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Elastic scattering -of the heavy particle obeying Bose statistics is examined by the rela-
tivistically invariant equations recently developed by Proca and by Dirac. Perturbation
calculus of the "variation of constants" type is applied. For the evaluation of certain sums
occurring in the scattering cross sections, destruction operators are constructed similar to those
first developed by Weisskopf for the Dirac equation. While according to Mott's calculation of
the scattering of electrons a polarization e6'ect does not occur until the second approximation,
such an effect appears in our case even in the first approximation. The second approximation
will be treated in a later paper.
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~ITHIN the last year a heavy particle
possessing spin unity and obeying Bose

statistics has been introduced by various authors'
with considerable success for the explanation of
nuclear forces. Or'iginally this particle was
thought to be of the Pauli-Weisskopf type
possessing spin zero, ' but the resulting nuclear
forces proved to be of the wrong sign. ' Thus for
the first time these elementary particles find
application whose wave equations belong to the
family recently developed by Dirac, 4 for the
case of s&-,'. While the comparative simplicity
of the wave equations of such particles seems to
demolish the unique position of the wave equa-
tion of particles with s= —',, the closer analysis
of these new equations reveals that certain
simpli fying facts—e.g. the possibility of the
construction of only one stress-energy tensor'—
are common only to particles of spin 0, ~ and 1.
Thus one is perhaps justified in conjecturing
that only these latter particles will find perma-
nent places in the theory. In this connection it is
of interest to note that the wave equations for
particles with spin 1 have been found and

' Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935);
Yukawa and Sakata, Proc. Phys. Math. Soc. Japan 19,
1084 (1937); Yukawa, Sakata and Taketani, Proc-. Phys.
Math. Soc. Japan 20, 319 (1938);Kemmer, Proc. Roy. Soc.
A166, 127 (1938); Frohlich, Heitler and Kemmer, Proc.
Roy. Soc. A166, 154 (1938);Bhabha, Proc. Roy. Soc. A166,
501.(1938); Heitler, Proc. Roy. Soc., A166, 529 (1938).

2 Pauli and Weisskopf, Helv, Phys. Acta 7, 709 (1934).' Third and fourth paper of reference 1.
4 Dirac, Proc. Roy. Soc. A155, 447 (1936).' Fierz, Helv. Phys. Acta 1938, in press.

discussed independently although from a diBer-
ent point of view, by Proca. '

The various effects occurring when such par-
ticles interact with matter, for instance with
protons, are bremstrahlung, inelastic scattering
through exchange, and purely elastic Ruther-
fordian scattering. The first two effects have
been discussed by the authors mentioned under
reference 1. The third effect will be treated in
this paper. Although we regard it as. improbable
that this elastic scattering will ever be separated
from the other two effects, it seems to us neces-
sary to understand quantitatively all effects
through which a heavy particle can interact with
matter. Furthermore, since spin terms are of
considerable influence upon the result, it may
perhaps be possible in the future to decide be-
tween the two alternatives of s=0 or s= 1 by
performing a scattering experiment.

The corresponding computation for electrons
was carried out in considerable detail by Mott~
and was later very much simplified by Sauter.
In this latter paper a Born approximation was
used and the calculations were carried out leaving
the scalar force field through which the impinging
particle and the nucleus interact, completely
general. By not specializing this general field to
Coulomb interaction, until the final result, it was
possible to avoid all convergence difficulties. In
this way the first Born approximation gives—

Proca, J. de phys. et rad. 7, 347 (1936).
~ N. F. Mott, Proc. Roy. Soc. A124, 425 (1929); 135,

429 (1932).
F. Sauter, Ann. d. Physik 18, 61 (1933).
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except for relativistic corrections —the Ruther-
ford term, while polarization terms appear but
in the second appro'ximation.

In the following sections the same treatment is
applied to the Dirac-Proca equations for par-
ticles of spin unity. In Section II the unperturbed
wave functions are discussed and various prepara-
tory computations are carried out. In order to
exploit fully the orthogonality properties of the
eigenfunctions, we shall find it necessary to con-
struct operators analogous to the destruction or
annihilation operators which Weisskopf' and
others have set up for the Dirac equations. In
Section III perturbation theory of the variation-
of-constants type is developed and expressions
for the cross section of scattered particles are
obtained in first and second approximation. In
Section IV the first approximation is evaluated
and discussed. A report on the evaluation of the
second approximation will be given in a later
paper.

