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Lattice Vibrations in Polar Crystals
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This paper investigates the free vibrations of a polar crystal of the sodium chloride type.
The main purpose is the calculation of the Coulomb force, which has been done by an extension
of the Madelung method. For numerical evaluation, a short range repulsion is assumed, and
the van der Waals forces are neglected. The results are: For long waves'one finds in the acous-
tical branch three waves whose frequencies are inversely proportional to the wave-length, in
agreement with Born. The optical branch has two transverse waves (Reststrahlen) with a
Coulomb force of 4~/3 times the polarization, as Born.has calculated, and one longitudinal
one with a Coulomb force of —8~/3 times the polarization. For short waves the vibrations
are in general not exactly transverse or longitudinal, but even in the optical branch there
remain separate modes of vibration with different frequencies for a given wave-length. In
addition, the. neutral simple cubic lattice is considered. It is shown that the free vibrations are
characterized by D =0. The inhuence of the shape of the crystal is discussed.

I. INTRGDUcTIoN

HE problem of vibrations in crystals is im-
portant for many of their properties; for

example, the specific heat and the optical be-
havior. Accordingly, it has been treated by many
authors. A group of papers investigates the
distribution of the frequencies under the simpli-
fying assumption that each particle is bound only
to its neighbors. This treatment was originated
by Born and v. Karman, ' a simplified procedure
introduced by Debye, ' and much new informa-
tion gained in recent papers by Blackman. '
On the other hand, electric forces play a con-
siderable role in many cases, and their range is
so great that the above assumption is not a
good approximation. The problem of calculating
'the electric force which is exerted on one particle
by all the others during oscillation was attacked
by Born4 for long transverse waves in polar
cubic crystals. His result was in agreement with
the formula for the so-called Lorentz-Lorenz
force, which expresses the interaction of the
polarized rnolecules in the quasi-statical case.
Born used his value for all possible modes of

' M. Born and Th. v. Karman, Physik. Zeits. 13, 297
(1912).

2 P. Debye, Ann. d. Physik 39, 789 (1912).
3 M. Blackman, Zeits. f. Physik 86, 421 (1933); Proc.

Roy. Soc. A148, 384 (1935); Proc. Roy. Soc. A159, 416
(1937).

4 M. Born, Ann. d. Physik 61, 87 (1920).

vibration in these crystals. Since 1912 Ewald' has
been working on a method to calculate the
propagation of electromagnetic waves in crystals.
His interest lies mainly in the dispersion of light
and propagation of x-rays, but his method is
applicable also to the present problem. He
himself has made calculations only on transverse
waves. Thompson, ' however, has developed the
general formula for the propagation of arbitrary
vibrations. Broch, ' has recently started an in-
vestigation of the proper vibrations of a one-
dimensional polar lattice.

This paper is intended to answer the following
questions: First of all, no actual calculation of
the electric force has been made for waves com-
parable with the lattice distance. According to
the preceding theories, such waves are of prime
importance to the specific heat. Secondly, Born's
results seem to conHict with the direct calcula-
tion made by Herzfeld for another purpose.
(See Section V.) Thirdly, the preceding methods
leave some questions of principle in doubt.
While it seems physically clear that the proper-
ties of the crystal (at least, at temperatures
somewhat removed from the absolute zero)
should be independent of the form, the electro-

5 P. P. Ewald, Ann. d. Physik 49, 1, 117 (1916).
M. Born and J. H. C. Thompson, Proc. Roy. Soc.

A147, 594 (1934); J. H. C. Thompson, Proc. Roy. Soc.
A149, 487 (1935).' E. Broch, Proc. Camb. Phil. Soc. 33, 485 (1937).
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static forces converge so badly that it does not
seem obvious that the physical result is recon-
cilable with the assumption of electrostatic
forces. It is true that Born' has given reasons for
this independence of the form, but a more
detailed investigation seemed advisable.

II. TIIE FORCES AND FREQUENCIES IN A

GENERAL CRYsTAL

To calculate the frequencies of a vibrating
crystal, one assumes that the crystal is in a
definite state of vibration, and calculates the
force on one constituent particle due to all the
others, under the assumption that the distortion
from the equilibrium position is small. This
restoring force will be linear in the displacements
of the constituent particles (the assumption of
small displacements implying that the vibrations
will be harmonic), so that one has the usual
secular equation for harmonic motion with many
degrees of freedom to solve for the frequencies
pertaining to the previously fixed state of
vibration.

