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A general treatment of the collision of an excited atom with an unexcited one shows that the
three principal methods of calculating collision broadening are all justified as approximations
to the complete treatment. When the fine structure of the lines is taken into account it follows
that all members of a Russell-Saunders multiplet are broadened to the same extent. The
calculated broadening turns out to be Av=(3)}NS(J, J')/#(2J41)(2J'+1), which is less by
a factor of five than that observed in the work of Hughes and Lloyd.

HE broadening of spectral lines which ac-
companies an increase in the pressure of the
absorbing or emitting gas has been the subject of
a large number of theoretical investigations from
various points of view.! Usually the principal
attention has been given to the broadening
produced by a foreign gas, and most of the re-
liable experimental work has been of this kind.
The broadening in a homogeneous gas, known as
resonance broadening, is very much greater, but
its study has been accompanied with such tech-
nical difficulties that until recently very few
dependable measurements have been made on it.
The recent work of Hughes and Lloyd,? however,
provides experimental data of some reliability,
and it is therefore of interest to examine again
the theoretical predictions as to the absolute
magnitude of the effect, and as to the relative
broadening of the components of a multiplet.
The various theoretical points of view from
which this subject has been treated show con-
siderable diversity. Some of them have been
definitely shown to be wrong, but there remain
several others which have sometimes been
thought to be distinct, even though they lead to
approximately the same results. Furthermore, in
all of the work which has been published there
appears to be no examination of the relative
broadening of the different members of a multi-
plet, although it might be surmised on general
grounds that all such lines would be broadened
to the same extent. It is proposed to show here,
first, that the various methods of approach which

! For summaries of the theoretical work see: Margenau
and Watson, Rev. Mod. Phys. 8, 22 (1936); V. Weisskopf,
Physik. Zeits. 34, 1 (1933).

2 Hughes and Lloyd, Phys. Rev. 52, 1215 (1937).

have been used on this problem are merely differ-
ent approximations to the complete treatment;
and, second, that the broadening can be expressed
in such a way as to show that the different
members of a Russell-Saunders multiplet are
broadened to the same extent.

The theoretical points of view from which this
problem has been treated may be classified
under three headings as follows:

1. Furssow and Wlassow® have emphasized the
fact that when an excited atom passes by an un-
excited atom of the same kind there is a finite
probability that the energy of excitation will be
transferred from the first to the second atom,
without the intervention of radiation. This re-
sults in a reduction of the lifetime of the excited
atom and a corresponding broadening of the
line radiation emitted. Although this statement
is in terms of an emission line, the conclusion
applies to an absorption line as well.

2. A second method of treatment is closely
related to the Lorentz theory of collision broad-
ening in which the phase of a classical oscillator is
regarded as being changed in a random way dur-
ing a collision. From this point of view the prob-
lem is to compute the amount of the change of
phase in terms of the forces of interaction and
the closeness of approach. The Fourier analysis
of this interrupted oscillation gives the familiar
dispersion curve. In the quantum mechanical
treatment the Fourier analysis is made of exp
(¢/h)(E'—E)t, where E’ is the energy of the
excited atom and E is the energy of the ground
state. The quantity E’ is considered to vary

3 Furssow and Wlassow, Physik. Zeits. der Sowjetunion

10,379 (1936). The criticism of Weisskopf’s work contained
in this paper does not appear to be justified.
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during the collision, by an amount which can be
computed, and so to produce a change in phaes.
This method has been extensively used by Weiss-
kopf and by Lenz.4

3. A third method of treatment is to consider
the motion of the atomic nuclei under the at-
tractive or repulsive force due to the electronic
interaction between the two atoms. If the sta-
tionary states of this motion are found, and if it is
assumed that the electronic motion is essentially
unchanged during the collision, it is possible to
compute the probability of transition, from the
excited to the ground state, with the emission of
radiation and a change in the kinetic energy of
the atoms. This method shows much more clearly
than the others that the conservation of energy is
made possible through the change in the kinetic
energy of the atomic motion ; and Weisskopf has
shown that this treatment leads, at least approx-
imately, to the same result as the method of
Fourier analysis. This method has recently been
treated extensively by Jablonski.’ ’

Since all three of these methods lead to roughly
the same result, it is easy to suppose that they
are really equivalent. On the other hand, and
especially since the result seems to be consider-
ably smaller than required by experiment, it
might be supposed that these are three effects
which, in the first approximation, are indepen-
dent and must therefore be added together. A
complete analysis, however, shows that they are
merely three approximations to the exact quan-
tum mechanical treatment.