(a) In Yukawa's notation the Dirac-Proca
equations are

(1 pj

~

——+—V )F—curl 6—E'U=O,
Kc 8$ kc

(18 i
~

——+—V ~U+grad Up+&F=O,
4c Bi hc )

div F+XUO=O,

curl U —XF=0.
(2)

V(x, y, s) is the potential energy through which
the (stationary) nucleus interacts with the
arriving particle. E =Mc/h is its reciprocal
Compton wave-length. The wave functions
F, 6, U are complex vectors, while Uo is a
complex scalar. The wave equations (1), (2) are
relativistically invariant, but as we shall not
make use of this property it does not seem
necessary to introduce a four-dimensional index
notation. Suffice it to say that actually F and G
form an antisymmetric tensor, and U and Uo a
four-vector.

In order to get rid of Eqs. (2) which play the
role of accessory conditions, we eliminate G and

' Weisskopf, Zeits. f. Physik 89, 27 (1934),

Uo with the result:

In this form each equation contains a first
derivative with respect to the time which is just
the form required by transformation theory.
We are now ready to apply the method of the
variation of constants, regarding V as perturba-
tion parameter.

An alternative approach is to eliminate F in

Eq. (3) by means of Eq. (4), then to assume a
definite stationary time dependence with an
energy E. Then equations of the following type
result:

(6+(E/hc)' X'IU—=li enravector functions of
U and of F whose coe%cients involve up to
second derivatives of U. (5)

Similarly for F. These Poisson-type equations
may then be solved by successive approximations
in the familiar way by means of Green func-
tions. " Because of the complicated structure of
the right side of the above equation it was
found to be simpler to work with (3) and (4).

(b) We now have to study the unperturbed
system in some detail. The unperturbed wave
vectors i.e., the solutions of (3) and (4) for V=0
we shall write OU and OF. We then enter these
equations with the following plane wave ex-
pressions

pU= (27r):u exp Li(k x) iEt/h], —

pF = (2vr)-if exp Li(k x) —iEt/hj.
(6)

u and f are as yet unknown vectorial wave
amplitudes which may yet depend upon k, the
wave vector, and upon E, the energy. The
secular determinant for E can be calculated:

L(E/hc)' —X' —k']' =0. (7)

It has two triple roots /AEc = &(X'+k')l which
'I

~'This is the original method of Born and Wentzel.
See Sommerfeld, TVave Mechanics, p. 192, also Handbuck
der I'hysik, Vol. 24&, p. 712—721,

(18 i
X( ——+—V ~F —grad div U

4c Bt hc

+AU —X'U =0, (3)

t'1 8 i
X~ ——+—V ~U —grad div F +X'F=O. (4)

(cat hc )
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—iqpKf(gpk)+k(k u(qgik))

correspond to the states of positive and negative have:
energy. We shall distinguish between these in
the following manner: Let

p = + (K'+k') **

—p'u(qpk) = 0,
(8) (14)—iqpKu(gpk)+k(k f(qpk))

be the positive value of the energy divided by
kc. Let p be a quantum number which is capable
of only the values +1 and —1. We shall then
write the argument of the exponential function
in (6)

i(k x) icy—pt with rt= W1.

The fact that each root of (7) is threefold, can
be described, as has been pointed out by various
authors, by ascribing a longitudinal and two
transverse normal vibrations to both OU and OF.

In accordance with this fact it is convenient to
introduce a system of mutually perpendicular
unit vectors e(p, k) of the following kind:"

+K'f(qpk) = 0.

u(q, p, k) =u(g, p, k)e(p, k),

f(r„ p, k) =f(rt, p, k)e(p, k)
(15)

and considering (10) and (11).We will write the
solutions

u(gpk) =Kph(gpk),

f(qpk) = i'(K'+ p'k') A(gpk)
(16)

(Round brackets and dot signify the scalar
product. ) This system decomposes into three
pairs of equations as one sees upon putting

e(0, k) =k/I k
I

(e*(P k) e(P' k))=~-"
(10) where A(gpk) is an as yet arbitrary multiplicative

constant.
(c) We now have to study the orthogonality

properties of the unperturbed solutions (13), (15),
(16) and obtain a convenient normalization
which will determine A(gpk). For this purpose it
is necessary to derive the continuity equation.
Multiply Eq. (3) scalarly with U~, then Eq. (4)
with —F* and add. Then subtract from this
expression its complex conjugate. The result can
be written

The unit vectors e(I), e( —I) are evidently com-
plex, in particular

e*(I)=e(—I).

