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On Asymptotic Series for Functions in the Theory of Diffraction of Light
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For Sommerfeld's exact solution of the problem of the diffraction of light by a wedge,
limited by two perfectly reflecting planes, new asymptotic formulas are given; these also hold
near one of the boundaries between light and shadow, at a distance from the difl'racting body
which is large compared with the wave-length of light.

1. INTRODUCTION. STATEMENT OF THE PROBLEM
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S is well known, A. Sommerfeld, who is now
celebrating his seventieth birthday, was the

first to succeed in establishing an exact solution
of the wave equation for a particular class of
two-dimensional problems of diffraction. ' The
problem in question is the di8raction by a
wedge, limited by two perfectly reflecting planes.
The diffraction by a half-plane is contained
therein as a particular case, when the angle 0

between the limiting planes of the wedge tends
to zero.

For the sake of simplicity we shall assume that
the monochromatic source of light is at infinity
and that the direction of propagation of the
incident plane wave is perpendicular to the edge
of the wedge, which edge may coincide with the
s axis of the coordinate system. By splitting off
the factor exp (+iaido) from all field quantities
and taking into consideration, that all field
quantities become independent of s, it is easy to
reduce the problem to the solution of the two-
dimensional sca1ar wave equation

(B'/Bx'+ B'/By') u+ k'u =0 (1)

with k = oi/c. According to the two possible
states of the polarization of the incident wave
(whether the electric vector oscillates perpendicu-
larly to the plane of incidence (A), or within this
plane (B)) one has to fulfill the boundary
conditions:

where. n means as usual the direction of the
normal upon the surface of the wedge. In either
case the boundary condition of a perfectly re-
flecting mirror calls for the vanishing of the
tangential components of the electric field
strength.

In the case (A) the nonvanishing components
of B and II are H„H„', B„and as a consequence
of Maxwell's equations one can put

&.=u, H, = (i/k) (Bu/By), H„= (i/k—) (Bu/Bx)1

The boundary condition is fulfilled if u=0. In
the case (B) the components E„Z„,H. are
different from zero and one can put

E.= —(i/k) (Bu/By), Z„= (i/k) (Bu/Bx), II,=u.

The postulate, that the tangential components
of Z vanish, is now equivalent to Bu/Bn = 0.

Now we introduce cylindrical coordinates de-
fined by

x=r cos P, y=r sin P

in such a way, that the origin of the coordinate
system coincides with the edge of the wedge and
that the values $=0 and it = 2s —B of the
azimuth P correspond to the boundary planes of
the wedge. If /=Ps is the azimuth of the radius
vector drawn from the origin to the light source
at infinity (so that O=its=2s. —8), the incident
wave is represented by

(A) u =0; (B) Bu/Bn =0,
—gZkS COS 1PP0 (2)

A. Sommerfeld, Math, Ann. 45, 263 (1894) and OI, 317 where as always in the sequel t:he factor e+'"' is(1896). For the case of the wedge, H. M. Macdonald,
Electric TVaves (Cambridge, 1902), p. 186, and H. S. Car- omitted and the amplitude of u0 is, normalized to
slaw, Proc. Lond. Math. Soc. 18, 291 (1919) obtained an unity. . (Compare Fig. I. The allow jndjcates the
essential simplification of the solution. We follow here also,
in the notation, a summarizing article written by Sommer- direction of the incident wave and the shaded
feld himself in &he book edited by P. Frank and R. V. domain the shadow according to geometrical
Mises, DQFerentiixl- u. IntegrulgleichNngen der Physik, 2nd
edition (1935), Vol. 2, Chap. 20. optics.
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DIFFRACTION OF LIGHT

By putting

n=v(r, 0 A-)~v(r, 4+6), (3)

which corresponds to the separation of the total
field into the incident and the rejected wave,
the solution of the problem is reduced to the
function v(r, y) of Sommerfeld. This is a solution
of the wave equation (I), which has several
branches in the (x, y) plane; it has the period
2mn in the azimuth q, but is a one valued func-
tion of the variable cos y/ nOne has therefore

v(r, (p+27rn) =v(r, p), (4a)

v( —
ip) =v(q), v(v n ip)

—=v(7m+ q) (4.b)

If the half-period 7m of the function v(r, y)
coincides with the azimuth 2~ —0 of the second
limiting surface of the wedge

xn =2m —0,

the boundary conditions (A) or (B) are fulfilled
on both surface planes of the wedge, according to
whether one assumes the upper or the lower sign
in Eq. (3).

