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The Electrodynamics of Material Media
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The general equations of a gauge invariant, classical
theory of the electrodynamics of material media are
obtained. The gauge invariance is insured by taking the
equations

v D =p, VXH —D'= J
as conditions auxiliary to the variation principle

ttffff{L+Z e„[N '+V (N V ) 5d&&dt J =0.
The Lagrangian function, L, depends on D, H, N, V~, 8
and possibly their derivatives; here N is the numerical
density of atoms in the state n, V their macroscopic or
average velocity, and 8 is a variable that functions as the
velocity potential in some cases and has the dimensions of
action. The electromagnetic potentials enter the theory as
Lagrangian multipliers only.

It is shown that if there is only one state and

L= -', NmV' —(PP/8m) (V'N)'/N+ -'(H' —D')

then the Schrodinger wave equation is obtained on making
the substitution

P=N& exp (—i8/k).

If the atoms are stationary (so that terms in V may be
neglected), and

I =Z~N~TV~+D P+-', (H' —D'),

where 8'„ is the energy of the nth state, and

P=ZZ&, „&(N N )tP cos [(0„—0 )i&&t+u„g

is the polarization of the medium, an adequate theory of
dispersion results. However, the spontaneous transitions
are. not correctly accounted for by the equations.

If the electromagnetic fields are neglected and

L =-', NmV2 —U(N},

the equations are those for the irrotational motion of a
gas, with 8/m as the velocity potential.

INTRODUCTION

LECTRODYNAMICS has never been de-
veloped in a manner analogous to anaIytic

mechanics. Some years ago, G. Mie' made an
important attempt in this direction, and deduced
the equations of his theory from a single La-
grangian function. Orie consequence of this at-
tempt was a formulation of the requirement of
gauge invariance' by H. Weyl; unfortunately,
Mie's theory did not meet this requirement, nor
can Weyl's geometrical resolution of the difhculty
be considered as satisfactory at the present time.
It is the purpose of this paper to indicate the
possibility of a classical theory that is in some
respects similar to Mie's and satisfies the require-
ment of gauge invariance.

In addition to its use of a Lagrangi'an function,
analytic mechanics is characterized by the use of
a great variety of coordinates. In any special
case, these are chosen so as to make the introduc-
tion of empirical data into the calculations as
simple as possible. No forrnal attempt to define
the coordinates in terms of atomic quantities is
made, nor t'o deduce their equations of motion

' G. Mie, Ann. d. Physik 37, 511 (1912); 39, 1 (1912);
40, 1 (1913).' H. Weyl, Sitzungsber. d. Preuss. Akad. (1918).

from those of the ultimate particles. On the
other hand, the terms and suggestions of atomic
theory are often used freely in the informal ex-
planations that accompany the mathematical
theory.

A similar procedure was suggested by W.
Heisenberg' as a basis for the development of
quantum theory. It is interesting to note the
close relation between the initial stages of the
development of quantum theory and the classical
theory outlined below. However, this does not
make the later parts of quantum theory super-
fluous; instead, the need for them becomes more
apparent.

THE GENERAL EQUATIQNs

The medium may be composed of various
kinds of particles, capable of existing in diferent
states. For simplicity, only a finite number of
states will be considered. Let K„be the numerical
density or concentration of particles in the state4
n, and V their macroscopic or average velocity.
Another scalar function of position and time, 0„,

'W. Heisenberg, Zeits. f. Physik 33, 879 (1925}.
4 For the present, there is no need to distinguish between

the various kinds of particles. The notation can thus be
simplified by avoiding all reference to the kinds of particles
and numbering the states in some consecutive order.
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will also be associated to the state n. This variable
is analogous to the velocity potential of the ir-
rotational motion of a Quid; it is also analogous
to Dirac's' angle variable that is canonically con-
jugate to the square root of the total number of
particles.

These variables will not, in general; be suffi-
cient to describe the state of the medium: Such
other quantities as the electromagnetic field, the
gravitational field, and the temperature, are also
needed. For the present, all of these except the
electromagnetic field will be ignored, and this will
be described by the vectors D and H, that
satisfy the Maxwell equations

V D=p, VXH —D'= J.
Here p and J are the electric charge and current
densities, so that if e is the net charge carried by
a particle of kind and state n, then

p=Z„N e„, J=Z N„e„V .

