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The upper (lower) sign holds when approaching
q = v. from the illuminated (shadowy) side. The
discontinuity of v& on the boundary of the
shadow is just compensated by the discontinuity
of v* in such a way that the sum v=v*+v& is
continuous. Further we can confirm a general
result of Sommerfeld, according to which on the
boundary of the shadow itself for larg@ p the
relation asymptotically holds

v=-', v*(p)&1, p= avr+27rnN) . (37)

That not only for the function v&, but also for
all its derivatives the discontinuities on the

boundary of the shadow are compensated for by
those of v~, can be confirmed by using Eq. (28).
We do not want, however, to enter the details of
this proof here.

Numerical estimates of A2( j) gave the result
that already the second term of the series (35)
can be neglected in all practical cases so that the
proposed task of finding a representation of the
diffraction wave, which can be used for the
transition from light to shadow and at large
distances, can be considered as practically solved
by the principal term of our series, as given
in (35).
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The problem of anomalous phase propagation of a spherical wave at the focus has been
discussed- for the case of a diffracting aperture of arbitrary shape. The solution given by Kirch-
hoff's integral has been split up into an "incident light wave, " which shows the distribution of
light to be expected according to geometrical optics and a "diffracted wave, " which may be
thought of as due to scattering of the incident wave at the diffracting edge. A sudden change
of phase by m has been shown to occur already in the incident wave. Thus we may, in this sense,
consider this phenomenon as a geometric optical one.

The case of a circular diffracting aperture, the focus lying on the normal through its center,
which has been treated usually, appears to be not very suitable for an experimental investiga-
tion of the discussed phenomenon. It is this particular shape of the diffracting edge, which
produces diffraction phenomena of considerable light intensity along the optical axis. These,
however, are not because of the existence of a focus, but only because of the particular shape
of the diffracting aperture.

I. INTRODUCTION

SOM M ERFELD'S first great scientific achieve-
ment was the solution of the problem of

diffraction at a perfectly conducting half-plane
by the methods of exact analysis. ' On the occa-
sion of his jubilee it may thus be appropriate to
present a note, which deals with a related prob-
lem and is based on a paper' I wrote while
staying at his institute at Munich. The problem
in question is the anomalous phase propagation
of a spherical wave at the focus, which was dis-

' A. Sommerfeld, Math. Ann. 4T, 317 (1896).
2 A. Rubinowicz, Ann. d. Physik 53, 257 (1917) and '73,

339 (1924), to be referred to as I and II in the text.

covered by Gouy in 1890. As appears from the
very rich literature' on this subject, the phe-
nomenon is completely describable by wave
optics. Still, I do not believe that these papers
satisfy as yet our want for a simple, plausible
interpretation of the problem. 4 An attempt,
therefore, will be made in this note to fill this
gap by following a new method of approach,
starting from Kirchho6's theory of di8raction

' For extensive literature see F. Reiche, Ann. d. Physik
29, 65, 401 (1909) and J. Picht, OPtischeAbbildung (Braun-
schweig, 1931).

4 An elementary suggestive representation by means of
Fresnel's zones has, however, been given by A. D. Fokker,
Physica 3, 334 (1923);4, 166 (1924).
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FIG. 1. Diffraction of a divergent spherica1 wave. I
source of light, S distracting screen, X boundary of the
shadow. The arrow ez shows the direction of propagation
of the incident light wave.

and, besides, generalizing the treatment so as to
apply to an arbitrary diffracting aperture.

We start from Kirchhoff's theory of diffraction
but generalize the treatment so as to apply it
to an arbitrary diffracting aperture.

At all those points where light should be
present according to the 'laws of geometrical
optics, the incident wave uI is given by the solu-
tion of Du+A'u=0 for direct propagation of
light, that is, if the time factor is e '"', e'"s/R for
a point source; R is the distance from the source.
It is supposed to vanish everywhere else. The
wave function ur will thus decrease discontinu-
ously by e'~"/R while passing from the "light
cone" across the "boundary of the shadow" into
the "shadow" (Fig. 1).