We restrict ourselves to the case
I

n&1, 0&~ (6)

where, however, it is in no way assumed that e
is an integer. Moreover we introduce the abbrevi-
ation

p=kr (7)

for the "numerical distance. " The following
further conditions have to be fulfilled, in order

FIG.
' 2.

that (3) is really a solution of the problem.
Firstly, at large distances from the diffracting
body p~ ~ the function v(r, p —lto) has to con-
verge towards zero or towards the incident wave
function No according to whether the point under
consideration is in the "illuminated" domain or
in the "shadow" of geometrical optics. Secondly,
the deviation of v(r, f $0) from —the terms of
geometrical optics must contain for large p only
outgoing and no incoming cylindrical waves
("emission-condition"). (If these conditions are
fulfilled for the incident wave v(r, lt —$0) they
are automatically also fulQled for the rejected
wave v(r, f+Po) as a consequence of the bound-
ary conditions on the surface of the wedge. )
At last one has to postulate, that for p~0 v re-
mains finite and p Bv/Bp —+0.

Sommerfeld was able to fulfill all these con-
ditions by making the following decisive Ansatz

gZP DOS P

v(p, ~)=, dP
2mn g 1 —e
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FIG.

Here C means the path in the plane of the com-
plex variable. As indicated in the following Fig. 2,
it consists of two parts. The shaded domains of
the figure are those, where exp (ip cos P)-+0 for
p~ 00 ~

We do not wish to repeat here the complete
proof that v(p, p) fulfills all necessary condi-
tions; instead we shall discuss only the behavior
of this function for large values of p. To this



purpose it is important to realize that the
integrand has poles at the places

P= —p+2vrnN; (N=O, +1, +2, .)

and that the behavior of v for large p is quite
different, according to whether one of these
poles falls into the interval ( —~, +m) or not.
This fact becomes obvious, if we substitute for
the path C of the integration the. path D~+D2 of
Fig. 2 and then add the residue of the pole, in
case such a one is situated in the interval

(—~, m.). In this way one gets

For the following it is important that the
functions v~ and v~ on the boundaries of the
shadow q = &m. +2am% are both discontinuous,
whereas their sum, as one recognizes from the
path C in Fig. 1, is completely regular.

One can transform the expression (10) for the
diffraction wave os by the substitution p=r,
for D& and P=q+m. for D& and by adding the
resulting integrands. In this way one obtains

with

'exp [ip cos (y+ 2s nN) ],

,0

if —vr(q+2~nN&+~, (9)

otherwise

et p cos P

Vg= dp.
2xn Dg+n2 1—e

—'(&+&&~"
(10)

+7r+ 2xnN (y (7r+ 27rnN+2m (n 1). (11b)—
The places y= m+2~nN a—nd y=+vr+27rnN
correspond to the boundaries of the shadow, with
which we shall occupy ourselves particularly.
A simple geometrical consideration shows indeed
that o*(p, lt —$0) and s*(p, /+it 0) correspond in
the physical angle interval exactly to the incident
and to one or two rejected waves, respectively,
as one expects them to occur according to
geometrical optics. '

~ As an example we point to the case ~—8 & p0 &x where
no boundary of the shadow of the incident wave, but two
boundaries of the shadow of the reflected wave are situated
in the physical angle interval 0 &p &2m —0.