They correspond to right or left circular polariza-
tion. One can also use a system of real unit
vectors, namely

e(1)=2—&(e(I)+e(—I)),

e(—1) =2—:i-'(e(I)—e(—I)), c 'p+div j=0, p=i 'I(U* F) —(F* U) I. (17)
(123

which correspond to linear polarization. We shall
for the present use the complex system.

Utilizing the notation defined by Eqs. (8) to
(11) we may now refine our Ansatz (6), to:

pU(g, p, k; x, t) = (2~)-iu(g, p, k)

Xexp $i(k x) —icqptj,
(13)

pF(q, P, k; x, t) = (2m.) 'f(g, P, k)

Xexp Li(k x) —icqpt],

with g = &1;p= &I or 0. The amplitude vectors
u and f have yet to be determined. Entering (3)
and (4) for the case of V=O and using (8) we

"See H. A. Kramers, Qnantentheorie des Zlektrons und
der Strakllng, Vol. 2, p. 259.

The expression for'j we shall not write down, as
we are not going to make any use of it. It is
important to be aware of the fact that this is
really the continuity equation and not perhaps
the time component of the equation expressing
the conservation of energy and momentum.

Equation (17) furnishes in the usual fashion an
orthogonality condition. When substituting in
the expression for p the' undisturbed eigenfunc-
tions, vis pU*(q, p. , k; x, t) and pF*(g, p, k; x, t)
for U" and F*, and pU(rl', p', k'; x, t) and
pF(g', p', k'; x, t) for U and F, integration over x
space gives the 8 function 8(k' —k). For the
remaining expression, i.e. , the p symbol formed
with the vector amplitudes (15), we introduce
because of its frequent reappearance the sym-
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bol p..
(s'p'k'I t I ~pk) =i '(u-*(~'p'k')f-(spk)

—f.*(it'p'k') u. (gpk) ). (18)

which vanishes unless g'=g. We can use this
fact for the determination of A(gpss), by normal-
izing (qpk

~ p ~
gpk) to have the value ri This. leads,

except for an arbitrary phase factor, to the
following expression:

Q(gptt) = $2glt(+2+P~$2) j—l

We summarize the above consideration by the
orthogonality relation:

(q'p'k' } p ~
qpk) = rtb„„b„„. (20)

The fact that the charge is not positive definite
is completely analogous to the case of s=0 i.e.,
of the scalar Gordon-Klein-Schrodinger equation.
For this latter equation this was first pointed out
by Pauli and Weisskopf. '

The converse orthogonality relations are ob-
tained in the following manner: Multiply (20)
by q'f p(g'p'k) and sum over g' and p'. p indicates
any cartesian component. The following relations
result:

2 ~f-*(~pk)J't (npk) =o,

The Greek indices signify (cartesian) vector (or
tensor) components; doubly occurring Greek in-
dices are to be summed from 1 to 3. For k =k' the
above quantity vanishes because of the ortho-
gonality of the e(p, k) vectors (Eq. (11)) except
if p= p'. In this case; one has, using (16):

(g', p, k~ pig, p, k) =&X(X'+p'X')
x(~'+n)t *(n', p, &)&(~p~),

dk stands for dkidk2dka, x for (x, y, s). We com-
pute the Integral

JI dxi —'I(U*.F) —(F* U) }.

Introducing into it (22) and applying (1) k
orthogonality, (2) p orthogonality, and (3)
orthogonality according to (20) we obtain

(e) In later sections we shall make consider-
able use of so-called "destruction operators" or
"annihilation operators" analogous to those in-
troduced by Weisskopf" into the theory of the
Dirac electron. There are two kinds of destruc-
tion operators. The first kind has the eigenvalue
+1 for a state with a definite polarization
quantum number p and zero for states with any
other polarization quantum number. The second
kind has the eigenvalue +1 for a state of
positive energy (i.e., with g =+1) and zero for
the state with negative energy.

We shall first deal with the former kind.
Omitting for the moment the quantum number

q which is of no importance, we have because
of (15):

L»«(p) j=pu(p);

eigenvalues +1, 0, —1.
1——I:kx L»«(p)13 =P'u(P);

k2
eigenvalues +1, 0, +1.

