the
Schrodinger equation. In order to demonstrate
that, we proceed thus: We insert

§I/=\b0f

into Eq. (2) and observe that ¢, obeys Eq. (1).
We then obtain for f the differential equation :

div (¥o* grad f) +ebe’f =0.

In cases where the function ¥, has a simple form,
this transformation may be of advantage.?
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A proof is given of the condensation phenomenon of a Bose-Einstein gas. A preliminary
discussion of its transport properties is outlined with a view to its possible bearing on the

problem of liquid helium.

INTRODUCTION

N his well-known papers! on the degeneracy of
an ideal gas, Einstein mentioned a peculiar
condensation phenomenon of the ideal ‘‘Bose-
Einstein” gas. This very interesting discovery,
however, has not appeared in the textbooks,
probably because Uhlenbeck in his thesis? ques-
tioned the correctness of Einstein's argument.
Since, from the very first, the mechanism ap-
peared to be devoid of any practical significance,
all real gases being condensed at the temperature
in question, the matter has never been examined
in detail; and it has been generally supposed that
there is no such condensation phenomenon.
In discussing some properties of liquid helium,
I recently realized that Einstein’s statement has
been erroneously discredited; moreover, some

* At present at Duke University, Durham, North
Carolina.

L A. Einstein, Ber. Berl. Akad. 261 (1924); 3 (1925).

2 G. E. Uhlenbeck, Dissertation (Leiden, 1927).

support could be given to the idea that the
peculiar phase transition (‘A-point’’), that liquid
helium undergoes at 2.19°K, very probably has to
be regarded as the condensation phenomenon of
the Bose-Einstein statistics, distorted, of course,
by the presence of molecular forces and by the
fact that it manifestsitself in the liquid and not in
the gaseous state. In a preliminary note,® the
course of the specific heat of an ideal Bose-
Einstein gas was reproduced, but no proof was
communicated. As, since then, I have been asked
several times for a proof and as even the correct-
ness of the result has been questioned anew, it
might perhaps be justified, on this occasion to
publish a quite elementary demonstration of the
condensation mechanism, discussing only briefly
here the possible connection of the Bose-
Einstein degeneracy with the problem of liquid
helium.*
~ 5F. London, Nature 141, 643 (1938).

¢ In a recent paper Uhlenbeck has withdrawn his former

objection. G. E. Uhlenbeck and B. Kahn, Physica 5, 399
(1938). )
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§1. THE DEGENERACY OF THE BOSE-EINSTEIN
Gas

We start from the well-known fundamental
formula for, the most probable distribution in a
Bose-Einstein gas:

gi
Z—eﬂéﬂ-a.__l-

Here 3=1/kT, g;,=statistical weight of the state
of energy e;; the parameter o has to be deter-
mined as a function of 7" by the condition

gi

eBeita 1.
N =total number of particles. It may be men-
tioned that « is proportional to Gibb’s potential
¢;itis ¢= —akT. For free particles of the mass
M, without spin, in a given volume V, one
usually assumes

épz(p2/2M)1

and obtains

g(p)dp=(4rV/h¥)p*dp
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Here o must be positive; otherwise some of the
N; would be negative, which, of course, is not
. admissible. Now F(a) is a monotonously de-
creasing function, its maximum value being
F(0)=2.612. Therefore, no solution «(T) of
Eq. (2) can be found for

V(Q2rMET)?
>—2.612,
h3
i.e., for T<T,,
_ N op?
where To= (»-—— . 3)
2.612V/ 2z Mk
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For M =mass of the He-atom and for a molar
volume of 27.6 cm?® one obtains T=3.13°K.

Equation (1), however, obviously always has a
solution «(7T"), for each temperature 7, with
positive N;. The difference of the behavior of
Egs. (1) and (2) comes from the neglect caused
by the substitution of the sum by an integral.
This can easily be seen if one takes, e.g., the
discontinuous energy values of a cubic volume
of linear dimension L (periodic boundary
conditions):

e, 1, m= (R2+124+m?) (h?/2ML?)
kB lm=0, 41, 42, -
and substitutes them into (1) :

1
N=

k. T m oo B+ 2+mAta | ’

(1a)

h? 1.90r T
g=— = —
202 MET N¥ T

where

Here the right-hand side is again a monotonously
decreasing function of «, which, however, is not
bounded by a finite limit when «—0. Conse-
quently Eq. (1) has, for each temperature T, a
solution «(7T).> The difference between (1a) and
(2) is due to the fact that in (2) the lowest state
E=l=m=0 (or p=0), incorrectly acquires the
statistical weight zero, and therefore it becomes
entirely suppressed. It is just this one term in the
sum (1a) which is decisive for the behavior in the
limit a—0, viz., at lowest temperatures. It will
therefore be sufficient to treat this lowest term
of the sum separately; the other terms may,
without detriment, be replaced by an integral.