As a consequence of n) 1, the inequality —m. (y
+2~nN(m can be fulfilled by not more than one
single integer value of N, and it is easily seen
that it is fulfilled for intervals of the length 2~
and not fulfilled for intervals of the length
2s.(n —1), which follow each other alternately.
The former intervals we can call the illuminated
ones, whereas the intervals of the latter kind
indicate the shadow. Using this notation one has:

light for —7r+27fnX& q (~+2~nN,

shadow for

X dg, (12)
cos (~/n) —cos P(q+ p)/n]

os = (2m'o) ke
—s(p+~l4)

n ' sin ~/n
(13)

cos m./n —cos p/n

One can interpret this result as a cylindrical wave
going out from the edge of the diffracting wedge
with a characteristic dependence of the ampli-
tude from the azimuth p. The result is correct
under the supposition

p(cos ~/rt —cos y/rt)')) 1,

it fails therefore in the neighborhood of the
boundary of the shadow, where

cos ~/n=cos p/n.

Hence the problem arises to obtain such an
asymptotic formula for the diffraction wave v&

for large p, which will be valid also in the vicinity
of the boundary of the shadow.

This. problem was attacked already by Som-
merfeld' who tried to get an improved expression
for v& by a modification of the path of integration
in (12). His results, however, were not satis-
factory, because the neglected terms were not
sufficiently small in con1parison to the retained
terms. We propose here a different treatment,
which is based on a transformation of the

' A. Sommerfeld, Crelles J. 158, 199 (1928).

where e is an angle between zero and x. Physically
interesting is the case of large values of p. The
application of the method of steepest descent to
the integral (12) gives in .this case at once as
contribution of the saddle-point q =0 the follow-
ing asymptotic formula for v& ..
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integrand without changing the path of the
integration.

We get an indication of this method by a
previous result. of Sommerfeld concerning the
particular case of a half-plane (9=0, n=2) In.

this case he was able to transform the expression
(12) into

p — eiir/4 (2/~//) ief p cos I/1

only to be possible for n =2, in which case the
series (16) breaks off with the first term and
reduces to (14).

2. THE FUNcTioNs S„(w)

We shall develop Sommerfeld's solution into a
series proceeding according to the system of
functions S (w), which is directly defined as a.

generalization of Fresnel's integral by

with

cos j/2.

a=1+cos q,

e '"dr -(14)

(15)

S„(w)= e' ve )I e
—"i—("+ )dt

W

S(P (P)
— ie/4iiikref P Qoii (14a)

which is also regular for p=m.
In the following section we shall define a

system of functions S (w) of the argument
m =pu in such a way that

So(w) = e' 2 e—'"dr.
1

W2

S (w) is for large w of the order of magnitude
w & whereas for small w, if m)0, S (w) is of
the order ml. In Section 3 we shall finally estab-
lish for v~ a semi-convergent development, which
holds also near the boundary of the shadow
p=m', namely,

vs ——e '&/' /" (2a) l

+2 C ((P)S (P&)P ++/)r(P 0'). (1~)
m=o

The functions C (q) are regular for q =ir, but
infinite for the other boundaries of the shadow
(P=ir+2~nX; (XWO). For every boundary of the
shadow y=7r+2xnN one can construct a de-
velopment of the form (16); one has only to
replace &p by p —2znX, with a given integer N,
in the definition of a and in C (q). But in the
general case there exists no development of this
type which holds for a/l boundaries of the shadow
simultaneously as well as for large p. This seems

where the square root c' is always to be taken as
positive. For the sum v*+ve therefore the ex-
pression results:

(2p)k 0» V/2

=e/~n)~ 2 e i"r '~dr. (].8)

xF"+ (P x) Ii ' o/F = 0—, —

which is given by the integral

(19)

F(, P, i')=(2 )) 'I'((i)fe Ii(i x)'di —(20)

The powers of I are unambiguously defined by
the statement that arg /, and arg (t—x) are run-
ning from —~ to +m during the circulation
around the point t =0 or t =x along the path of
integration. The path of integration can be
chosen in different ways (Fig. 3). If it includes
both singularities t=x and t=0 (path C), one
obtains a particular solution of (19), which can
be represented also by the power series

1 ()( 1 n(n+1)
F(n, P, x) = 1+——x+- x'+ . (21)

1l P 2l P(P+1)

If, on the other hand, the path of the integration
includes only one point (either the point /, =x,

'Cf. Whittaker-Watson, Modern Analysis, 4th Edition
(1927), Chap. 16; Frank-Mises, reference 1, Vol. 2, Chap.
26, 5. W. Gordon, Zeits. f. Physik 48, 180 (1928). We omit
on the left side of (20a) the factor -', in the definition of Ii1
and I" 2 used in the latter paper.

