
DECEM BER 1, 1938 PH YS ICAL REVIEW VOLUME 54

A Solution of the Schrodinger Equation by a Perturbation of the Boundary Conditions
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A perturbation method is developed which allows a simple calculation of the eigenvalues of
the Schrodinger equation by a slight change in the boundary condition.

N recent years the solution of the Schrodinger
~ - equation with a boundary condition at the
surface of a finite space has become of some im-
portance. In Wigner and Seitz' theory of metallic
wave functions, ' for instance, 8$/Br must vanish
at the surface of a sphere. An example with the
boundary condition /=0 at the surface of a
sphere was given by Sommerfeld and Welker. '
In most of these problems we want to calculate
the eigenvalue E as a function of certain param-
eters which determine the boundary conditions.
In the above examples, for instance, we want E
as a function of the radius of the sphere. Now let
us assume that we have solved the Schrodinger
equation for a given radius rp. Then, one should
imagine that a calculation of the eigenvalue for
a somewhat different radius rp' is possible by
means of a perturbation method without giving
an exact solution of the Schrodinger equation for
this new boundary condition. The ordinary
Schrodinger perturbation method cannot be used
in the present case, since we do not deal with a
perturbation of the potential, but with a per-
turbation of the boundary condition. We there-
fore have to find a different method. The special
case of metallic wave functions has been already
treated in a previous paper. ' In the following we
want to describe a more general method4 for the
solution of the Schrodinger equation by a per-
turbation of the boundary condition.
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do- means integration over the surface S; n is the
normal to S in the outward direction. We shall
consider the following four boundary conditions:

A: Pp ——0 at Sp, /=0 at S (4a)

8: lgp=OatSp, f=@FatS, S=Sp (4b)

C: Bpp/On=Oat Sp, 8&/On=Oat S, (4c)

D: Bgp/Bn=0at. Sp, BP/Bn=pGat S, S=Sp, (4d)

where p, is small parameter. The functions Ii and
G are known at the surface Sp. According to (3)
we find for:

equation (we use atomic units)

hPp+ (Zp —V) Pp ——0

with a certain boundary condition at the sur-
face Sp. The wave function fp can be chosen as a
real function since Ep is not degenerate. We want
to calculate the eigenvalue Z=Fp+p satisfying
the Schrodinger equation

hP+(Zp+p —U)/=0

with a slightly different boundary condition at a
slightly different surface' S.

We multiply Eq. (1) with f and (2) with fp
and subtract both equations. We then find after
integration over the space bounded by S with
the use of Green's theorem:

Let Zp be a nondegenerate eigenvalue and Pp
the wave function, satisfying the Schrodinger

8
Xp = l/I p dent,

s Bn
(Sa)

' Wigner and Seitz, Phys. Rev. 46, 509 (1934).
2 Sommerfeld and Welker, Ann. d. Physik 32, 56 (1938).' H. Froehlich, Proc. Roy. Soc. 58, 97 (1936); and

Elektronentheorie der Metalle (Berlin 1936), p. 272. Cf. also
the discussion by Bardeen, J. Chem. Phys. 6, 372 (1938)

4A di6'erent method was proposed by L. Brillouin
Comptes rendus 204, 1863 (1938).
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5 This includes S=S0, or the case of the same boundary
condition at S and S0 but S&S0.
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Examples

The expressions for e in the cases A and C may
(5d) still be simplified considerably if $0 ——&0(r) is

spherically symmetrical and Sp is the surface of a
sphere with radius rp.

Let r~ be the radius vector from the origin of
the sphere to a point at the surface S1. Since S is
assumed to be only slightly different from Sp,
we have

/per —- fp'dr = Pp'dr = 1.
S S Sp

Furthermore, in Eq. (5a) we may replace B$/Be
by Bpo/Bn and in Eq. (5c) P by t'o.' ' We are
now able to calculate e in terms of the known
functions $0, F or G:

A:

B:

p
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s ~n
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(6a)

(6b)

First approximation

The above expressions (5a)—(5d) have been
obtained without any approximations. We shall
now make use of the fact that the change in the
boundary condition is small, i.e. , that the func-
tions f and Po must be nearly equal. We therefore
can put for X

and

I I
riI —«1«ro

Isin nI&(i,

Case A:—From (6a), we find in the first
approximation (i.e., neglecting terms with higher
power in (IriI —ro)) using (9), (10), (4a) and (7):

where a is the angle between r~ and the normal n
to Sat the point where r~ reaches S.We therefore
may de~clop $0 and BPO/Bn, using the fact that
fo is spherically symmetrical:

(A(ri)) s = (6)so+(BA/Br) so

&&(IriI —ro)+ ", (9)

(Bfp(ri) ) t'Btgo(ri) ) Bri t'Blfo'

E Bn )s E Br )sBn ( rBl so

t'B2P
+I I (IrlI —ro) cos~+ . (10)
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D:

Blip
leap do,

s Bn

G4'od&

(6c)

(6d)

(BA'
«(I "I-")- - ~

t Br J so~

(B40)'
(»)( Br ) so

Thus, we see that it is possible to determine the
hrst approximation of the energy E=Ep+e by
an integration over functions which are known
from the zero approximation (Po, Bgo/Bn) or from
the boundary conditions (pF, pG).

It should be noticed that an analogous proceeding
could not be allowed if we had chosen Sp instead of S as
the boundary for the integration in I'3). In that case the
right-hand side in Eq. (Sa), for instance, would be re-
placed by

Here we cannot insert Pp instead of P since pp ——0 at Sp.

Here, regarding Eq. (8), v is the difference of the
volumes bounded by S and Sp respectively.
v is positive if S includes a greater volume
than Sp.

Case C:—In this case we find from (6c) in the
first approximation, using (9), (10), (4c) and (7):

e = (P,B'P,/Br') sos,

where v is the same volume as defined above.
Using the Schrodinger equation (1) and Eq. (4c),
we find

(BVO/Br') so = L V(ro) —~o7&o(ro)
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and, therefore, since (Po) so $——0(ro)

~ = L I'(ro) —&o)40'(ro)s. (12)

From Eqs. (11) and (12) we see that the first-
order perturbation energy is zero if the sphere So
is only-deformed without a change of volume.

Higher approximations

The higher approximations cannot usually be
calculated without solving a partial differential
equation.

We do not intend to go into any detail of this
question. We just want to mention that it is
possible to eliminate the potential from the
Schrodinger equation. In order to demonstrate
that, we proceed thus: We insert

O'=Af

into Eq. (2) and observe that $0 obeys Eq. (1).
We then obtain for f the differential equation:

div (P ' grad f)+ eP 'f =0

In cases where the function fo has a simple form,
this transformation may be of advantage. '
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A proof is given of the condensation phenomenon of a Bose-Einstein gas. A preliminary
discussion of its transport properties is outlined with a view to its possible bearing on the
problem of liquid helium.

INTRODUCTION

N his well-known papers' on the degeneracy of
an ideal gas, Einstein mentioned a peculiar

condensation phenomenon of the ideal "Bose-
Einstein" gas. This very interesting discovery,
however, has not appeared in the textbooks,
probably because Uhlenbeck in his thesis' ques-
tioned the correctness of Einstein's argument.
Since, from the very first, the mechanism ap-
peared to be devoid of any practical significance,
all real gases being condensed at the temperature
in question, the matter has never been examined
in detail; and it has been generally supposed that
there is no such condensation phenomenon.

In discussing some properties of liquid helium,
I recently realized that Einstein's statement has
been erroneously discredited; moreover, some

*At present at Duke University, Durham, North
Carolina.

~ A. Einstein, Ber. Berl. Akad. 261 (1924); 3 (1925).' G. E. Uhlenbeck, Dissertation (Leiden, 1.927).

support could be given to the idea that the
peculiar phase transition ("X-point" ), that liquid
helium undergoes at 2.19'K, very probably has to
be regarded as the condensation phenomenon of
the Bose-Einstein statistics, distorted, of course,
by the presence of molecular forces and by the
fact that it manifests itself in the liquid and not in
the gaseous state. In a preliminary note, ' the
course of the specific heat of an ideal Bose-
Einstein gas was reproduced, but no proof was
communicated. As, since then, I have been asked
several times for a proof and as even the correct-
ness of the result has been questioned anew, it
might perhaps be justified, on this occasion to
publish a quite elementary demonstration of the
condensation mechanism, discussing only briefly
here the possible connection of the Bose-
Einstein degeneracy with the problem of liquid
helium. 4

3 F. London, Nature 141, 643 (1938).
4 In a recent paper Uhlenbeck has withdrawn his former

objection. G. E. Uhlenbeck and B. Kahn, Physica 5, 399
(1938).