We collect the states with k24124+m?< p? where
the value of p may be chosen in such a way, that
the difference between the integral from p to «
and the sum from p to « is negligible (say p~10).
The mean energy of these states is

3 p%? 3

=—¢

10 ML* 5

h2p?

2ML?

where

€0= €=

and their number is given by
go=(47/3)0%.

5 From this fact Uhlenbeck? was led to the conclusion
that no condensation phenomenon should exist,
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Then we
than (2),
pldp

£o 47I'V @
we B
eﬁaﬁ-a_l h3 oh/ L ea+p2/2MkT___1

or with o/ =8¢+ a=%2Be+a:

-7 7

may write, in a better approximation

¥ F(0)

xfe

The first term of the right-hand side must not be
negative, since it gives the number of atoms in
the cell of the go lowest states. Therefore in any
case o’ >0. It may be remarked that the quantity
Be= (h2p?/2ML%T) -is always a very small
number [ =(5.97/N%p*(To/T)].

Now we have to distinguish two entirely differ-
ent cases:

(1) T>T,. In this case o’ comes out to be a
number of the order of magnitude 1. Conse-
quently, the first term of the right-hand side of
(4) is of the order 1/N and may be neglected
compared with the second term. In the latter we
may neglect Bea’ and obtain

(To/T)'=[F(a)/F(0)] for T>T,,

zidz

(4)

ez+a —3/5-Be_— 1

(4a)

which is equivalent to (2).

(2) T'<T,. The second term of the right-hand
side of (4) is in any case smaller than (77/T)%. In
particular for 7'<T,, it is smaller than 1. Thus
the first term is required to make up for the rest;
consequently, since the numerator of this term is
very small, its denominator must be equally
small, v2z., of the order 1/N, this means &’ ~1/N;
in the second term o may now be neglected
compared with Be~1/N% and we can write

for (4):
2 o zhdz
T)t f
W%F(O) Be ez—3/5-55_. 1

0.173(8) -+ ]

(4b)

or

a’:%[l——(T/To)*(1—0-173(ﬂ€)%+'.")]’11 ()
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valid as long as

2
N[1—(T/Ty)¥>»1 orfor To— T>>§1_\}T°’

i.e., practically for all temperatures 7T <T,.
The number of particles in the lowest cell
becomes

No=N[1—(T/T¢)*(1—0.173(Be)i+ - )]
=N[1—(T/To)¥]+0.422pNiT/To+- - -.

We see that in first approximation this expres-
sion is independent of p, i.e., independent of
go=(47/3)p?, the number of states we have col-
lected in the lowest cell. Therefore, N(1 — (T/T0)*)
atoms, i.e., a finite fraction of all atoms will be
assembled in the one lowest state. In the spherical
shell of radius p and thickness dp around the
lowest state, there will be only 0.422 N3T/Tdp
molecules.

Accordingly, the distribution among the lowest
quantum states, characterized by the quantum
numbers %, /, m (see (1la)), may be written:

N[1—(T/T)*]
P4+m2)N129.8T o/ T[1—(T/To)*]

N/c, 1,m=—

1+ (B +

If N is finite, the function «(7T) is, of course, an
analytic function. However, for increasing values
of N, the third derivative of «, near T'=T,,
becomes greater and greater. In the limit N— o,
N/ V=constant, the function «(7") has a discon-
tinuous second derivative. It consists of two
branches which do not cohere analytically. One
gets a =0 for "< T, while for T2 T the function
a(T) is given by the inversion of (4a). Taking
N=Avogadro’s number, and V=molecular vol-
ume, we may, for T'<T, write simply:

No=N[1—(T/T)*]
(number of atoms in the lowest

state) (6a)
N(E)dE= 2z V/h¥) (2 M) (E}HE/(efE—1)).
(number of atoms of the interval

(E, E4dE) where E>0) (6b)

Therefrom we obtain the energy U per molecular
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15
=—0.514R(T/To)}
(8b)

volume and for < T
3 1¢(2.5)
f EN(E)dE=-R ( ——
2 ¢(1.5) 4
3 T\% 3 Cot= 3R{1+0 231(T0/T)
——0 514RT(T ) =50.514RCT°/2V, (7a) 40.045(T/T)? —|-0.040(T0/T)9/2+~ .
2.612 /27 ME The free energy
where C~——~—( —— for He
153 F= -Tf —~dT
00 xk—ldx .
and c(k)= f . is found to be:
(F—1)! 1
F_=—0.514RT(T/T)3*=—0.514CRT**V (9a)
the Ri ta-f 2.612
gc‘l\fe;ﬂ)oﬁels 34(;:) iemann zeta-function (¢ (%) Fo= —3RT{In (T/Ts)+0.308(To/T)*"
5)y=1. .
For T2 T,, Einstein has previously given the  40.0075(T,/T)*+0.0025(T/T)%24---}, (9b)
semi-convergent expansion :
from which one gets the pressure p=—9F/dV
T .
U.= {1—0.462(T,/T)} p_=0.514CRT™/? (10a)
0.0114(T/ T | (b RT 0.462  0.0225
s SR PR
v vl ocve (cvrye
0.0114
—_— ] (10b)
(CVT?%)3

—0.0225(7T/T)3—
The two branches U, and U_ are continuous at
T =T, with a continuous tangent, but the second

Thus the specific

derivative is discontinuous
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This is in agreement with the Virial theorem:
pV=3U.

§2. CONDENSATION IN MOMENTUM SPACE

Attention has already been directed to the
remarkable result (10a), that for T'<T, the
pressure is independent of density, just as in the
case of a van der Waals gas in the transition
region below the critical point. However, this
independence of density is quite accidental for
the Bose-Einstein gas,® and it is somewhat mis-
leading to interpret this behavior in analogy with
a van der Waals gas by saying that for <7
a fraction of the molecules condenses into a
state of zero volume and does not contribute
to the density.* Indeed, in the transition region
of the van der Waals gas, a fraction of the mole-
cules is condensed into a state of considerably

DEGENERATE
STATE ~

Fi16G. 3. Isotherms of an ideal Bose-Einstein gas.

¢ This independence of density holds only for an “ideal”
Bose-Einstein gas, but is no longer realized as soon as a
molecular interaction is taken into account, for instance
by adding a term Uy(V) to the energy, representing a mean
van der Waals field smeared over the total volume acces-
sible to the molecules. In this case the condensation for
constant volume proceeds as before and the specific heat
cyis exactly the same as given by (8). The pressure, however,
will no longer be independent of V. It will be given by

p_=0.514 CRT®2—9U,/0V

and for constant pressure the gas will in this case no longer
condense to the volume zero.
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smaller volume and, since it is separated by gravi-
tation from the other molecules, it does not con-
tribute to the density of the gaseous phase. At this
point the analogy fails completely, or is rather to
be found in a more remote sense. The supernumer-
ary molecules of a degenerate Bose-Einstein gas
which we have denoted by Ny and which indeed
may be considered as belonging to a particular
phase, do not, of course, disappear mysteriously
from space; they do contribute to the density as
any other molecules. They do %ot contribute,
however, to the pressure, since their kinetic energy
(and momentum), is zero. If one likes analogies,
one may say that there is actually a condensation,
but only in momentum space, and not in ordinary
space, i.e., an equilibrium of two phases, one
containing the molecules N, of momentum zero
and occupying in the space of momenta, a zero
volume ; and another one showing a distribution
over all momenta similar to that which is realized
for T'>T. In ordinary space, however, no separa-
tion of phases is to be noticed.