In the physical application the variable ve has a
positive value and also the square root m' on
the lower limit of the second integral is to be
defined as positive. We shall prove that these
functions have a simple connection with the
confluent hypergeometric function F(/r. , P, x).'
The latter can be defined as the solution of the
differential equation
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path Cl, or the point t=0, path C2) whereas the
other singularity is lying outside, one gets the
solution F& or F2, respectively:

(&=1, 2) F (, P, x) = (2 i) '1'(P)

X e't. e(h x)--.Ck—. (20a)

As one sees in the figure, the relation holds:

F=Fl+Fg. (22)

0

For large x there exist the, in general semi-
convergent, developments:

F,=r(P)/r(~) e x--e

XL1+ (1—~) (P —~)/x+ 3 (23 1)
FIG. 3.

XL1--(.-P+1)/.+ j ( )
'('- +-:'")='(- +-:)

The series for F~ breaks off, if u = 1, 2, ~ ~ ~ or
P —n=0, —1, —2, whereas the series for Fn

breaks oR for n=0, —1, —2 and for p —n
~ ~ ~

1
I

We are interested here particularly in the case
n=1, P= —m+~3, x=zw with m=0, 1, 2,
that is to say in:

F,(1, —m+-,', iW) = (2lri) 'I'( —m+2)

Xei(eeeer/2 —er/4)Weee —eiw (26)

From (23.2) there follows the asymptotic expan-
sion for large m

F2(1, —m+-'„ iw) = (m+-', )(iw) —'

XL1—(m.+-,')(iw) —'+. j. (27)

Further one gets from (21) and (26) the develop-
ment

Fn(1, —m+-'„ iw) = L1+( m+2—)-'iwe't" '(t —iw) 'dh. (24)
~

~

~

~C2 +(—m+-,') '(—m+(5/2)) '(iw)'+

In this case one can contract the path of integra-
tion to the negative real t axis and one obtains
after the substitution t—+—t and. t—+ —7' by
taking Care Of I"(—m+ ~3) I'(m ——,') = lr( —1)~+':

F2(1, —m+-'„ iw)

,m

=F(m ——,') e 'tw (t+iw) 'dh
t

+QO

=r(m —i)J' e- * '"( '+em) '4 .

On the other hand the path C~ can in the case in
question be replaced by a circle around the point
t=iw and gives (in accordance with the fact
that the series (23.1) reduces here to the first
term)

+.XP (m l2) le i(er/2 —er/e4e)r—Were ke—i (w28—)

which is especially practical for small values of m

and shows that F2 ——1 for m'=0 when m&0,
whereas for m=0 F2 tends to infinity as m—'
when m tends to zero.

The previously announced connection between
the function 5 (w), defined by (18), and the
function Fz(1, —m+2, iw) defined by (25), is
produced by the following transformation, which
is a direct generalization of a transformation
used by Sommerfeld in the case m=0. We
substitute in (25) t~wt and get

F4(1, —m+-,', iw) = I'(m ——,')—'w"—
&

X e "'t ' t+i 'dt, 25a
0
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hence

[e—ilaw-(m-$& F 7
dzv

The method of steepest descent, mentioned at
the end of Section 1 consists of the introduction
of the variable

s'= —i(1—cos»), s=e '~&42& sin»/2, (30)

= —(m ——,')e '" w--&" +».

By integration with respect to m we obtain from
this fixing the constant of integration by means
of the requirement that Jim vanish for m= ~:

so that

g
—$P COS Q —g

'b Pg
—P8

d» / z
et'~/42,

(
1 sz

ds & 2) (30a)

F2(1, —m+-'„ iw) = (m —-,')wm &e'

e—"t—( +&)dt,

therefore according to (18)

S (w) = (m —-') —'w&Fz(1, nz+—,', iw)-. (II)

From (27) and (28) there follows now immedi-

ately the behavior of S,„(w) for small and for
large values of m; in the latter case:

S„(w)= iw l—[1 .(m+—-', ) (zw)
—'+

for w))1, (27a)

whereas in the former case one has

As path of integration, the real s axis from —
to + ~ may be chosen. The obvious procedure
would be to develop the whole integrand, except
the exponential function into powers of $. Corre-
sponding to the poles of the integrand at g = —q

&m.+2mnN with N=O, &1, &2 ~ ~ ~, the result
obtained in this way would, however, become
infinite for the values q = %x+2zrnN which

correspond to. the boundaries of the shadow.
We can avoid the singularity of the result, at

least at one given boundary of the shadow, by
not developing the whole integrand (except the
exponential function), but by also extracting
explicitly the factor (cos»+cos y) ' in such a
way, that we put

S (w) (m ——,') 'w1 for w 0 and m)0. (28a)

Finally from (25a) the useful recursion formula
results:

d

[Fz(1, —nz+-,', zw)w &" »7
dzv

= —w —~m+l&(m —-,')F2(1, —m+-', , iw),

hence

cos &&+cos p
(31.1)

cos n/n —cos [(z&+p)/n7 cos n/2

7r

sin —2'e '(p

n

+CO ds
e p"f(s, q) (31.2)

$ +ZS

[w—"S (w)7= —(nz+-', )w '"+'&S„+&(w). (29)
dzv

3. THE AsvMPTQTIc SERIEs

We start from the expression (12) for

+joo+e
.~' —sln-

2mi n n

with the abbreviation a= 1+cos y introduced in

(15), and with cos»+ cos p =a isz-
The essential effect of the addition of the

factor cos»+cos y in the definition of f(s, y) is
the fact that this function is now regular for
p= %x and g=0 and becomes only infinite for

» = 0, if y = m+27rnN, wit.h N integer, but Nn not

g
—tP COS

integer (particularly N+0). Therefore our result
can be used for z&=&zr and fails only on the

cos (~/n) —cos [(»+p)/n7 other boundaries of the shadow. If. one replaces
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in the definition of a and of f(s, y) and, in all
following equations the variable p by y —2xnXo,
one gets for every given integer Xo a develop-
ment of v~, .which holds at q = ~m+2mnNo
instead of at q = ~x.

If we consider now f(s, q) as developed in

powers of s according to

f(s, p) = P e*'".&'A„(p)s"
m=O

(32)

and substitute this development in (31.2), the
terms with odd ns canqel when integrating and
the terms with even riz give after the substitution
s= ~p ' integrals of the type which occurred in

(25). By using formula (II) of Section 2 one gets
finally (comps, re (17)):

7r

ve = (2zra) ~n ' sin e—'& p

n

I'(m+z)zr 'A z(p)S (pa) p . (33)

The circumstance, however, that the series (32)
converges only on a part of the path of integra-
tion, has the consequence that the series (33) in
general has the meaning of a semi-convergent
development for large values of p.

We did not calculate the rather complicated
expression for Az (y) for a general m; but we
wish to emphasize that these functions have a
6nite value for p= ~m. One recognizes this most
simply by putting p = &zr on the left side of (32)
and developing'in powers of s afterwards. For
the first two functions Ao(y) and Az(p) one gets
from (30) and (32)

1+cos p
Ao(~) =

cos zr/n cos r—p/n
(2a) 'Ao(~) = Icos ~/2(

cos zr/n —cos p/n
(34.1)

1+cos p
Az(q) =—Ao(y) ——cos—

4 nz n (cos zr/n —cos p/n)z

2L(1/n) sin p/nj'(1+cos rp) —(cos zr/n —cos p/n)z

(cos zr/n cos p/n)'— (34.2)

hence

I (2a) ~AO&rp)g„~, = W —.'(1/n sin /nz)r'(34—.3)

1 cos zr/n
Az(zr) =—

2 sin' x-/n
(34.4)

The 6niteness of the series for v~ at q =Ax
(where a=0), follows from the fact that, when
m) 0, the factor a l is compensated by S (pa)
because of S (pa) (nz —-', ) '(pa)'* and when
m=0, is compensated by Ao(p).

In the particular case n=2 one has

k(f(s)+f( s)]= —2 cos—p/2

and therefore all Az (p) vanish zn this case
identically for m)0 and the whole series (33)
reduces to its erst term.

