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parison with the electron for which such effects
according to Mott and Sauter do not appear
until the second Born approximation. However,
a certain similarity which the Dirac-Proca equa-
tions bear to the Maxwell equations and the
vectorial character of the wave functions (as
compared to the spinor character for s=-', ) may
render our result more plausible.

The effect is of the fourth order in s/c for

k4/X'e'= P4/(1 —P')

and is most pronounced at right angles to the
direction of the incident particles.

The evaluation of the second approximation
(34) and a closer discussion of the matrix
element (k

~
U~ko) will be given in a later paper.
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It is shown here that if all degrees of freedom in a vapor are nearly classical and if there is no
association, the vapor pressure of the lighter isotope is always higher. If only the external degrees
of freedom are nearly classical and the internal ones are in the lowest state, the coupling of
purely harmonic vibrations has either no influence or tends probably to a further increase of
the excess vapor pressure of, the light isotope. Anharmonicity and the change in the van der
Waals forces probably account for those cases in which the heavier isotope has the higher
vapor pressure.

I. INTRQDUGTIoN

HE difference in the physical and chemical
equilibrium conditions for isotopes is a pure

quantum phenomenon. ' Classical theory would
give no effects of the difference in mass. This
latter only affects the statistical distribution of
momenta. ' In classical theory, however, the
integration over the momenta is independent of
the integration over the coordinates and in-
Huences the different states (e.g. , vapor and.

liquid) in the same manner. Therefore it does
not modify the equilibrium between two states.
This suggests' a systematic investigation of the
isotope effect in different temperature regions.

II. Low TEMPERATUREs

At low temperatures the differences are most
conspicuous. The adequate method which is in

~ We exclude cases in which gravity or centrifugal forces
are of importance.

~The very small differences in potential energies for
different isotopes shall be neglected except at the end of
the paper,

general use starts from the condition at absolute
zero. The greatest effect in this region is due to
the difference in zero point energy of the motion
of the molecule as a whole in the field of its
neighbors. Since the operator of the kinetic
energy is positive definite the lowest quantum
level of the lighter isotope will always be higher
than that of the heavier isotope. As a conse-
quence the lighter molecule will have a smaller
heat of evaporation and therefore a greater
vapor pressure. ' The difference of entropy of
translation and possibly rotation in the vapor
state works in the opposite direction but has
less importance in the low temperature region.
All this has frequently been the subject of
dIscuss1ons.

III. HIGH TEMPERATURES

As mentioned before, there are no differences
between isotopes at temperatures so high that

s A possible exception might occur if one has association
in the vapor phase connected with a very high intermolecu-
lar vibrational frequency.
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Thereforeclassical treatment is justified. At temperatures
not quite as high, the differences are due to
small deviations from classical theory. It seems
therefore to us that an expansion in powers of 5
(i.e., Planck's constant divided by 2n) in which
the first term is given by classical theory is more
appropriate than the method usually applied,
which starts from considerations of the behavior
near absolute zero. In fact if the latter method
is applied the small differences in vapor pressure
at high temperature result from cancelation of
much bigger terms.

Expansions of the partition function in terms
of k have been developed by Bloch' and by
Wigner. 5 According to Wigner the first quantum
correction is proportional to 5', the coefficient
of k being zero. ' In classical theory the partit'
function is given by

1(kq'( ) Uq
Z=Z, i+—

i i
dx exp

i8(kTJ & & kT)

p' l
&&~ dpg2 exp

(

— P ~, (5)
kT 2m)

where dx, dp stand for the products of all dx„, dp;.
It must be emphasized that in Wigner's method,
the integrations over the p's and x's can be
performed independently of each other, in spite
of the fact that p and x cannot have definite
values simultaneously in quantum theory.