The dynamical properties of the medium are
supposed to be summarized by a variation prin-
ciple involving the Lagrangian, L,, which depends
on ¹„,V„, 0„, D and H. It may also depend on
the space and time derivatives of these quanti-
ties, but for simplicity it will be supposed inde-
pendent of all derivatives except V¹„.The
variation principle is

8 ' IL+Q 8.[N„'+V. (N V„)]
fa II ti fl

+y[V D —p] —A [VXH —D' —J]idsdt=0;

p and J are treated as abbreviations for the sums
in Eq. (2). It is convenient to use the following
notation: if Q = iQ, +jQ„+kQ, is any vector, then

(BL/B Q) =f(BL/BQ.) + j(BL/BQ„)+k(BL/BQ.).
The equations obtained from the variation of

D and H are

(BI./BD) —Vy —A' =0,
(BL/BH) —V XA =0.

With the abbreviations

E= (BL/BD—), D = (BL/BH),

they become

E= —VQ —A', D=VXA

so that @and A are seen to be the electromagnetic
potentials. They do not necessarily satisfy
Maxwe11's auxiliary equation. They may be
eliminated from Eq. (5) by di8erentiation, and
there result the remaining Maxwell equations

V B=0, VXE+B'=0.

The equation obtained by varying 0 is

f
IL++„8„ so that

(BL/B8„)+N '+V (N V )=0,

G = —(BL/B8„)

X [N„'—V (N V„)) I dsdt = 0, (3)

subject to Eqs. (1) and (2) as auxiliary conditions.
If L has the dimension of energy per unit volume,
this equation shows that O„has the dimension of
action. As is customary in physics, not much will

be said concerning the boundary of the region of
integration, nor about the conditions there;
however, the~e is good reason to believe that this
constitutes an unnecessary limitation upon the
power of the theory.

The Eulerian equations of this problem will be
obtained by the method of Lagrangian multi-
pliers. Let @and —A be the multipliers associated
to the Eq. (1): Then the variational integral
becomes

5 P. A. M. Dirac, Quantum Mechanics {Oxford Press,
193S), Section 62 (second edition}.

is the net rate (per unit of time and volume) at
which particles are entering the state n. The
result of the variation of ¹ and V„ is

(BL/BN ) —V (BI/BVN„) —8„'

—V„.V8.—e„P+e„V A=O, (9)

(BI./BV„) NV8 +N„e„A„—=O. (10)

The Eqs. (9) and (10) can be combined to give

8„'=[(BL,/BN ) V(BL/B—VN„) j
—[V„(BI./BV )g/N„—e P, (11)

V V8.„=[V„(BL/BV„)j/N„e„V„A, (12)—
which are frequently convenient.

Any pair of the Eqs. (10) and (11) may be
used to eliminate p and A from any other equa-
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tions in which they may occur. This remark is the
proof of the gauge invariance of the present
theory.

After a somewhat tedious calculation, the
energy equat'ion is obtained as

{BH L+—Q V (BL/&V ) }'+V' {EXH

+Q„PN„'(BL/BV'N„)+V V„(8 L/BV„)

—N„V {(BL/BN ) —V (BL/BVN )}]}, (13)

and the momentum equation (x component
only) as

{(D XB),+Q „N„(88„'/Bx) }'+ (8/Bx) {E D

jI. Q„N.[—(aL/aN„ ) —V (BL/BV'N„) ]}

+V {—DZn —BH, —ZnLNnVn(Dion/Bx)

—(BN„/Bx) (8L/rtV N„)]} = 0. (14)

The calculation for Eq. (13) is as follows: a in the
expression for L', the terms B-H' —E D' are
transformed as in the usual proof of Poynting's
theorem; b the term in VN„' is transformed into
a divergence and a term proportional to N„'; c
the partial derivatives of L are eliminated by
Eqs. (7), (9) and (10);d on collecting terms, the
Eqs. (11)and (12) yield Eq. (13).The calculation
for Eq. (14) is similar.

SPECIAL EXAMPLES

As a particular case of these equations, let
there be only one kind of particle, capable of
existing in only one state. Then, if

L = —',NmV' —(5'/8mÃ) (V'N)'+-'(H' —D'), (15)

the Eqs. (7), (10) and (11) become'

N'+V (NV) =0,
~V= VO —eA,

By introducing two and four states, respec-
tively, and a suitable L„ the Pauli and Dirac
equations can presumably be obtained. In these
cases, the Lagrangian must depend explicitly on
the variables 0„.

In considering the significance of this example,
there is one point that must not be overlooked.
The potentials P and A that enter into Eq. (18)
are not independent of P. Eq. (1.8) is only one
consequence of the Eq. (16), and Eqs. (1), (2),
(4) and (5) are to be solved simultaneously with
Eq. (16). In particular, it can be shown that the
assumption

e/r, A=—0

is inconsistent with these other equations. Now,
it is only because of this special assumption re-
garding p and A that Schrodinger obtained agree-
ment with the empirical data on the spectrum of
hydrogen~: Consequently it is not correct to say
that the present theory contains the Schrodinger
theory as a special case. This conclusion applies
with redoubled force when polyelectronic atoms
are considered.