We might have written f(p) as well; it is im-
material upon which amplitude vector we are
operating. With these two operators and the
identity operator one can construct three oper-

hich the relation holds:

Q qu *(itpk)up(gpk) =0,

p q .u*(q p)kfp(g kp) =i8 s.

D-s(p. , k) ~(p, &) =&.... .(P, k). (24)

1 1
D.t (w I, k) = a e.s,u, +-', S.s — k.a p,

2i~k~ 2k'U(x, t) = p dkA(q, p, k) OU(q, p, k; x, t),
yrP J (25)

1
. D p(0, k) =—k kp.

k2

"See reference 9.

(22)

F(x, t) = p dkA (q, p, k),F(g, p, k; x, t).

ators for w

(d) The completeness relation may be easily
derived. A general solution of the (unperturbed)

These are:
wave equations (3) and (4) is:
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e,p„ is the familiar antisymmetric tensor (Levi-
Civita symbol).

To construct the second kind of operators we
shall go back to Eqs. (14). Adding to the first
of these —ipIQ(t&) and dividing by —2ipX we
have:

(i/2Xe) (~'8 p
—k.kp) up(t&) +-,'f.(t&)

= 2(v+1)f-(n) (26i)

The right-hand side has the factor 1 if t&=+1
and zero if q= —i. Similarly we get from the
second equation (14):
—(i/2Xe)(X'8 p+k.kp)fp(t&)+-,'I (t&)

tion:

(~ pk I Ulnpk)=(slplkl{PInpk) (kll Ulk), (29)

where

(kil Vlk) =(2tr) ' dxU(x)

Xexp [i(k—ki x)]. (30)

Before integrating (28) in the usual fashion,
a definite initial condition has to be agreed upon.
We shall assume that at t=0

(1) only particles of momentum kko, and

(2) only p'articles of positive energy, i.e., with
t&0 ——+1 are present.

& (&+ )+~( &) ( 2) (3) For p = +I the amplitude is to be A+i&'&t

We introduce the abbreviations:

F p(k) =(i/2E'c)(e'5 p
—k kp),

Z.,( ) = (1/2'. ) (Z2S.py'k. k,)
(27)

for p=0 Ao&'&, and for p= I A r&'—&-
Thus the wave vectors of the incident par-
ticles are:

U„; =+A„&'&,U(1, p, k, ;x, t),

(a) We shall now apply perturbation theory to
(3) and (4). We develop the eigenvectors of the
perturbed problem in terms of the unperturbed
eigenvectors analogous to (22). Introducing these
expressions into (3) and (4) we obtain:

Fp„——pA „&'& OF(1, p, ko, x, t).

For I =0 the value of 2 is therefore

A(t& p k 0) =b„,ib(k —ko)A„&'&.

(31)

(32)

P ~dk{c 'A(t&pk;t)

pic (tls7g sO) f,

To obtain the first approximation from (28) this
condition is introduced into it on the right-hand
term and the time integration performed. The

+i(&tie) 'A(t&pk; t) U(x) I OF(t&pk; xt) =0, result is:

dk{

The first of these integrals is now multiplied
scalarly with i—'OU*(t&i, pi, ki, x, t) the second
with ioF*(t&i, pi, ki, x, t). Then the two are added
and integrated over the x space. Applying to the
term containing A the orthogonality conditions
after the manner of Section 2(c) one finds

~7iA (t&ipiki, t) = g ~" dkA( t&pkt)
f t

pikil vl ~pk)e" &»'& t'&t. (28)

The matrix element of the perturbation potential
V can easily be brought into connection with the
usual matrix element of the Schrodinger equa-

kcA "'(t&, p, k; t) = —
t& (kl Vlko)

'g 61c
—60

(33)
ZApo"&(~, p, kl pl1, po, ko)
2&0

in which po is written instea'd of e(ko). In the
same standard manner the second approximation
is obtained: The above first approximation is
substituted into the right-hand side of (28).
Integration gives:

(itc)'A &»(~, p, k; t) = q P g'~I dk'
~p g)t

x(kl v fk')(k'I vlko)
(34i)

2»o"&(s, p, kit I
~', p', k')

PO

x(n', p', k'I t I1 po ko) c



910 OTTO LAPORTE

with
pic(Yje—eO) f,

o())pk;k ) =(Ac) '))I (kl Vlko) I'

C ()), ))', o, o', oo', t) =
())o Eo) (1) E Eo)

g'bc (rle —g'e') 5

(34o)
( J)E It o') ()J E Eo)

The thus-obtained values for A(g, p, k; t) should
be put into (22) in order to furnish the eigen-
vectors of the perturbed problem in first or
second approximation.