In a certain respect the molecules of the con-
densed phase having the momentum zero, show
also a characteristic peculiarity as to their be-
havior in ordinary space. Since their wave func-
tions are constant over the whole volume, they
are particularly inappropriate for forming wave
packets of the size of molecular dimensions by
superposition of neighboring wave functions (i.e.,
wave functions of comparable small energy, so

-2

)
/%

F1c. 4. Specific heat of an ideal Bose-Einstein gas.
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that the energy distribution of the whole remains
unchanged). These molecules therefore will repre-
sent a peculiar omnipresence in the total volume
at their disposal. Accordingly it will not be allow-
able to treat their motion in external fields
(pressure gradient, etc.), on the lines of Ehren-
fest’s theorem (approximate validity of classical
mechanics for small wave packets), which
theorem has been the general basis of the usual
corpuscular treatment of the transport phe-
nomena. Here we have before us just the opposite
limiting case, namely, wave packets of a very
small extension in the space of momenta, but
which in ordinary space are spread over a region
comparable with the extension of the inhomo-
geneities of macroscopic fields.

The quantum dynamics of this limiting case
has been investigated very little. Only one inter-
esting special case has so far been discussed in
connection with superconductivity. It has been
shown’ that the macroscopic description given
for this phenomenon leads to a relation between
electric current and magnetic field, which is
identical with that which would be valid in an
enormous diamagnetic atom of the dimensions of
the metal. Now it is well known that diamagnet-
ism cannot be explained on the basis of classical
dynamics of electrons. The currents in a diamag-
netic atom are not given by progressive de Broglie
waves (or progressive wave packets), as in the
usual treatment of the ordinary conductivity
phenomena. These currents are represented
rather by standing waves; they come from that
term in the expression for the electric current
which contains the vector potential of the mag-
netic field, and their structure is intimately con-
nected with the spatial extension of the quantum
states (the diamagnetic susceptibility is known to
be proportional to (r?)y). For the superconduc-
tivity in particular it can be shown that the
macroscopic phenomena may be interpreted very
simply by the assumption of a peculiar coupling
in the space of momenta, producing, below a
certain critical temperature, a fixation of mo-
mentum, as if there were something like a con-
densed phase in the space of momenta. Thus far,
however, it has not yet been possible to base that
assumption on a molecular model by the general
theory of electrons in metals.

7F. London and H. London, Physica 2, 341 (1935);
F. London, Proc. Roy. Soc. A152, 24 (1935).
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Now the degenerate Bose-Einstein gas pro-
vides a good example of a molecular model for
such a condensed state in space of momenta, such
as seems needed for the superconductive state.
Though this fact cannot, of course, be applied to
explain superconductivity, as electrons do not
obey Bose statistics, it is remarkable on the other
hand that the transport properties (viscosity,’
thermal conductivity?), of liquid helium, when
passing the A-point actually change in a very
conspicuous manner; thus one speaks of a
“superfluidity” and of a super-heat-conduc-
tivity.”

§3. SUPERFLUIDITY

We have already emphasized that one might
certainly not be justified in formally applying
the ordinary corpuscular theory!® of transport
phenomena of a Bose-Einstein gas to this case of
degeneracy where the mean de Broglie wave-length
of the particles is comparable with the macroscopic
dimensions of the whole system. On the present
occasion, however, it may perhaps be permissible
to discuss, with all due reserve, the question of
what would be the effect if, in Sommerfeld’s
theory of conductivity,! the Fermi statistics are
formally replaced by the Bose-Einstein statistics,
and in particular, what would happen at the
transition to the degenerate state. One may
presume that our attempt will prove as much
justified as the classical treatment of diamag-
netism on the basis of the Larmor theorem.

In order to fix our ideas and to have a definite,
though highly idealized; model, we may depict
liquid helium as a metal in which ions and elec-
trons are replaced by particles of the same kind,
namely both by He atoms. Each He atom may
move in a self-consistent (van der Waals) field
formed by the other atoms. The states of this
system might perhaps, to a certain approxima-

8E. F. Burton, Nature 135, 265 (1935); Wilhelm,
Misener and Clark, Proc. Roy. Soc. (London) A151, 342
(1935); E. F. Burton, Nature 142, 72 (1938); P. Kapitza,
Nature 141, 74 (1938); J. F. Allen and A. D. Misener,
Nature 141, 75 (1938) ; B. V. Rollin, VII. Congrés Internat.
du Froid 1, 187 (1936); Kikoin and Lasarew, Nature 142,
912 (1938); J. G. Daunt, and K. Mendelssohn, Nature
141, 911 (1938); 142, 475 (1938).