2.

Equally important is the possibility of obtain-
ing an analytic dispersion theory. For this pur-
pose, the atoms may be supposed fixed, and the
terms in V„ ignored. The states are to be inter-
preted as the discrete energy states (energy = W„)
of a single kind of atoms. The atoms may be sup-
posed neutral, so that p=0, J=O, and the polari-
zation of the medium is assumed to be

P= PP(m, n)(NmNn) Pmn

Xcos [(8 —0„)/h+n ], (19)

where P„exp (in„ ) is the matrix element of the
dipole moment. If

8' = ,'mV'+ (5'/4—m—)P, (VN/N) '
+V (VN/N)] —e4. (16)

The substitution

L=Z N W„+D P+-', (H' —D'),

Eqs. (4) become

(20)

P= Nl exp (—ie/h) (17)
E=D —P, B=H, (21)

reduces these to Schrodinger's equation

ibad'= (1/2m) —f i7zV+eA]'ll+—eflux. (18)
' Since I. is independent of 8, the latter may here be con-

sidered as a Lagrangian multiplier associated to the
auxiliary condition X'+V (XV}=0.

N„'+D. (aP/a~„) =0,
—0„'+W„+D (BP/BN ) =0. (22)

' E. Schrodinger, Ann. d. Physik (4) '79, 361, 489 (1926).

and Eqs. (7) and (9) become, after neglecting
terms in V„,
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A first approximation to the solution of these
equations is sufficient, to give an adequate ac-
count of dispersion phenomena; a second ap-
proximation will probably give a correct account
of the phenomena of absorption and forced
emission, but it wi11 be necessary to add new
terms to the Lagrangian if the phenomenon of
spontaneous emission is to be correctly included
in this approximation. Presumably, with each
successive approximation, new terms will be
needed in the Lagrangian in order to bring the
theory into agreement with the empirical data.
If this series of terms converged to some simple
function, the situation would be satisfactory;
it is not possible to foresee that this will be the
case.

It would be interesting to investigate the pos-
sibility of replacing Eq. (19) by another; the
factors (N„N ) l are well known from the
quantum theory, but seem somewhat strange
from the classical point of view, unless the ex-
ponent arises from a root-mean-square average
based on some statistical theory, It may be that
some other dependence on the concentrations
will be equally (or even, more) satisfactory. The
success of such an investigation seems somewhat
doubtful to the author (for reasons similar to
those discussed at the end of Example 1), but it
should be undertaken in any case; it lies beyond
the scope of this outline.

The equations for the irrotational motion of a
gas are also a special case of the foregoing. The
terms in the electromagnetic fields are unirn-

portant in this connection and may be ignored;
the Lagrangian is

I.= -', NmV' —U(N). (23)

Since it is independent of the variable 8, the total

' Except for notation, these equations are very similar
to those studied by Dirac, Proc. Roy. Soc. 114, 710 (j.927).
The statements in the text are based on this similarity.

p =N(B U/BN) —U. (26)

If U =a¹+',y being the ratio of the gas constant
to the specific heat at constant volume, then

p =oyN&+' and the motion is adiabatic. If
U=XRT log X, where 8 is the gas constant
per molecule and T=constant, then P=NRT,
and the motion is isothermal, with ternpera-
ture T.

CQNCLUsloN

The "analytic" or phenomenologic electro-
dynamics outlined here cannot pretend to com-
pete with quantum electrodynamics in the do-
main proper to the latter. However, the former
should not be regarded only as a branch of pure
mathematics that happens to use the terms of
physics. There are undoubtedly many macro-
scopic phenomena whose laws are special cases of
the equations developed above.

Neither is this theory merely the Maxwell-
Lorentz theory in a new form. The latter contains
Eqs. (1), (2), and (6), together with analogs to
Eqs. (4), (13), and (14); it does not contain
analogs to Eqs. (9) and (10).

It is my privilege to dedicate this paper to
Professor Arnold Sommerfeld, as a greeting on
the occasion of his seventieth birthday.

number of atoms remains constant. The Eqs'.

(9) and (10) become

-', mV' —(BU/BN) —O' —V V'0=0,
V-70=0,

'

so that 0/m is the ordinary velocity potential in
this case. The Eqs. (24) a.re not Euler's equations
of hydrodynamics; the latter are essentially Eq.
(14), which reduces to

(Nm U,)'+ (8/Bx) $N(8 U/(3N) —U$
+V LNmVU, ]=0, (25)

in this case. The pressure is thus related to the
function U by the equation