The first question then, is the determination
of the state of vibration of the crystal; that is,
what function of its position in the crystal is the
displacement of a particle. This will be, as in the
case of an elastic continuum, largely inHuenced

by the boundary conditions, which in turn
depend upon the shape of the crystal, among
other things. One knows, however, from the
work of Weyl, -that the inHuence of the boundary
conditions on the higher frequencies is small if
the crystal is large, provided the forces have a
short range. This question will not be further
investigated here; what is more interesting is the
question whether, in a polar lattice, the very
slow decrease of the Coulomb force with in-
creasing separation will cause particles at great
distances to contribute noticeably to the force
on a given particle of the crystal, and thus
cause the shape of the crystal to inHuence the
frequency spectrum. In accordance with the
above, the boundary conditions to be imposed
here are to be those which make the calculations
as simple as possible. They will be those charac-
terizing the "periodic lattice" introduced by

s For this, as indeed for almost all the notation used
in this paper, see the article by M. Born and M. Goppert-
Mayer, Handbuch der Physik XXIV/2, p. 623.

Born. ' The assumption here is that one has a
crystal block, whose sides are parallel to those
of the unit cell, of dimensions G~XG2XG3 cells,
which one builds up to an infinite lattice by
adding other blocks of the same shape and size.
The boundary conditions to be imposed are that
the displacements of two particles at corre-
sponding points in any two blocks are the same.
It will be shown later that the inHuence of the
other blocks on the forces, and hence the fre-
quencies, is really not great.

One should assume standing waves in the
lattice (compatible with the boundary condi-
tions), but since the force at a lattice point is
linear in the displacements of the particles
causing it, provided that the latter are small,
one can, instead, write the standing wave as a
linear combination of progressive waves, work
with a progressive wave, and take a linear
combination of the forces at the end. In the
interest of simplicity of calculation, this will
be done.

Let us consider first a general lattice, with a
unit cell specified by the three vectors a&, a2, a3.
The cells are distinguished by the index / which
is an abbreviation for the triple of integers
l~, l2, l~, the particles in a cell are distinguished
by the index k. The equilibrium position of the
kth particle in the tth cell is given by r(k; I)
=l&a&+Imam+i&as+r(k; 0); r(k; 0) is the equi-
librium position of the kth particle in the origin
cell. The displacement of the l, kth particle at
any time is assumed to be

u(k; I) =U(k) exp I icut+~(s r(k; I)) I, (l)

where U(k) is a vector giving the characteristic
amplitude of the particle of type k. The direction
of the vector s is the direction of propagation of
the wave, and its magnitude is 2x divided by
the wave-length.

The assumption of a periodic lattice made
above now yields the condition that

s = 7r(n&/G&) b &+ (e2/G&) b2+ (e3/G, )b, .

The b's are the lattice vectors inverse to the
a's and n~, n~, and n3 are integers, —G;(n;~& G;.

If K(k; I) is the force on the I, kth particle,
the equations of motion are

mph''u(k; l)/Bt'=K(k; l).
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If the potential energy of the interaction be-
tween two particles of types k and k', whose
difference in position is r, is given by @i), (~1 ~),
then

Since in a polar lattice the interaction between
two particles (ions) is the sum of their Coulomb
interaction and other terms, (van der Waals and
repulsive) and since only the Coulomb part
presents any dif6culty in evaluation, one breaks
the force K(k; l) into the sum of two terms

ii)+ (k. l) (k, . l,) [eu(F(k)+G(k))+R(k)]exp I
—i&et+i(s. r(k;l)) }

The symbol S indicates the summation over the
three indices abbreviated by /'; the prime
attached indicates that the l, kth particle is to
be omitted. r(kk'; l —l') is defined as r(k; l)
—r(k', l').

Since the displacements are small, this can be
developed in a Taylor series, in which only
terms to the first degree in the displacement are
preserved:

&,(k; l) = —S' P [(8/Bx) p» ( ~

r
~ )]r=r(»'; )-)')

—P S' P [(8'/BxBy) t' »i'(Ir~)]&=&(»' )-)')
y gl Pl

where F(k) +G(k) represents (except for the
phase factor) the electric field of the contribution
of the Coulomb interaction to the force, and
R(k) the part of the force due to all other inter-
actions. F(k) is that term in the field due to the
displacements of other particles; G(k) that due
to the displacement of the particle l, k. If the
Coulomb interaction is denoted by Pk), (~r~)
= (eiei )/ ~

r
~

and the coefficients (kk'; xy) a,nd
[kk'; xy] defined by

(kk'; xy) = S')t,„(kk'; l —l')

Xexp [—i(s r(kk'; l —l'))], (4)

X (u„(k; l) u„(k' P—)) [kk'; xy] = S' il', „(kk'; l —l'),

Here the first term represents the force on a
particle in the equilibrium lattice, which must
vanish. 1}I|}triting

q „(kk'; l —l') = [(82/»By) q&), i, (~ r~)]r=r(»'; i )')—
and substituting for u(k; l) its value from
Eq. (1), we obtain

X,(k; l) = exp }—inst+i(s r(k; l)) }

X I P S' P U„(k')q.„(kk', l —l')
y l' k'

Xexp [—i(s r(k', l'))]
—Q Ui (k) S' Q p i (kk' l —l') }.