We write

Zcl Zcl Zcl

where Z, ~' is the contribution from the kinetic,
Z, )" that. from the potential terms. Integrating
over the momenta and performing a partial

(1) integration over the first terms of g~, we getZ, i
——) dQ exp (—e/k T),

from (5)
where dQ signifies the volume element of the
complete phase space and the energy e is ex- Z=Z, i' Z.i"——

~

pressed in the form 24 E kT)

e = -', Qp,'/m;+ U(x). (2)
1 p ( Vq 1 (BVq'

X dx( exp—
kT" & kTJ i m, (Bx;)

where

exp ( ~/kT) 1+. —
8(kT)'

1 O'V 1
@2=A —— — +

m; ~x 3k' (8x;)

1 p;; O'V
+ZZ (4)

' ~ 3kTm;m;ax;ax;

4 F. Bloch, Zeits. f. Physik N, 295 {1932).' E. signer, Phys. Rev. 40, 749 (1932).J. G. Kirkwood,
Phys. Rev. 44, 31 (1933).' For the special case of the harmonic oscillator, this is a
well-known fact.

Here the p; are the momenta, m; the masses
and V the potential energy, depending on all
the coordinates x but not the momenta p or
masses m. According to Wigner, exp (—e/kT)
has to be replaced in first approximation of the
quantum correction by

+surface terms . (6)

The surface terms, resulting from the partial
integration may be omitted, if we consider closed
systems for which U becomes infinite at the
boundary.

Therefore the partition function can be
written

k' 1 (BVq '
Z=Z„1- g —

~
~, (7)

24(kT)' ' m; EBx;) A,

where g;(1/m;)(BV/Bx) 2 has to be averaged
over the classical probability distribution in
configuration space.

Part of the integration we have carried out has
also been discussed by Kirkwood. ' In comparing
our expression with his formula (21) we can
neglect his second term since it vanishes at high
temperatures in an exponential manner.
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The factor T ' in the correction term of (7)
represents the actual temperature dependence
only if

isotope. About the dissociation into radicals no
general statements can be made.

IV. INTERMEDIATE TEMPERATU RES

is independent of the temperature. That is not
the case if the atoms remain in the neighborhood
of equilibrium positions, since under those con-
ditions (8 V/Bx)' increases with T. With the
help of a partial integration one can transform
(7) into

k2 1 O'U
Z=Z, ) 1 — Q — . (7')

24(kT)' ~ m; Bx A,

This formula applied to the harmonic oscillator
yields the well-known result

1 tt'5(oq '

24 (kTi
(7")

It can be seen from (7), that the quantum
correction always diminishes the partition func-
tion and its absolute value increases with the
mean square value of the forces and diminishing

. mass of the particles concerned. Thus, if we
compare the liquid and vapor state, the quantum
correction will be in general greater for the
liquid on account of the stronger forces and the
difference between gas and liquid is greater for
the lighter isotope. Therefore the lighter isotope
will have the higher vapor pressure. This has of
course been known under the assumption of
quasi-elastic forces, but has now been proved to
be generally valid. It follows from our formulae
that for rare gases the vapor pressure of the light
isotope will be higher at suf6ciently high temper-
atures. For molecules the equations deduced
now can be applied only if all degrees of freedom
behave classically. In such cases however the
problem of comparing vapor pressures is fre-
quently complicated by the fact that dissociation
takes place. It is interesting to note that under
the conditions which we are here discussing the
dissociation into atoms will be always stronger
for the lighter isotope. If one considers, therefore,
the total vapor pressure of a molecule, dissocia-
tion into atoms can only cause a further relative
increase of the vapor pressure of the lighter

In most liquids made up of molecules, the
external degrees of freedom (i.e. , the motion of
a molecule as a whole in the field of its neighbors)
behave in an almost classical way at tempera-
tures where the internal degrees of freedom are
still. in the lowest state. Then considerations
similar to those of the preceding section show
that the inHuence of the external degrees of
freedom wil. l again be so as to increase the vapor
pressure of the light isotope more than that of
the heavy one above the classical value.

Nevertheless, a higher vapor pressure has
been observed in many cases for the heavier
isotope, e.g. ,

' in C6D6 compared to C6H6. This
must be due to the influence of the internal
vibrations, overcompensating the effect of the
external degrees of freedom. Two ways have
been proposed to explain this inHuence. The
first explanation proceeds in the following
manner. ' It is well known that the frequencies
of the internal vibrations are somewhat different
in the gaseous and the liquid state. This differ-
ence will cause a difference in the heat of
evaporation of the two isotopes. If, as is fre-
quently observed in infra-red and Raman
spectra, the frequency is lower in the liquid, the
result would be a higher heat of evaporation and
a lower vapor pressure of the lighter isotope.
The second explanation' makes use of the
different value of the van der Waals forces for
the isotopes, which has its origin in the small
difference of the polarizabilities and molecular
volumes of the isotopes, which have been found
experimentally.