9W. H. Keesomand A. P. Keesom, Physica 2, 557 (1935);
B. V. Rollin, Physica 3, 296 (1936); W. H. Keesom and A.
P. Keesom, Physica 3, 359 (1936); J. F. Allen, R. Peierls
and M. Z. Uddin, Nature 140, 62 (1937).

10 G, E. Uhlenbeck and E. A. Uehling, Phys. Rev. 43,

552 (1933).
u A, Sommerfeld, Zeits. {. Physik 47, 1 (1928).
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tion, be divided into two classes : one, being more
of the Bloch-type (progressive modulated Schréd-
inger waves), corresponding to the electronic states
of the metal and representing a transport of
matter; the other one, more of the Debye-type
(quantized acoustical or elastic waves), corre-
sponding to the wvibrations of the ionic lattice. In
this picture the fluidity of the liquid would
correspond to the electric conductivity of the
electrons in a metal ; the friction would be due to
the dissipation of progressive Bloch waves by
inelastic reflection on the Debye waves. Let us
finally make the assumption that for these
inelastic collisions there exists a mean free path /
which is independent of the velocity v for small
values of v.

We do not want to insist here on the details of
this conception, which is certainly open to much
criticism, though perhaps it may prove useful for
describing some properties of liquids in general.
At any rate it is desirable to know what would be
the result if in the theory of metals the Fermi
statistics are formally replaced by Bose statistics,
even if one does not think of a possible connection
with liquid helium, and even if it is more than
doubtful whether one is allowed to apply the
ordinary collision theory to this limiting case in
which .the mean value of the de Broglie wave-
length is comparable with the macroscopic
dimensions of the whole system.

The well-known formula for the electric con-
ductivity ¢~{l/v)s would yield the value o= o
in the case where a finite fraction of all particles
has zero velocity. But actually one has to apply a
special consideration for the slowest particles. A
particle of mass M and of initial velocity vy,
chosen in the direction of the field F, needs the
time 7 to traverse the mean free path /:

I=vor+(1/2M)Fr?,
7= (M/F)[(ve>+21F/M)*—wv,].

The mean change of velocity due to the action of
F during this time 7 will therefore be given by

or

<57)0>Av.=”2‘j‘l}FT= %[(?)OZ-FZZF/M)%—?}()]. (11) |

In general (particularly in the case of Fermi
statistics, and also in the case T> T, for the
Bose statistics), one is accustomed and entitled
to disregard the few particles with Muv,2/251F
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and one may write instead of (11):
!
(Svoym = . - F for Muvo®/2>>IF, (lla)
Yo

which gives the above-mentioned formula for ¢.

In the case of the Bose degeneracy (T'<TY),
however, we are not allowed to neglect the finite
fraction of particles with 2o=0. For these we
obtain

(Svo)w=(IF/2M)} for Mv2/2<I-F. (11b)

This contribution is, for ordinary values of F,
enormously greater than (11a). One may say the
“conductivity,” wiz., the fluidity (defined as
derivative of the current with respect to F),
becomes infinite for F—0, and this abruptly, as
soon as T'< T. For a fixed value of F, the current
will be proportional to No/N, i.e., proportional
to the fraction of atoms of velocity zero.

The particles Ny, having the energy zero, will
not appreciably contribute to the transport of
energy, and therefore, we should not expect a
particularly great increase of the heat conductivity
when passing to the degenerate state.

§4. THERMOMECHANICAL EFFECT

But there is another mechanism which may
produce a transfer of heat.”? The van der Waals
forces between the walls and the He atoms are
much stronger than those between the He atoms
themselves. In a layer, L, of perhaps 10A, or
100A, or even greater thickness along the walls,
the van der Waals field will be appreciably
stronger than in the interior, I, of the liquid. In
this layer the concentration of the degenerate
atoms will therefore be much greater than in the
interior, the entropy in the layer, Sz, will be
much smaller than in the interior, S;. Thus we
have a situation' quite analogous to a thermo-
couple : namely, two different conductors, L and
I, in conducting contact.