The first term here represents the force on the
l, kth particle in its equilibrium position due to
the displacements of the other particles; the
second the force on the displaced l, kth particle
due to the undisplaced lattice of the other
particles. The possibility of breaking the force
into these two terms rests, of course, on the
assumption of small displacements. The second
term, in a cubic holohedry, is zero, as will be
shown later.

F (k) = (1/e&) P P (kk'; xy) U„(k'),

G,(k) = —(1/ep) P P [kk'. xy] U„(k).
y

One observes that [kk'; xy] is the value that
(kk'; xy) assumes when s=0, i.e. , for infinitely
long waves. (s.r(kk'; l —l')) is simply the phase
difference between the I, kth and l', kth particles.

If (kk'; xy), and [kk'; xy], are defined as the
corresponding quantities for the repulsive inter-
action, so that

R.(k) = Q Q I (kk', xy). U„(k')

—[kk'; xy]. U„(k) },

and substitutions in Eq. (2) are made for
u(k; l) and K(k; l), the equations of motion
assume the form:

m(o'U,k—(k) =P PI [(kk'; xy)+(kk', xy).5 Uy(k')

—[[kk', xy]+ [kk'. xy].]U„(k) }. (5)
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These form a set of 3k linear homogeneous equa-
tions in 3k unknowns; the condition that'the
determinant of the coefficients vanish gives the
usual secular equation for the frequencies.

The problem now is to calculate the coefficients
(kk'; xy) for a genera1 value of s. First,
P,„(kk'; l —l') may be written as

[(a'/BxBy))t i): ( ~
r —r(k', l')

~ )]r-r(); »,

so that

(kk'; xy) =

S'[(8'/axay)&~i (~ r —r(k';l') ~)]r-r(s; ()
)I

Xexp [—i(s r(kk'; l —l'))]
= [S' (a'/axay) exp [—i(s r(kk'; l—l'))]

l'

Xf)i (~ r —r(k'; l') ~)]r=r(a; »,

or if the convergence of the series is sufficiently
good,

(kk', xy) = [(a'/axay) S' exp [—i(s r(kk', l —l'))]
l'

X)tiq. (~ r —r(k', l') ~)]r-r(a; »

While this may seem a slightly dubious procedure
in the case of the poorly convergent Coulomb
interaction, we will proceed with it, and show
that it is justified by the results.

Putting in (e),e& )/ ~

r
~

for (t ii ( )
r

~ ), one may
write

F.(k) exp [ i(et+i(s r(k—; l))]

—exp ( idiot) P—Pe~ U„(k') [(a'/axay) 9'
y k~ l'

Xexp [i(s r(k', l'))](~ r —r(k', l') ~)-']r-r(s; »

or in a somewhat different form,

[—a/axPa/ay S' ge, .V„(k')

Xexp I
—i(et+i(s r(k', l')) I

X(~ r —r(k'; l') ~) '].=.(). ; ».

The interpretation of this expression is the
following. The sum over l' and k' gives the
electric potential at an arbitrary point r due to a
set of charges eq. U'„(k') exp [ i a&t+ i(s r(k—'; l') )]
at the lattice points. DiHerentiation with respect

to y gives the potential of a set of dipoles at the
lattice points; the moments of the dipoles are in
the y direction, and the magnitude of the mo-
ment of the l', k'th dipole is

e), U„(k') exp [—i(et+i(s r(k'; l'))].
The summation over y adds in the potentials of
corresponding sets of dipoles in the x and
s directions, the differentiation with respect to x
gives the x component of the field, and the
evaluation gives the field at the l, kth lattice
point. This expression then, as is physically
obvious, also could be obtained by replacing each
displaced charge in the lattice by an undisplaced
charge plus a dipole plus a quadrupole plus and
so on. Neglecting the higher poles, and observing
that the force due to the undisplaced charges is
zero, we obtain the above result for the field,
since the dipole put in the l', k'th position must
have a vector moment equal to the product of
the charge and the displacement, or

e~ U(k') exp [—is&t+i(s r(k'; l'))].
The coeKcient (kk'; xy) therefore, except for a
factor represents the field in the x direction due
to a polarization in the y direction of the simple
lattice k', whose magnitude varies periodically
in space.

The procedure to be followed to calculate the
Coulomb force may, then, be summarized as
follows: one sets at each point l' of the simple
lattice k' a charge exp [ i(s r(—kk'; l —l')) ], finds
the potential due to this, "auxiliary lattice" of
charges at an arbitrary point, differentiates
twice, with respect to x and to y, and evaluates
at the point l, k. The result multiplied by e&eI, is
the value of (kk'; xy), which is to be substituted
in Eq. (5). It must be noted that (kk'; xy) is
symmetric with respect to interchange of x and y,
from its definition. Furthermore, the following
relation holds:

(kk', xx)+(kk'; yy)+(kk'; zz) =0.