With regard to the first; explanation, one must
keep in mind that the optically determined
frequencies cannot be used directly to calculate
average heats of evaporation. For the sake of
simplicity we shall replace the liquid by a crystal.

7 C. K. Ingold, C. G. Raisin and C. L. Wilson, J. Chem.
Soc. 915 (1936).

'The effect in question has been pointed out by B.
Topley and H. Eyring, J.Chem. Phys. 2, 217 (1934). It has
been used as an explanation by F. G. Brickwedde, Sym-
posium on Recent Adv. in Physical Chemistry, A. A. A. S.,
Indianapolis, 1937.' C. R. Bailey and B. Topley, J. Chem. Soc. 921 (1936).
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For a fundamental frequency to be observed in
the infra-red or Raman spectrum, neighboring
molecules must vibrate practically in the same
phase. This however is only one vibration among
many others which have arbitrary values of the
phase differences. These vibrations will have
different frequencies; the optically observed
frequency is probably either at the upper or the
lower end of the frequency band. Thus the mean
value of the frequencies in the condensed state
which is the one to be used to determine effective
zero-point energies, may differ considerably from
the observed infra-red or Raman frequency.

In order to evaluate therefore the change of
zero-point energy of the internal vibrations, it is
necessary to consider theoretically the effect of
the coupling of neighboring molecules. We shall
discuss here only the sign of the change to be
expected. It shall be assumed that all forces
including those arising from neighboring mole-
cules are harmonic. In view of the small changes
expected we will be justified in applying per-
turbation theory and restricting ourselves to
perturbations of the first order. In doing so, it
will be sufficient to consider diagonal terms in
the secular determinant, that is to consider the
effect on the normal vibrations of one molecule,
when it moves in the field of the neighboring
molecules which are considered at rest." Now
the forces in the condensed state tend to hold
the molecules in equilibrium configurations and
therefore it is probable that the perturbing
potential exerted on an atom by a neighboring
molecule will have positive second derivatives.
It is therefore to be expected that the mean
value of the frequencies, and therefore the

'0 If we want to calculate the first-order perturbation for
each mode of crystal vibration, those nondiagonal terms
should also be considered, for which row and column belong
to the same value of the unperturbed frequency. If however
only mean values are wanted, one has to be concerned only
with the snm of diagonal terms. Thus the Lorentz-Lorenz
force will cause the splitting of an internal vibration into a
band without affecting the mean value in the first order
(see R. H. Lyddane and K. F. Herzfeld, Phys. Rev.. 54, 846
(1938)).

effective zero-point energy, will be higher in the
condensed state and give rise to an additional
excess of the vapor pressure of the light isotope.
This last statement however is not to be con-
sidered as proved rigorously. It should be
mentioned in particular, that according to Bauer
and Magat" the anharmonicity of the internal
vibrations and long range interactions (Coulomb
forces) between atoms of different molecules may
combine to cause an effective lowering of
frequencies in the condensed state.

The second proposed explanation we have
mentioned, i.e., the change of the van der Waals
forces, seems to us to be the probable reason for
the higher vapor pressure of the heavier isotope,
whenever such an effect is observed-for non-
associated vapors. It can be seen from Bailey
and Topley's paper' that the change in dispersion
forces for benzene as calculated from the meas-
ured mole fractions and mole volumes would
give rise to a greater difference in vapor pressure
than has been observed. It is probable that the
correct value would be obtained if the other
phenomena discussed above could be taken into
account and subtracted from the effect of the
van der Waals forces.

The general explanation of the difference in
van der Waals forces can be given by considering
the difference of polarizabilities and dipole
moments which are obtained by averaging over
the zero-point vibrations of the internal degrees
of freedom. As long as the vibration is strictly
harmonic and the dipole moment and polariza-
bility are strictly linear functions of all atomic
displacements, the same mean values will be
found for the two isotopes. However as soon as
mechanical or electrical anharmonicities appear,
a difference of the mean values and consequently
of the van der Waals forces will be obtained, the
sign of which depends on the specific properties
of the molecules concerned.

~ ~E. Bauer and M. Magat, J. de Phys. Q,f'319 (1938).