Concerning the shape of the geometrical
boundary of the shadow we note that it is given
by the surface of the cone X, which is generated
by the lines joining the source of light L, and
the points of the diffracting edge D. The part of
the cone between L and D has to be regarded as
cut off.

The diffraction wave u~ can be considered as
due to scattering of the incident light wave u~ at
the different points of the diffracting edge D; it
is composed of the secondary elementary waves
produced there. Since we expect u =uz+u~ taken
as a whole to be continuous on the boundary of
the shadow, uD must be discontinuous in such a
way as to compensate the discontinuity of uI. It
ought thus to increase suddenly by e'~s/R at the
passage from the light cone into the shadow.

e-ikR
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FIG. 2. DiEraction of a convergent spherical wave. F
focus of the incident spherical wave, S diffracting screen,
Xj and X~ boundaries of the shadow. The two arrows ul,
and uy, show the direction of propagation of the incident
light wave in the cones X1 and E2.

Let us suppose that the diffraction of a con-
vergent spherical wave may be treated just like
that of a divergent spherical wave considered
above by representing the corresponding wave
function u as a sum of uI and u~. Before deter-
mining these functions we have again to ascertain
the boundary of the geometrical shadow. Obvi-
ously this will be formed by the double cone
X&+X&, genera. ted, as above, by joining its
vertex, now the focus F, with D (Fig. 2), which
simultaneously cuts off the remaining part of
the cone X~.

Let us represent the incident light wave by
NI, =e +s/R (R now denoting the distance from
the focus F) in that portion of space which is
bounded by the cone IC& and the screen S and
contains also the interior of the cone E~. The
minus sign had to be put into the exponent
because the wave is now convergent; the time
factor e'"' is the same as above. When passing
through the cone Xq into the geometrical shadow

u~, is again supposed to disappear.
Let us now further assume that a diffracted

wave Nn is produced by scattering of the incident
wave uI, at the diffracting edge D. If uy, +uD is to
be continuous at the boundary of the shadow,
uD ought to increase suddenly by e '~"/R when
passing through the cone X~ into the geometrical
shadow. Now let us still make the plausible as-
sumption that the elementary wavelets scattered
at the different points of the diffracting edge,
and with them also the diffracted wave uD consti-
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tuted by them, do not show any peculiar irregu-
larity in their behavior while passing through the
focus F. Then the discontinuity of u& ought to
be continued regularly on X2. Since R is always
positive according to our notation, a sudden in-
crease of u& by e '" /R on the cone X& will cor-
respond to that by e+'""/R on X&. The direction
of the passages through the surfaces is that indi-
cated by the arrows A and 8 in Fig. 2. Otherwise
the diffracted wave would be discontinuous at
the focus F and travel along the cone E2 towards
the focus, that is, in a direction opposite to that
in which it should go.

And now to our decisive remark: Outside the
double cone K&+Kk, that is, within the geomet-
rical shadow, we have u=u~, since for a passage
through E~ out of the light cone, like that shown

by the arrow A, the discontinuity of uI, is just
compensated by that of uD. Now, u~ increases
discontinuously at the passage through E2 indi-
cated by arrow B. To compensate this discon-
tinuity on Kk we shall have to put u =un e+'ks—/R
inside E~. Hence we see that the incident light
must be represented by ur, = —e+iks/R inside
the cone E~. The minus sign of ul, indicates that
ul, and u&, differ in phase by m-. Ke may thus
summarize our results in the statement: The
incident light wave is represented by a converg-
ent spherical wave inside E& and by a divergent
spherical wave inside E~, which differ in phase
by half a period.