This, of course, is simply the Laplace equation,
as appears from the definition of the coefficients,
because one is calculating the exciting field; that
is, the field at the position of a dipole after the
removal of that dipole; and after the removal
of the dipole there is no charge at the lattice
point. Born writes instead on the right side
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—(4n.e)/6 because he considers a uniform com-
pensating charge extending over the crystal.
If the crystal is polarized and the charges are
displaced, this uniform compensating charge also
has to be displaced, and gives under certain
conditions a surface charge, which just com-
pensates the effect of the right side and is re-
sponsible for the difference of force between
transverse and longitudinal waves of great wave-
length.

We are using the static potential for the
electric field, neglecting any retardation. It is
obvious that this is permissible if the wave-
length of the particle wave is short compared
with the wave-length of the light wave with the
same frequency, that is, if co/c«~s~. This is,
for a polar ]attice, always fulfilled for the
acoustical branch and the short waves of the
optical branch, but one might doubt its validity
for the long waves of the optical branch. How-
ever, the direct calculation of Ewald' gives for
the long transverse waves of'the optical branch
(Reststrahlen) the same result as the static
calculation, ' and therefore we feel justified in

applying it also to the long longitudinal ones.
It is appropriate to consider here the effect, of

the other blocks which have been added to the
crystal to make an infinite lattice. If the wave-
length is finite in a11 three coordinate directions,
the first nonvanishing moment of a block is one
of the fourth order, which is proportional to the
wave-length times the size of the block, cubed.
The field at a distance is therefore that of a
fifth-order pole, and the ratio of the effect of all
the' other blocks to the effect of the infinite
crystal will be of the order of magnitude of the
wave-length divided by the size of the block,
cubed. Now, in a macroscopic crystal the number
of vibrations with a wave-length comparable to
the size of the crystal is extremely small, and it is
precisely these vibrations which are strongly
influenced by the boundary conditions, even for
short-range interactions. Hence, the effect of the
other blocks is, for all practical purposes,
negligible.

' J. H. C. Thompson, reference 6, discusses the problem
of retardation in general according to the Ewald method
and finds for long waves one term in which it has to be
taken into account. But this term represents that wave
which in the infinite crystal compensates the primary
light wave.

III. PQLAR CUBIc CRYsTALs

The present calculation for polar lattices will

be concerned exclusively with the lattice of the
sodium chloride type. In order to discuss the
solutions of the secular equation, we must make
some assumption about the form of the short
range interaction. For simplicity we assume that
this interaction acts only between nearest
neighbors and that the potential energy of
interaction is of the form f(r). Letting (8'f/Br'), =
=4vre'c&/a' and (Bf/rBr), = =47re'c2/a' where a is
the distance between nearest neighbors, one can
immediately write down the coefficients of the
repulsive force. They are all zero with the
exception of (12; xx) and [12;xx] in which x
assumes the values x, y, and s:

(12;xx).= (47re'/a') [c,cos as

+co(cos Gsy+cos G$3)], (6)

[12;xx].= (4m-e'/a') (c)+c2) .

The lattice vectors a~, a2, and al are orthogonal
for the NaC1 lattice, and may be taken in the
directions of the three coordinate axes. Then for
this lattice s= (7r/a)(n~/G~, n2/G2, n&/G3). It will

be convenient to define a vector ~ by s = (2~/a) ~.
It will be much simpler not to divide the lattice
up into cells, but to consider it as comprised of
two simple lattices, that of the positive ions, and
that of the negative. Then k assumes only two
values, of which 1 will be taken to refer to the
positive ions, and 2 to the negative ions. Since
every positive ion is surrounded by positive ions
in precisely the same way that every negative
ion is surrounded by negative ions, (11;xy)
= (22; xy) . Similarly (12;xy) must be = (21;xy) .

Let us consider the range of possible values
of ~. Since, as stated in Section II,

~
e,

~

~& G;, and
r, =n;/2G;,

~
r;~ ~&—',. The discussion, however,

can be limited to positive values of all three
components of ~ since changing the sign of one
of them changes no physical feature of the wave.
Furthermore, if r&, r&, r3 are replaced by -,'—r&,

7 2 g r3 respectively, one has the same wave
as before, since this is equivalent to replacing
U(2) by its negative. One will obtain the same
frequencies, and the same relation between the
amplitudes except for this change in sign.
Finally, any permutation. of r&, r2, r3. gives again
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a wave with the same frequencies and amplitude
ratios. "This does not appear from the form of
the coefficients for the Coulomb force given
below, but calculation of their values shows it to
be true, as it must be. Thus one can restrict
oneself to values of z given by 0 & r & &-'„0& r2 & 4,
0& r3& 4.