If ¢ mols of helium pass at a temperature T
from I to L they will go into a state of greater
order, and the heat

Q=T(S1—Sw)q - (12)
will be set free. This will occur in a reversible
manner, quite as in the case of the Peltier effect.
Relating all transfer of energy or matter to unit

12 H, London, Nature 142, 612 (1938).
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of time and to unit of cross section, we may write
O=T(Sr—Sw)J, (12a)
where J is the current density. The ‘‘Peltier
coefficient” is accordingly given by
My, ,=T(S;—SL). (13)
Assuming for S the expression for an ideal de-
generate Bose gas, which is given by (7) (9)

5_=;f= (5/2)0.514CRT>V, (14)
we obtain for the Peltier coefficient
M7, 1=(5/2)0.514CRT*>(V;— V). (15)

Now the arrangement for measuring heat con-
ductivity can simply be considered as a thermo-
couple consisting of the two ‘“‘metals’ L and I. If
we heat at one point of the wall and cool at
another one, in such a way that the temperature
at the two points may be kept constant at 7y and
T, respectively, we may produce a ‘‘thermoforce”
& given, according to W. Thomson’s well-known
thermodynamic relation, by the formula

Ta HI, L T2
<I>=f dT = (S1—S81)dT
T T Ty
or with (14):
&= (Ty—T1)(5/2)0.514CRT (V,— Vz). (16)

This ‘‘thermoforce’” will produce very great
circulation of matter, since the ‘‘internal re-
sistance’’ of the thermoelement is extraordinarily
small, and, therefore, the consumption of heat
for maintaining even the smallest temperature
differences will also be very great. This process,
therefore, will appear like an enormous conduc-
tion of heat; the “conductivity,” however, will
depend very strongly on the gradient of tempera-
ture. For the lowest temperatures, the helium
atoms will everywhere be almost completely de-
generate, in the layer as well as in the interior of
the liquid. There will be no difference of entropy
between the different parts of the liquid, the
“‘thermoforce” will disappear—as it must ac-
cording to Nernst’s Law—and there will no

longer be a production of circulation in the

liquid. Only ordinary heat conductivity (chiefly
by the Debye vibrations), will remain. Neverthe-
less the great fluidity, since it is proportional to
the number N, of degenerate atoms, will persist
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down to the lowest temperatures; only the
driving thermoforce and the Peltier heat will
disappear.

All this is in qualitative agreement with the
experiments, particularly with those of Keesom
and Saris,!® and of Kiirti and Simon,!® on the heat
conductivity of He at the lowest temperatures,
which below 0.6°K, has been found to become
“normal’’ again, i.e., small and independent of
the gradient of temperature. In fact, this transi-
tion to normal heat conductivity occurs in just
that region where the thermal anomaly of the
specific heat, connected with the A-point, ceases
and passes over into an ordinary Debye T3-law
for the specific heat.

This mechanism of reversible transformation of
heat into mechanical energy gives a very simple
explanation also for the so-called ‘“fountain phe-
nomenon’’ observed by Allen and Jones,* and
interprets it as a pump driven by a thermo-
element. It may be remarked that according to
(12) the flow of matter in the capillary layer has
to have the opposite direction to the transfer of
heat, if the entropy in the capillary layer is
smaller than in the normal liquid. In fact this
connection between the directions of the flow of
heat and of the flow of matter has actually been
observed in the experiment of Allen and Jones.
The same has been found in the Knudsen
manometer experiment of H. London.*?

The idea that the transport phenomena of He
IT might be reversible processes has first been
discussed by L. Tisza.!® The thermodynamic rela-
tion (12) has recently been given by H. London.1?
Though it might appear that the logical connec-
tion between the facts will not be qualitatively
very different from the one we have sketched
here, it is obvious that the theoretical basis given
thus far is not to be considered more than a quite
rough and preliminary approach to the problem
of liquid helium, limited chiefly by the lack of a
satisfactory molecular theory of liquids.

The author wishes to express his thanks to
Professor P. Gross for his hospitality in the
Chemistry Department of Duke University, and
for his kind interest in this work.

13W. H. Keesom, A. D. Keesom, and B. F. Saris,
Physica 5, 281 (1938) ; N. Kiirti and F. Simon, Nature 142,
207 (1938).

14 ], F. Allen and H. Jones, Nature 141, 243 (1938).

15 [, Tisza, Nature 141, 913 (1938).