Since, in general, the diffraction wave vanishes
in the limiting case of infinitely small wave-
lengths, i.e. , for k~~, while the incident wave
still persists, the phase anomaly will have to be
considered as a phenomenon, which has to be
taken into account in the geometric optical treat-
ment of the problem as a sudden change in phase
by half a period. It must, however, be said that
this statement cannot apply at all those points
of space, where, independently of the value of k,
the intensity of the diffracted wave is of the same
order of magnitude as that of the incident light
wave. This is only possible at points, where the
secondary waves from at least some finite portion
of D arrive with all their phases equal. In general
the focus F will be such a point, but in some par-
ticular cases still other points of this kind exist.
In the case exclusively considered hitherto, for
instance, where the diffracting aperture is circu-

lar and the focus lies on the normal through its
center, all the points on the optical axis thus
formed will be of that kind.

In the following paragraphs a mathematical
formulation and some extension of the proposi-
tions made will be given.

II. INcIDENT AND DlFFRAcTED KAvE

The distribution of light, the case of diffraction
of a convergent spherical wave, at those points of
space which lie in front of the screen S and the
surface, extended over the diffracting edge D, say
f, is given by Kirchhoff's integral:

pe ikP il
—eikr eikr il e i kPp

ldf, (&)4~, L p anr r an p&

where p is the distance of the surface element df
from the focus Ii, r the distance of df, from the
point I', at which we calculate uK and n the
normal of f in the direction away from the focus
F. No restricting assumptions will be made at
present concerning the shape of the diffracting
edge D.

To transform this expression we shall first
represent the incident light wave, say u&, by
means of surface integrals. Making use of the
same notation as in Section I, we put

uI =ur, +ur„

where uI, and ur, are defined as follows:

ur, = e 'ks/R inside the region bounded

by Jk. k and f,
=0 at all other points.

ur, = e+'ks/R —inside the cone Xk,

=0 at all other points.

(2a)

(2b)

(2c)

( il eik& eik& fluky

4m;, ( Bn r r Bn)

represents the function u* at the point P (whose

To obtain integral representations for (2b) and
(2c) we make use of the following well-known
theorem: Let u* be a regular solution of AN

+4'u =0 inside the region enclosed by the surface
C. Then the integral
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distance from df is denoted by r) if I' lies inside
C, and vanishes for P outside C. n is the external
normal of C.

Using (3) we get immediately

double cone X~+E2, an orthogonal coordinate
system, given by the distance & from the focus F
and the lines of intersection o of )=const. with E&'
and K&. The sign of $ may be chosen so that
&
= —p on E1 and p = +p on &2.
To obtain a suitable expression for df we con-

sider the area subtended on our cone E&+E2 by
an element ds of the diffracting edge D. Let us
denote by p, the distance of ds from the focus Ii.
Then the line element of do (Fig. 3) on our area
is given by do. = (P/p, ) sin (p„ds) ds and there-
fore df=d$do by df= ($/p, ) sin (p„ds)d(ds. The
sign of df represented in this way will be positive
on E2 and negative on E'&, while it is always
positive in the integrals (Sa, b) for uD, and u~, .
But in these integrals also cos (n, r) changes its
sign at the focus Ii, where, as we have said, the
direction of n is suddenly reversed. Choosing now
that direction of n, which coincides with its
former direction on E~, opposite to it on E~, we
shall have to put, with these new assumptions
concerning n

(e fkp —S eikr

ur, ———
4~ f+z,+n, - E. p Dn

e
'k

g e—'1'ep)

ldf, (4a)ran p

r'kr g ikr r'kr g
k'——ldf (4b)

4m. x,+n, E p itn r r an p )
where 0~ and 02 are spherical surfaces round I' as
their center. They had to be introduced on ac-
count of the singularity of e~ kr/p at F, which is
thus cut off.

Concerning the integral representations (4a, b)
we have to make the following remarks:

First the integral over f in (4a) is identical with
uE.

Secondly the integrals over E~ and E2 in

(4a, b), which we shall denote by —uz, and —uD,
yield the' expressions

—cos (n, r)((/p, sin (p„ds)dsdp

instead of cos (n, r)df in our integrals. Consider-
ing further that now1 e*k&"- & p1'k 1 y

l

———
l

cos (n, r)df, (Sa)
4m. sc, p E r r')u~q =—

e t',k (r+p)

4m ~ K2 p

cos (n, r) = (r,/r) cos (n, r,),

where r, is the distance of the point I' from ds,lik
l' ———

l cos (n, r)df, (Sb) we obtain the expression
&r r1)

since (8/Bn)(e k&/p) vanishes on X1 and X1 and uD=
4mfurther

ds sin (p„ds) cos (n, r,)

ei,kr

t9n r

tik 1q
=e'~" ———cos n, r .