One of the si.mple lattices, the lattice of posi-
tive ions, for example, in this crystal forms a
face-centered cubic array. The "auxiliary lattice"
will be for simplicity considered to be simple
cubic. The points are identified only by the
values of /' and the charge at the point l' is
exp [—2iri(~ 1—I')]f(li'+l2'+l~') where f(n) =0
if n is odd, and 1 if n is even (obviously f(n+2)
=f(n)), and I' is a vector defined as (li', l2', l3').
A point of this lattice where the charge is zero is
a point of the lattice of negative ions; one where
the charge is different from zero is a point of
the lattice of positive ions. Then to find (11;xy)
or (21; xy) by the procedure stated above, the
calculation is exactly the same up to the final
evaluation at the point /. This is to be made at a
point for which the charge of the auxiliary lattice
is not zero (ii+)2+33 is even) to get (11;xy); at
a point for which the charge is zero (li+l2+l~
odd) to get (21; xy).

The potential of the auxiliary lattice will be
found here by an extension of the Madelung
method. "The simple cubic lattice is broken up
into lines and planes of points in the usual
manner of this method. The lines are taken
parallel to the x axis and the planes normal to
the s axis. The lattice sums are divided into
three parts: (0) the sum over the line containing
the point l; (1) the sum over the other lines in
the same plane; and (2) the sum over the other
planes. 0, 1, and 2 will be used as indices to
distinguish the parts of the coefficients coming
from each of these three partial sums, so that

(kk'; xy) = (kk'; xy) o+ (kk'; xy) i+(kk'; xy) 2.

The separate evaluation of the three parts of
each coefficient follows.

0. The evaluation of (kk'; xy) 0 may be carried
out most easily by directly differentiating term

"This assumes that the G s are so large that there is a
value of n1/2G1 very close to every value of n2/2G2 and so
forth. The G s are ~10 for a macroscopic crystal."E.Madelung, Physik. Zeits. 19, 524 (1918).

by term the sum giving the potential due to the
points in the line containing the point /. If the
general point in the lattice be denoted by l,',
the points in this sum are those for which
li'=li+p, lm'=l~, and l3'=l3, where p is a non-
zero integer. Hence r(l —f') = (pa, 0,0). As a
sample, (1l. ; xx)o will be calculated explicitly;
only the results for the others will be given.
The charge at a point,

f(li'+lm'+l3') exp [—2iri(~ I—I')]
=f(l,+y+l~+ls) exp (2irir, p)

Since for (11;xx)0, ti+lm+la is to be taken as
even, this becomes f(p) exp (2xir, p). Further-
more

[&'/»'(I r —r(i') I)-'7 = «&

= [3(x(i—i'))' —(r(f —I'))'h/(r(f —I'))'=2/I ~a I' ~

Combining these, we obtain

(11;xx)o=e' P' f(li) exp (2irir y)( 2/~pa ~')

= (4e'/a') Q(f(p) cos 2,y)/p'
p=l

= (4e'/a') P (cos 2~r, (2 v))/(2 v)'
&=1

from the definition of f Similar. ly (11;yy) 0

=(11 «)o= —(2)(11' xx)o

(12; xx) 0 ———2 (12;yy) 0
———2 (12; ss) 0

= —(4e'/a') P(cos 27rr. (2i +1))/(2i +1)'.
v=1

All the other coefficients with the subscript zero
vanish.

1. One calculates first the potential at an
arbitrary point due to the line of charges
designated by 1' = (fi', I,+p, 4), (p fixed, NO)
proceeds with the differentiation and evaluation
at i, and then sums over all the lines (that is,
over p). If p=li' —li, then r(l —I') =(pa, pa, 0).
Again (11;xx) i will be evaluated for example.
If there be given, in a Cartesian coordinate
system (P, n, l ) a set of charges e„at the points

($„, 0, 0) and if the charges be periodic along
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(8'/BP) q ($, p) = —(o'/a') exp (2mir„p)

XQ(«+2 r.)'Ko(rr
I P I I «+2r. I)

+OQ

o(6 p) =(2/a') 2' Ze.Ko(2~lnl p/a')
n=—oo p

the axis with a period u, then the potential at By differentiation, we have
any point is given by

Xexp [2xin(g —Po)/a'] —(2/a') ln pleo, Xe p [ oh( +2 .)/a]{f(p)+(—1)"f(~+1)j.