(b) It is, however, not necessary for our pur-
pose to compute the eigenfunctions. All we are
interested in is the number of particles X(k, t)
scattered into the solid angle element dQ be-
tween the time 1=0 when the perturbation is
switched on and the time t =1. This quantity is
connected with the total number of scattered
particles

=~I dk p &Ia(&pk, t) I'

according to (23). Since

x Iz~..()(mpklul1p. k.) I
.

PO

Only the term with p=+1 gives a resonance
point within the range of the k integration.
Since o.( ~ . ~ ) is a slowly varying function of t'o it
can be taken outside of the integral with lkol
substituted for lkl. The result is:

1 2'J("=— ooko
I
(k I Vlko) I

'Q
I Q

R 5 c P $'0

x»o(o'(IPkl t I 1Poko) I' (36)

Although
I

k
I

' =
I
ko

I
', their directions differ of

course. The term
I
(k

I
V

I ko) I' furnishes, for
Coulomb interaction the well-known Ruther-
fordian angle function cosec' (6/2).

(b) The other factor which we will call I'
contains the relativistic and polarization effects
due to the Dirac-Proca equations. Written in a
more detailed fashion it is according to (18):

(o) +g @o, (o)

PO 'I)0

I -*(Ip&.)f-(1pk) -f-*(1H .).-(1pk) I

' Iut) (Ipk)fp(1po'ko) ft)*(1pk)up(1po'ko) I ~ (37)

dk =dQk'dk

one can drop the dQ integration both sides.
Finally the intensi. ty measured at a distance R
from the scatterer is given by: The summation over p is easy to perform by

means of the destruction operators of Section
2(e). For instance, the product of the first term
of the first parenthesis with the first of the
second parenthesis contains

1 BX(kt),J=-
R' Bt

(35)
co

k'dk p ))
I

A ())pk, t)
I

'.
R' Bt

))+1
Qf (Ipk)up*(1pk) = QQ)t f ())pk)up*-())pk)
u -un 2Substituting for A. the sum of the expressions

given by (33) and (34) one obtains 7 uP to the Application of (26) from right to left and use
second approximation. of (27) make it possible to write this as:

(a) In this section J will be evaluated in first
approximation. Introducing (33) into (35) we
have:

8J")=—— k'dk Q o())pk; ko)
R 85 0

sin' (c/2) (goo —oo) t

(zoo —oo) '

P))LY,(k)u„(gpk)+-', f.(qpk))up*(gpk) = ', ot) t)-
P t 1

The latter is in accord with the orthogonality
conditions (21). Similarly from the second term
of the first parenthesis and from the first term
of the second parenthesis of (37) there arises:

Qu (1pk)up*(1pk) =oZ p(k)
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In this fashion (37) becomes: the following rectangular components:

P=-', Q ~App&P&
~

'

+i ' P App+PApp &'&[ 7, (38)
PO s 'IzO

[. j= I' t&(k)u *(1Ppkp)up(1Pp'kp)

—Z e(k)f *(1ppkp)fe(1pp ko)

ko = (&, 0, 0),

e (I, ko) = (0, 2-l, i2-'),

e( —I, kp) = (0, 2—', —z2
—'*),

k= k(cos z&, sin 8 cos op, sin 8 sin p).

Then the contribution. to I' becomes:

u *(1poko)ue(1poko) =Dt&7(ppko)E zru *(&rpkp)

X t Z~p(kp) fz(z&pko) + ou& (&rpko) }.

Treating the second term of [ ] similarly, we

finally obtain using (21):

L
. j=zD-e(p&p) IZe. (kp) I'.-(k)

+ I'ev(kp)ZV-(k) } (39)

From (25) and (2/) we get as contribution to P
in the case

po= po'=0:

~Ap&'& ~'[1+(1/4X'p')(k' —(k kp)')]

pp= pp'= &I:
~A~r&'&

~

'[1+(1/8X'p')(k' —(k k )')j

(40)

after account is taken of (18) and (20). Since
the second term contains the arbitrary amplitude
constants A„,&'&, one has to spread out each term
of the double sum into a sum of p and» in order
to be able to apply the orthogonality conditions.
Let us deal separately with terms where pp

——pp'

and with those where pp happ'.