E r r2)

r, +" p1'k 1 qdkefk($+r)
l

&s

n is here the external normal of E~ or E2. Its direc-
tion is reversed as we pass along a generator of
our cone through the focus I'.

Finally we note that the two integrals over
0& and 0& yield —or + coe'k"/41', where co is
the solid angle subtended by these surfaces.

Now, on the basis of these remarks and Eq.
(2a) we obtain adding (4a) and (4b):

uK =uk+ uD, +un„
where the sum un, +uD, can be reduced to a line
integral over the diffraction edge D. To perform
this transformation we shall introduce on our

for the sum u~ —u~, +uD, . Since now

r = rr + (5+pr) 2rr(pe+ f) cos (rri pr)

we get finally, on following the method given in
I (p. 261)

1 e-*'"e"" cos (n, r, )QD=-
41r ~ p, r, 1 —COS (r„p,)

)&sin (p„ds)ds. (6)

Kirchhoff's diffraction integral may thus be
given the form

uK =ur+uD,
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that is, where

or
d(r, p,)/—ds=O

cos (r„ds) =cos (p„ds), (9a)

FIG, 3. To the equation der = (g/p, ) sin (p„ds).

where uI represents a wave of the kind to be ex-
pected according to geometrical optics and uD a
wave, which may be thought of as due to scatter-
ing of the incident wave by the diffracting edge.
The secondary waves, which originate at the
different elements ds of the edge, are seen to be
asymmetric on account of the direction factor

cos (n, r,)

1 —cos (r„p,)

This becomes infinite on that generator of the
double cone Xi+%3, which belongs to the ele-
ment ds, since there cos (r„p,) =1.

III. APPROXIMATE REPRESENTATION OF THE

DIFFRACTION WAVE

If we want to discuss the distribution of light
for the particular case of diffraction of a con-
vergent spherical wave, we have to resort to ap-
propriate approximate formulae for the di8'rac-
tion wave uD (or for the complete wave function
uK). For all those points of space, at which the
method of stationary phase can be applied to the
integral (6) either directly or indirectly, such
formulae are readily obtained in the same way
as for a divergent spherical wave (cf. II). The
necessary condition for this is that the phase
factor k(r, —p,) varied rapidly enough as we

pass along the diffracting edge D. Then only the
immediate vicinity of those points P„, where the
relatively slowest variation of phase occurs,

will yield a noticeable contribution to the inte-
gral (6).

Hence it appears that the light scattered by a
particular element ds of the edge is spread over a
circular cone, whose vertex lies in that element.
There is also the line joining the element ds and
the focus F among the generators of this cone.
Its direction coincides with that of the light ray
of the convergent spherical wave, incident upon
ds. It is in such half-cones that light is reflected
in the points of a reflecting curve, e.g. , a wire,
according to the concepts of geometrical optics.
Ke may thus call this half-cone the reHection
cone.

If we want to apply directly the method of
stationary phase to the integral (6), we have to
assume that apart from the factor exp [ik(r, p,)]-
the integrand varies so slowly that it may be
taken out of the integral. This assumption is,
however, not fulfilled in the points near the
boundary of the shadow, where the direction
factor (8) becomes infinite. Therefore we cannot
apply this method directly at those very points
in which we are most interested, at the treatment
of diffraction problems. Bur fortunately there is
an indirect way of deriving approximate forrnu-
lae, which can be applied even at points in the
boundary of the shadow itself. By following the
method applied in II, (p. 352) we obtain for the
contribution uD ~„of the effective region round
the point I'„ to uD the expression

1 (R+r, p, )i-
2r,p.(f'")' 1 —cos (r„p,)

(p dS)S4( 3R+3v)4)

[(2&/ )(&+ — )I'

XJ s4i /3) vvdvi) (Io)

if the points considered lie inside the cone K~.'