where p'= P+vP and Ko is the Hankel function
of zero order. The summation over n is to omit
n=0, and that over p is over one complete
period of the charge distribution. In the present
case $„=pa,

e„=f(l, +p+lo+p+1«) exp [2~i(r,p+r„p)]
=f(p+p) exp [27ri(r,p+r„p)],

since again l, +to+1« is even. Thus since
r =ni/2Gi, the period a' = 2Gia, and in the
summation p runs from 0 to 2Gi —1. Substi-
tuting, we obtain

e (g, p) = (1/Gi a) exp (2vrir„p)
2G1-1

XE'Ko(~In I p/Gia) exp (ming/Gia) P f(p+u)
n y—0

Xexp [ ni(n—ni) p—/Gi] (1/G—ia) ln pge

The evaluation of this is to be made at the point
(P, q, {)=(0, pa, 0) so that

(11;xx) i ———(m'e'/ao) P' exp (2~ir „y)

Xg(«+2 r.)'Ko(~ I ~ I I
«+2r.

I )

x {f( )+(—1) f( +1)}

= —(2m'e'/ao) p cos 2n r„lip( 1)"&-
p=1 C

X («+2ro)'Ko(s. p I «+2r,
I ).

Proceeding in exactly the same way, one 6nds

(11;yy) i = (2iroeo/ao) g cos 2rrr„p
/l= 1

The last term is retained here because of the
possibility that 7, may be =0, in which case
Re~= Gi exp (2mir„p). Let us consider separately
the summation over p. This is equal to

{f(I)+exp L
—(~i/Gi) (n —ni)]f(v+1) }

G1—1

X p exp [—(2s-i/Gi) (n —ni) p].

This last sum is a geometrical series whose sum
is zero unless

X {P(—1)"&(«+2r.)'Ko"(7' I«+2r. I)

+L( —1)"*"/ '~'Gi]Z exp (4~ir*p) I,

(11 ss)i ———(2s'e'/a')P cos 2xr„p{g(—1)"&
1 Jj

x(l «+2r.
l

~/)p Ki(~ pl«+2r*l)

+[(—1)"*&/o-'p'Gi]Q exp (4oir.p) },

n =ni+ «Gi =Gi(«+2r. ),

a any integer or zero, and is equal to G& in the
latter case. If n1 ——0 or G1, zero or —i is not a
possible value for ~. Hence

oi(g, p) = (1/a) exp (2sir„p) 2 Ko(irpl «+2r I/a)

Xexp [iris'(«+2r )/a]{f(p)+exp (vri«) f(@+1)}
—(1/Gia) In pge, .

(11;xy)i= —(2x'e'/ao)p sin 2o.r„pp( —1)"&

p=l K

X(«+2r,) I
«+2r, lKi(apl «+2r, I),

(11;xs)i ——(11;ys)i ——0.

The coefficients (12; xy) i are of the same form as
the coeScients (11;xy) i, but each of the former
contains an additional factor of ( —1)" ' within
the summation sign ((—1)'" ' for the 1/y'
term).
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2. Here one proceeds in a fashion analogous
to that under (1). One calculates first the po-
tential of that one of the planes designated by
V=(li', l2', lq+ti), differentiates, evaluates, and
sums over ti. If p=ti' —ti and q=l2' —I2, then
r(t —I') =(pu, qu, pu). The same coordinate sys-
tem (P, rt, f) is chosen, and the potential of the
($, rt)-plane bearing a periodic distribution of
charges is written down:

~(~, ~, f) =(2 /"b') I
n, m=—ofay, g

X(exp ( —k~
l
f'l)/k ) exp [2xin($ —f„)/u']

Xexp [2~im(it rt, )/&—']
l f l 2—&„}.

Here e„, is the charge at ($„, t„r0) and

2 4x2((ir2/u&2) + (m2/P2))

The term with n =m =0 is to be omitted in the
summation, and p and q run over one complete
period. For the present calculation, $„=pu,
q„=pa, and

s„=f(4+p+4+q+&3+u)

Xexp [2'(",p+r„q+r.t)]=f(p+q+t)
Xexp [2rri (r,p+ r„q+ r.p)].

Since r, =ni/2Gi and 7 „=n~/2G2, u' = 2Giu,
b'=2G~c, and p runs from 0 to 2G» —1. , q from 0
to 2G2 —1. Substituting, and carrying out the
summation over p and q as in the case of the line,
one obtains

P(g, q, I ) = (m/2u) exp (2xir,p)
e, t=—cc

X(exp ( —g.&l fl/u)/g, &) exp [7ri&(s+2r )/u]

Xexp [xiq(t+2r„)/u][1+( —1)'+']

X If(t )+(—1)'f(t +I) } —(x/2GiGmu')
l
I'l P s, q,

where g, P = x2[(s+2r,)'+ (t+2r„)'].Here again,
if 7,=7.„=0 or -'„s=t= —2r, is to be omitted.
Differentiating, and observing that the quantity
in curled brackets is equal to (—1)"', we find

(8'/BP)iP(P, it, f) = —(m'/2u') exp (2rrir, ti)

XZ(-1)"[1+(-1) +'](-p (-g.
I I I/u)/g. )

X (s+2r,)' exp [re)(s+2r )/u]

Xexp [rrirt(t+2r„)/u].