Writing out explicitly the terms of (33) for
m = 0 and m = 1 we get according to (16)

ve = zr 'e"'(1/n sin zr/n)

~ip Cos q ~ iv'2d

cos zr/n —cos q/n (ap) k

e 'p

+—(2a)-~Ay(q) S~(pa)
2 P

+. . (35)

in accordance with (13). On the other hand one
has for q =sr because of

i7'2d~ 1~a~—i~/4 .
2

vs = ~-', e '&+ (z/2) (2p)-'-

Xe "''(1/n) cot zr/n+. . . . (36)

For large values of pa one gets from (27a)

vs ——(2zr p) 'e '&~+ ~4&--
(1/n) sin zr/n

X L.I+ (*)p-'+ ]
cos zr/n cos rp/n—
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The upper (lower) sign holds when approaching
q = v. from the illuminated (shadowy) side. The
discontinuity of v& on the boundary of the
shadow is just compensated by the discontinuity
of v* in such a way that the sum v=v*+v& is
continuous. Further we can confirm a general
result of Sommerfeld, according to which on the
boundary of the shadow itself for larg@ p the
relation asymptotically holds

v=-', v*(p)&1, p= avr+27rnN) . (37)

That not only for the function v&, but also for
all its derivatives the discontinuities on the

boundary of the shadow are compensated for by
those of v~, can be confirmed by using Eq. (28).
We do not want, however, to enter the details of
this proof here.

Numerical estimates of A2( j) gave the result
that already the second term of the series (35)
can be neglected in all practical cases so that the
proposed task of finding a representation of the
diffraction wave, which can be used for the
transition from light to shadow and at large
distances, can be considered as practically solved
by the principal term of our series, as given
in (35).
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On the Anomalous Propagation of Phase in the Focus

A. RUB INOWICZ

John Casimir University, Laos, Po1and

(Received October 11, 1938)

The problem of anomalous phase propagation of a spherical wave at the focus has been
discussed- for the case of a diffracting aperture of arbitrary shape. The solution given by Kirch-
hoff's integral has been split up into an "incident light wave, " which shows the distribution of
light to be expected according to geometrical optics and a "diffracted wave, " which may be
thought of as due to scattering of the incident wave at the diffracting edge. A sudden change
of phase by m has been shown to occur already in the incident wave. Thus we may, in this sense,
consider this phenomenon as a geometric optical one.

The case of a circular diffracting aperture, the focus lying on the normal through its center,
which has been treated usually, appears to be not very suitable for an experimental investiga-
tion of the discussed phenomenon. It is this particular shape of the diffracting edge, which
produces diffraction phenomena of considerable light intensity along the optical axis. These,
however, are not because of the existence of a focus, but only because of the particular shape
of the diffracting aperture.

I. INTRODUCTION

SOM M ERFELD'S first great scientific achieve-
ment was the solution of the problem of

diffraction at a perfectly conducting half-plane
by the methods of exact analysis. ' On the occa-
sion of his jubilee it may thus be appropriate to
present a note, which deals with a related prob-
lem and is based on a paper' I wrote while
staying at his institute at Munich. The problem
in question is the anomalous phase propagation
of a spherical wave at the focus, which was dis-

' A. Sommerfeld, Math. Ann. 4T, 317 (1896).
2 A. Rubinowicz, Ann. d. Physik 53, 257 (1917) and '73,

339 (1924), to be referred to as I and II in the text.

covered by Gouy in 1890. As appears from the
very rich literature' on this subject, the phe-
nomenon is completely describable by wave
optics. Still, I do not believe that these papers
satisfy as yet our want for a simple, plausible
interpretation of the problem. 4 An attempt,
therefore, will be made in this note to fill this
gap by following a new method of approach,
starting from Kirchho6's theory of di8raction

' For extensive literature see F. Reiche, Ann. d. Physik
29, 65, 401 (1909) and J. Picht, OPtischeAbbildung (Braun-
schweig, 1931).

4 An elementary suggestive representation by means of
Fresnel's zones has, however, been given by A. D. Fokker,
Physica 3, 334 (1923);4, 166 (1924).