' The frequent appearance of Fresnel's integrals in
Kirchhoff's theory of di8raction is due to the fact that
they occur in all those cases where the incident light is
reflected by the diffracting edge.
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Here we have put

d' f1 1q—(r, p—.) = sin' (p„ds)
~

———
)ds' Er, p, j

1
+—(cos (r„H) —cos (p„H)), (11)II

where H is the radius of curvature of the di8ract-
ing edge in the point I', taken as a vector in the
direction of the principal normal at I'„.

If we want to calculate nD by means of (10)
at some point of space, we have first to ascertain
from which points P„of the diffracting edge the
incident light is reflected in cones, to the point
of space considered. N~ will then be given as the
sum of the respective nD

~
„.' For a circular

distracting aperture, the focus F lying on the
normal through its center, formula (10) may be
found in a paper by Schwarzschild. 7 Then only
two points P„need be considered and NK consists
simply of the incident wave and the waves,
reHected at these two points.

For the derivation of (10) it has been supposed
that in the vicinity of P„, the phase may be
represented with sufficient accuracy by

d2

r, p. = (r, p,)p„+——2 (r, p—.)(s —s.)'—
ds

= (r, —p, )p„+kl "(s—s.)'

in which use is made of (9). This approximation
fails, however, for f" vanishes on the reflection
cone, as appears already, from the occurrence of
(f")l in the denominator of (10). The points|"=0 are distinguished as forming the intersec-
tion lines of two "infinitely neighboring" reHec-
tion cones. Th'e images of the incident convergent
light wave at its reHection from a definite ele-
ment ds of the diffracting edge lie on these lines,
which may thus be referred to as focal lines. They
separate the reflection cone into two domains,
one of positive and one of negative g". It has,

6 (10) enables us to treat approximately diffraction—
though only if it is an extrafocal one—by more than one
diaphragm, a problem rather difficult to solve by Fresnel-
Kjrchhoff's original methods.

7 K. Schwarzschild, Sitzungsber. d. math. phys. Klasse
d. k. bayerischen Akad. d. Wiss. 28, 271 (1898).

however, been supposed that i "&0 at the deriva-
tion of (10). Now, on investigating the case
g" (0, we find that there is a change of phase by
ir/2 occurring at the passage across the focal
line g"=0. The phase anomaly is thus shown,
not only by the incident, but also, eventually, so
to say on a small scale, by the diffracted wave. '

The method of stationary phase fails near the
focus F. In the focus itself, where r, =p„all the
wavelets originating at differertt points of the
diBracting edge arrive with equal phase. Also
near the focus their phases will diBer little, so
that it will be necessary to consider the diRract-
ing edge as a whole and not only some small effec-
tive regions. A general representation like that
possible at those points of space, where the
method of stationary phase applies, does no
longer seem to be feasible. Besides, it will
be advisable to use NK and not ND near I', where
the latter becomes infinite according to (2) and
(&).

We have still to say a few words about the
special case of a circular diffracting aperture, the
focus of the convergent spherical wave lying on
the normal through the center of the circle. For
every point on the optical axis thus formed not
only the phase r, —p„but the whole integrand in

(6) will be constant. Then the amplitude of un
does no longer depend upon the wave-length and
will be comparable wi:th that of the incident light.
These peculiar conditions on the optical axis are
due, however, to the particular shape of the
diffracting edge and not to the existence of a
focus. This large amplitude of nD is also respon-
sible for the fact that points on the axis are
favored at all observations. The large focal length
and the smallness of the aperture used at most
observations will add to this peculiarity, since
the phase variations of the elementary wavelets
for a point at a given distance from the axis de-
crease with the distance from and the smallness of
the distracting aperture. These two circumstances
favor an extension of the conditions on the axis
into the neighboring portions of space.

This anomaly of phase on a small scale occurs, of course,
also at the diffraction of a divergent spherical wave, which
has been treated in II.