The evaluation is to be made at the point
($, rt, f) = (0, 0, tiu), so that finally

(11;xx) 2
———(7r'e'/u') P cos 2xr,ug( —1)~'

p,=» e, t

X[1+(—1)'+'](exP ( g, itJ—)/g, &)(s+2r.) '.

The remaining coefficients are:

(11;yy) 2 = —(m'e'/u') P cos 2rr r,ti P ( 1)&—'
s, t

X[1+(—1)'+'](exP (—g„ti)/g, )(t+2 „)',

(11;ss) 2
——(ne'/u. ') P cos 2n. r,pg( —1)&'

s, t

X [1+(—1)'+'] exp (—g, ti) g. ,

(11;xy)2 ———(m'e'/u')P cos 2m. r,pg( 1)l"'—
e, t

xL1+(—1) +'](exp (—g. t )/g. )

X (s+2r.) (t+2r „),
(11; xs) 2

———(x2e'/u') Q sin 2rrr, pg ( 1)&'—
s, t

XL1+(—1)"]exP(—g it )(s+2").
(11;ys)2= —(ir s /u~)P sin 27rr, tig( 1)&'—

e, t

X [1+(—1)'+']exp (—g, ti) (t+2,).
Again, the coefficients (12; xy) q can be obtained
from the coefficients (11;xy)2 by multiplying
each by a factor ( —1)' ' inside the summation
sign.

IV. THE INFLUENcE oF PQLARIXIBILITY

The e8ect of the fact that the ions are not
really rigid charges, but are polarizible, is
important for all waves in the crystal. One
may write in general the result of the calculation
of the Coulomb force as

~'(1)= (4~si/u') (7'.(1)~-(1)+7'-(2) U-(2)),

F'(2) = (4 s /u') (7'-(2) U-(1)+7'-(1)&-(2)),

where the components of the vectors are now
numbered from 1 to 3 instead of being labeled
with x, y, and s, and where the appearance of a
Greek letter suffix indicates summation over that
suffix. The eBect of the polarizibility is that one
must replace the dipole moment due to the
displacement of the ion. e;U';(j), by e;U;(j)
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+P;(j), where P;(j) =a;F„(j), and a; is the
polarizibility of the ion of type j. Hence

(8; —(4irn&/a')y, (1))F (1)

+ (4m';/a') y;.(2)F.(2)

=(4 s/a')(v'-(1) U-(1)+v*-(2)U.(2)),

(4irni/c') y;.(2)F.(1)

+(8;.—(47rn2/c') y;.(1))F.(2)

= —(4ire/a') (y; (2) U (1)+y; (1)U (2)),

where (6, ) is the unit matrix.
Since for NaCl (4irni/a') = 0.111and (4m ~g/a')

=2.00," one can simplify by neglecting terms
containing ni. One has then, letting k = (4n.n~/a')

F'(1)+km'-(2) F-(2)
= (4~s/&') (v'-(1) U-(1)+&'-(2) U-(2)

(~'--kv'-(1)) F-(2)
= —(4~s/n') (7'-(2) U-(1)+7'-(1)U-(2).

These equations are to be solved for F,(1) and
F,(2); the result is the corrected Coulomb field

which is to be substituted in the equations of
motion.

V. THE CQULQMB FIELD FQR WAvEs LQNG

CQMPARED To THE CRYsTAL

In the particularly interesting case of long
waves, the components of ~ may be regarded as
small quantities, and the coeScients may be
expanded in terms of them about ~ =0. The
results give for the field (up to and including
terms linear in the components of ~)

Fi(1)= -(4~s/~') L-(6) (Ui(1) —Ui(2))

+(ri/2r')(~ U(1) —U(2)]

F2(1)= —(4me/a') L
—(;', ) (U2(1) —U2(2))

+(»/2r')(~ U(1) —U(2)3

F (1)= —(4 s/~')[( l)( U (1)—U (2))
—((ri'+ &2')/2r') (U~(1) —U~(2))

+(r3/2 r') I ri( Ui(1) —Ui(2) )

+ r2( U2(1) —U, (2)) I j
and F(2) = F(1).

"The values of n& and a2 are taken from K. Fajans
and G. Joos, Zeits. f. Physik 23, 1 (1924).

Special consideration given to the case ~=0
(infinitely long waves) shows that then all terms
in v-&, 72 and v3 in these equations are to be
dropped. One sees from these equations what the
value of G(k) must be. By its definition G(k)
may be obtained from F(k) by replacing U(k')
by U(k) in the expression for F(k) and then
letting ~ approach zero. For the present case,
then, G(1) = G(2) =0.