GENERAL THEORY OoF A COLLISION

The theory as usually treated, and as treated
here, applies to the case of low pressures only.
Pressures are low when the mean free time be-
tween collisions is considerably greater than the
duration of a collision. Under these circumstances
it is sufficient to treat simple collisions between
two atoms only, and to add together the effects
of the different collisions. This has as a conse-
quence that the broadening will be proportional
to the number of molecules per unit volume.

Consider then two identical atoms which for
simplicity will be treated as having only two

+W. Lenz, Zeits. f. Physik 80, 422 (1932).
5 A. Jablonski, Acta Physica Polonica 6, 371 (1937).
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electronic states. They will be capable of occupy-
ing a continuum of states of translational motion,
but apart from the translational states there
will be three important electronic states.

Ua=u0(1)ul(2)
Up=1uo(2)us(1) (1)
Dr0= uo(l)uo(Z)

The state u, is the ground state and the state #;
the excited state. The arguments of these func-
tions are the electronic coordinates of the first
and second atoms respectively. The states U,
and U, differ with respect to the number of the
atom which is excited, but they have the same
energy.

To treat the problem of the emission of radia-
tion, the state of the radiation field must also be
taken into account. It may be assumed that
when the atomic state is U, or U, there is no
radiation in the field, and when the atomic state
is U, there is one quantum of energy khv. Let the
function describing the field in the first case be
Fy and in the second case be F,. Then the three
states of importance are

¢a= Uaih(R, t)Fo exp [— (’I,/ﬁ)Elt]
Yo=Uwi(R, ) Foexp [—(i/h)Ert] (2)
Yo=Uwo(R, ) Fy exp [ — (i/h) (Eo+hv){].

The function »(R, t) is a function of the distance
between the atomic nuclei and the time; v,(R, £)
and v¢(R, t) represent the nuclear motion before
and after the collision, respectively. For certain
methods of treatment these functions will repre-
sent wave packets and for others they will be
functions corresponding to a precise value of the
translational energy. They could, of course, be
written as functions of the coordinates of the
two atoms separately, but a function of the rela-
tive coordinate R gives all of the generality which
is of importance.

The Hamiltonian function for this system will
contain terms which represent the atomic ener-
gies, the translational energy, and the energy of
the radiation field. In addition there will be a
term V(R), which represents the dipole interac-
tion energy between the two atoms and is a
function of their separation R, and another term
S which represents the interaction between the
electrons and the radiation field.
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Let the general solution of the problem be

W =ay+ 0+, 3)

where @, b, and c are functions of the time. Substi-
tution of this form into the Schrédinger equation
leads to

d=—(i/h)(a| V|b)b
= (i/m)(a| S|c)c exp [(6/B) (Ex—Eo—hv)t]
b=—(i/h)(b]| V]a)a
—(@/m) (0| S|c)c exp [(¢/h) (Er— Eo—hv)t] (4).
¢=—(i/n)(c| S|a)a exp [ — (i/h) (Ex— Eo—hv)t]
—(¢/1)(c| S|0)b exp [ — (4/1) (E1— Eo—hv)t].

For the cases of interest the matrix elements of V
are of more importance than those of S. This cor-
responds to the fact that the broadening due to
pressure is greater than the natural width of the
lines. Hence, to find an approximate solution,
neglect at first the matrix elements of S alto-
gether. The remaining two equations can then be
solved for a and b. The solutionis

a=Aexp [—(/k) S (a| V|b)dt

+Bexp [(i/5) S (a| V]b)dt] (4a)
b=Aexp[—@G/k) S (a| V|b)dt

—Bexp [(/h) S (a| V]b)dt],

where |4 |24 |B|?=41.

According to the treatment given by Furssow
-and Wlassow the motion of the atoms is fixed
and no account is taken of changes in it. The
initial conditions are made such that at the initial
time the atom 1 is excited and atom 2 is not.
This condition requires as initial values, ¢=0,
b=1, so the above solutions become

a= —1sin (1/ﬁ)f!(a[ Vb)dt,
t 0 . (5)
b=cos (l/k)f (a| V|b)dt.