(n) pp
——pp'. The square bracket, the factor of

} A„,r" ~

' has now to be treated with the operators
D of Section 2(e). According to (24) and (26) we
have:

k4
A &'~*A z(" sin'8e "~

(y) Because of the Hermitian character of
each term of (38) the contribution of pp

———I,
po =+I 1s

k4
A —I" *Ax "" sin' Be+"~. (42)

(8) The contributions of terms one of whose pp
numbers is zero vanish. Collecting terms from
(40) to (42) the following expression for P is
obtained:

k
P =p

~

A pp"'
~

'+ sin' zz

4X'e'

XI ~Ap&P&~'+PAr&P&e' +A r&P&e ' ~'}. (43)

Az ——ALe '~o; A r=ALe ~
~

(c) From this formula it is seen, that as long as
the incident waves are solely longitudinal, or if
transverse, strictly right or left circular, the
inclusion of relativistic and spin terms gives only
a 8 effect which will be superimposed upon the
Rutherfordian term ~(k~ U~kp) j'. But if both
right and left circularly polarized waves are
incident, i.e. , if part of the incident wave is
linearly polarized, an azimuth effect arises. This
is seen when we put

(P) po=I, po'= I By use of (»—), (13), (16) Then P becomes, if we disregard longitudinal
and (19) the square bracket of (38) becomes: terms for the moment:

z(iz'/41''p')(k e( —I, kp))' j1+(+ /4' p ) sin z& cos (op —pp) }

As this expression no longer possesses cylindrical
symmetry, it becomes convenient to work with

The appearance of a polarization even in the
first approximation seems surprising in com-
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parison with the electron for which such effects
according to Mott and Sauter do not appear
until the second Born approximation. However,
a certain similarity which the Dirac-Proca equa-
tions bear to the Maxwell equations and the
vectorial character of the wave functions (as
compared to the spinor character for s=-', ) may
render our result more plausible.

The effect is of the fourth order in s/c for

k4/X'e'= P4/(1 —P')

and is most pronounced at right angles to the
direction of the incident particles.

The evaluation of the second approximation
(34) and a closer discussion of the matrix
element (k

~
U~ko) will be given in a later paper.
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It is shown here that if all degrees of freedom in a vapor are nearly classical and if there is no
association, the vapor pressure of the lighter isotope is always higher. If only the external degrees
of freedom are nearly classical and the internal ones are in the lowest state, the coupling of
purely harmonic vibrations has either no influence or tends probably to a further increase of
the excess vapor pressure of, the light isotope. Anharmonicity and the change in the van der
Waals forces probably account for those cases in which the heavier isotope has the higher
vapor pressure.

I. INTRQDUGTIoN

HE difference in the physical and chemical
equilibrium conditions for isotopes is a pure

quantum phenomenon. ' Classical theory would
give no effects of the difference in mass. This
latter only affects the statistical distribution of
momenta. ' In classical theory, however, the
integration over the momenta is independent of
the integration over the coordinates and in-
Huences the different states (e.g. , vapor and.

liquid) in the same manner. Therefore it does
not modify the equilibrium between two states.
This suggests' a systematic investigation of the
isotope effect in different temperature regions.

II. Low TEMPERATUREs

At low temperatures the differences are most
conspicuous. The adequate method which is in

~ We exclude cases in which gravity or centrifugal forces
are of importance.

~The very small differences in potential energies for
different isotopes shall be neglected except at the end of
the paper,

general use starts from the condition at absolute
zero. The greatest effect in this region is due to
the difference in zero point energy of the motion
of the molecule as a whole in the field of its
neighbors. Since the operator of the kinetic
energy is positive definite the lowest quantum
level of the lighter isotope will always be higher
than that of the heavier isotope. As a conse-
quence the lighter molecule will have a smaller
heat of evaporation and therefore a greater
vapor pressure. ' The difference of entropy of
translation and possibly rotation in the vapor
state works in the opposite direction but has
less importance in the low temperature region.
All this has frequently been the subject of
dIscuss1ons.

III. HIGH TEMPERATURES

As mentioned before, there are no differences
between isotopes at temperatures so high that

s A possible exception might occur if one has association
in the vapor phase connected with a very high intermolecu-
lar vibrational frequency.