Since the nuclear motion is to be described
classically, the functions representing it will con-
sist of a compact wave packet for each atom,and
the distance between the atoms will have a
precise value which is a function of the time. The
matrix elements will be functions of R and will
have the form

@|V[))=a/Ro=a/(p+e2),,  (6)
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where « is a constant which depends upon the
electronic functions, p is the distance of closest
approach, and v is the relative velocity of the
atoms. The zero of time is taken at the time of
closest approach. This expression can be inte-
grated so that

a=—usin {(at/hp*)/(p*/v*+ )}
- (ato/ﬁpzv)/<p2/‘v2+t02)%} ’ (7)
= cos {(at/lip)/(p*/v*+1)}
— (ado/Bp™) [ (H°/v*+10) ).

Most of the change in these functions occurs
near the time (=0, and the whole change in
phase between {= — 0 and t=+4 » is 2a/kp.
Hence the effect of a collision at the velocity v
and the distance of closest approach p is to make
the coefficients

a=—1sin 2a/lip%), b= cos 2a/kp¥). (8)

This represents a probability of sin? (2a/%p2)
that the energy of excitation has been transferred
to atom 2 during the collision. Since the collisions
occur frequently during the lifetime of an excited
state the coefficient b may be approximated by a
decreasing exponential, e~#¢, which, substituted
into the equation for ¢, gives the familiar reso-
nance curve for the probability of radiation.
 On the other hand one may insert the general
solution, Eq. (4a), into the-equation for ¢. This
gives ¢ as a function of » by a Fourier analysis
of exp {(¢/h) S (a|V|b)dt— (i/h)(E1— Eo)t}. The
evaluation of this integral is just the method of
Weisskopf and Lenz. Instead of treating the
exact analysis, it is possible to consider the
phase as changing abruptly by the amount
(2a/%p™) at each collision.

In neither of these approximations is the
mechanism of the conservation of energy obvious,
because of the assumption of constraints which
cause the atoms to move past each other in
straight lines at uniform velocity. To give a
treatment in which this motion is allowed to
change under the influence of the atomic inter-
action it is necessary to make the functions
v1(R, £) and vo(R, t) characteristic of the energy
of translation. When this is done the matrix
elements (a| V'|b) are constants whose magnitude
depends upon the translational energy but which
vanish as the relative duration of the collision
decreases. When the corresponding values for «
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and b are inserted in the equation for ¢, the inte-
gral shows a secular increase of ¢ only when
(E1+ T1—E0 —To) =hv. T1 and To are the kinetic
energies before and after the impact respectively.
The square of the absolute value of ¢ will be
proportional to |(c|S|a)|? which will depend
" upon » through the difference (T'1— T). This, as
shown by Weisskopf, gives approximately the
same distribution of radiation as the previous
methods.

The. conclusion is that all three methods are
essentially equivalent, and that one is to be pre-
ferred over another only if the computation seems
simpler or if it can be shown that the approxima-
tion to the exact solution is better. Thus far no
outstanding superiority. of one method over the
others seems to have been demonstrated, but for
the following treatment of multiplets the point
of view of Furssow and Wlassow has been
adopted.

BROADENING OF THE MEMBERS OF A MULTIPLET

To take into account the multiplet structure
consider the ground state to have the inner
quantum number J and the excited state to have
the inner quantum number J’. When the atoms
are held at a fixed distance apart there are
2(2J+41)(2J"+1) stationary states of the dipole
interaction energy. Each of these states repre-
sents a definite value of the angular momentum
about the line connecting the atoms. Positive
and negative values of this angular momentum
have the same value of the energy. Half of the
states are symmetric and half of them are anti-
symmetric in the two atoms, and the correspond-
ing symmetric and antisymmetric states have
energies of equal magnitude but of opposite
sign. Furthermore, in each class of states the sum
of the interaction energies is zero.

Let the 2(2J+41)(2J'+41) states be designated
as follows

Y, M, M')=u(, J', M'; 1)
, Xula, J, M; 2)v1(R, t)e Gl Er
Y(g, M, M)=u(, J', M'; 2)
Xu(e, J, M; 1)v:(R, fe-GiEr, (9)

The quantum numbers o', J’, M’ represent the
excited state and «, J, M, the ground state. The
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designations p and g refer respectively to states in
which the excitation energy is in atom 1 and to
those in which it is in atom 2. These are not the
symmetric and antisymmetric states which are
characteristic of the interaction energy, but are
selected to conform to the treatment of Furssow
and Wlassow. If the interaction with the radia-
tion field is neglected, as above, the equations to
be solved are

a’(py Mv M,)= —(i/k) Z'

X(p, M, M'| V|q, u, u)a(g, u, u)

(10)
a(q; M7 M= —(i/ﬁ) Z’

X(q, M, M'|V|p, u, u)a(p, u, u').

If the assumed motion of the atoms is such that
the nuclei move past each other in straight lines
and that the angular momentum around the line
connecting the atoms remains constant, the
equations.can be solved. This involves the appli-
cation to each atom of a torque as well as a force.
To find the solution let

a(p, M, M) =A(p, M, M")ei®,

. (11)
alg, M, M')=A(q, M, M")ei*®.

Substitution into Egs. (10) gives a set of simul-
taneous equations for the 4’s whose coefficients
contain the . The values of @ which permit the
solution of the equations are just (¢/%) times the
characteristic values of the interaction energy.
Let these be «;/R3. The solution will then have
the form

a(?: Mr M')=ZA1(Py M! M,)
Xexp [(ia;/#) S'dt/R?].

In accord with the method of Furssow and
Wlassow all of the a(q, M, M') must be set equal
to zero at the initial time. After a single collision

a(p, M, M") =24, cos (2a;/hp*v),

(12)

(13)
alg, M, M")=13 4, sin (Zq;/hp2v),

where the sum is taken over only those values of j
which represent either the symmetric or the
antisymmetric states. This solution assumes a
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definite constant orientation of the angular
momentum vectors with reference to the line
connecting the atoms and this orientation deter-
mines the relative values of the coefficients 4 ;. To
include all possibilities it is necessary to average
over all sets of initial and final states. This may
be done by considering that there are (2J-41)
(2J'4+1) states in which the system might be
before collision, and the same number into which
it might be thrown by the collision. The transi-
tion probability to many of these is zero, but the
sum of the transition probabilities must be di-
vided by the total number of possibilities. This
leads to a resultant transition probability of

P=(1/2J+1)*QJ +1)*) X sin® 2ey/lip*v), (14)

that the excitation energy has been transferred
to the second atom. Collisions closer than those
for which the probability becomes equal to
unity can be regarded as collisions in the sense
of the Lorentz. To determine the value of this
distance, po, the sine may be replaced by its ar-
gument. Then

4

2

12pyt (2T +1)2(20" +1)2 5
8S(J, J')

B3RPy (2T +1)2(2T 1)

2

@

(15)

where S(J, J') is the strength of the line as
defined by Condon and Shortly.® The half-width
at half-maximum due to collisions of this kind
is then

M1=N7TP027)

=(8/3)xS(J, J)/R(2T+1)(2T'+1) (16)

in angular units.

For the more distant collisions the contribu-
tions of a large number of impacts must be added
together to get the probable rate of loss of energy.
Let this rate be 2u,.

6 Condon and Shortley, The Theory of Atomic Specira,
p. 98.
The fact that Ze;?=3%5% can be derived by writing down

7
the expression for the matrix elements of the dipole inter-
action energy and summing the squares of the absolute
values. This gives the diagonal sum of the matrix of the
square of this energy.

W. V. HOUSTON

8NuS (T, J)2r e dp

“2=3ﬁ2v2(2f+1)2(2J'+1)2fp0 e
NG 2xS(J, )N

=(§) BRI+ 1)

(17)

The rate at which the probability amplitude de-
creases is just half of this so that the total half-
width at half-maximum in angular measure is

6 S(J, T
p=p1tps= N. (18)
r2J+1)(2J'41)

From the definition of S(J, J’) it follows that
this width is the same for all members of a
Russell-Saunders multiplet.

COMPARISON WITH EXPERIMENT

The work of Hughes and Lloyd? showed the
equality of the broadening of the two members of
the first doublet of the principal series of potas-
sium, and also showed the proportionality of the
width with N. The measurement of the width
showed that

Avops = 16 X10—8Ncm™1.
For this doublet the line strength is’
S(3, 3)=e*h/4n*my=1.09 X 10734,

This leads to a theoretical half-width at half-
maximum of

Avea1e=06iNe2/167mmy=3.16 X108 Ncm™.

A possible explanation of this discrepancy of
a factor of five lies in the uncertainty with respect
to the vapor pressure of potassium as a function
of temperature. The value used by Lloyd was
extrapolated by means of a formula from a region
where there was already considerable divergence
among different observations. It is hard to believe
that the theoretical approximations used could
account for as much as a factor of two.

It is an honor and a privilege to be permitted
at this time to pay my respects publicly to
Professor Sommerfeld on the occasion of his
seventieth birthday. His influence on physics
and physicists will long endure.

7 This assumes the f value of the first doublet to be unity
which is correct to about one percent.