In the event that the wave-length is infinite,
one may put the average electric moment per
unit volume (e/2a')(U(1) —U(2)), equal to the
(uniform) polarization P. If the polarization is
in the x direction, F=(4ir/3)P; if it is in the
s direction, F= —(Sir/3)P. These two cases are
apparently physically identical; how then is one
to account for the difference in the result?

The reason for the difference, mathematically
at least, is apparent. One has summed a condi-
tionally convergent series in two different 'orders,

and should not be surprised at obtaining two
different results. It is pertinent to inquire as to
what the physical meaning of this difference is.
For the sake of the discussion of this meaning,
a third method of carrying out the summation
will be considered. If one calculates the field at
a point due to a cubic lattice of constant dipoles

by grouping together all those at a given distance
from the point, and then adding the results of
the groups, the field turns out to be zero.

It is apparent that the physical analog of the
conditional convergence of the series is the fact
that the shape of the crystal exerts a distinguish-

ing influence upon the field at a point in it, so
that the value of the field in a strictly infinite
crystal is quite undefined. For in the case of the
method of summation last mentioned, one adds
the contributions from the points within a
spherical shell and then adds shell upon shell,
so that the final result is the summation over a
very large sphere. In the Madelung method,
one adds together the contributions of planes,
so that here the final result is the summation
over a slab which is infinite in two directions
and large in the third. The p'olarization is, for
this method, either normal to or along the
favored direction. One has, then, for a sphere
the field F=O; for a slab with the polarization
normal I = —('Sir/3) P; for a slab with the
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polarization parallel F= (4~/3) P. Let us compare
these results with those of continuum theory.

In the continuum theory one calculates (for
homogeneous polarization) the exciting field as
due to three contributions: the influence of the
true external charges, which gives the electric
displacement D; the influence of the induced
charges on the surface of a spherical cavity
surrounding the point at which the field is to
be calculated, which gives the Lorentz-Lorenz
force (4~/3)P; and the influence of the surface
charges on the outer surface of the dielectric.
For a sphere, the latter gives —(4m./3) P.
Therefore the exciting field in the center of a
sphere is D+(4m/3)P —(47r/3)P=D. In our
calculations with no external charges D=O. If
the dielectric is a slab with the field normal,
the charges on the faces of the slab give —4xP,
reducing D to E= D —4wP. The exciting field
is D+(4~/3)P —4vrP=D —(Sm/3)P. In our case
(D=0) we have in fact found —(8~/3)P. If
the dielectric is a slab with the field parallel,
the external surface charges are induced at the
ends of the slab, which are so remote, in com-
parison to their size that they do not contribute
appreciably. Therefore D+(4~/3')P is the ex-
citing field. For this case we calculate by direct
summation (4x /3) P."
VI. WAvEs LQNG CoMPARED To THE LATTIcE

DISTANCE BUT SHORT COMPARED TO

THE SIZE OF THE CRYSTAL

The importance of the preceding discussion
for our purpose lies in the fact that conditions
with regard to the convergence difhculty are
completely different if the wave-length is long
but not infinite. For here the equations for
F(k) become:

+( /2 ')( U(1) —U(2)) j,
which expressions are completely symmetrical
in x, y, and s, and are independent of the manner
in which the planes in the crystal have been
chosen. (The same result, as would be expected,
is observed for such of the shorter waves as

'3This calculation for in6nite waves is identical with
that carried out by K. F. Herzfeld, J. Opt. Soc. Am. 17,
26 (1928).

have been calculated). One concludes, therefore,
that. the field in an infinite crystal in a real
state of vibration with a finite wave-length does
have meaning, and that the phase difference in
space between the polarizations at the various
lattice points has removed the conditionality
of the convergence, as Born' has pointed out.
Since this is true, the exchange of the or'der of
summation and differentiation made at the
beginning of the calculation is justified by the
results.

Upon including the correction for polariza-
bility, one has for the Coulomb force

eiF(1) = —emF(2) = (4~e'/a')

&&( +k/3) '( —k/ ) 'L(6)( + / )

)& (U(1) —U(2)) —(~/2r') (~ U(1) —U(2)) j.
The repulsive force is

R(1)= —R(2) = —(4~e'/a')(ci+2c2)(U(1) —U(2)).

The secular equation to be satisfied is that
resulting from the set of equations

—mg(a'U(k) =eiF(k)+R(k).

The result is that if js is the reduced mass, then

~'Lp(g' —(4me'/a') (ci+2c2—(-', ) (1—k/6) ') ]'
Y [p~' —(4~s'/a') (~i+2~2+ 4) (1+k/3) 'j =o

which gives the following results:
(a) There are three possible vibrations (with

a given wave vector ~) whose frequency is zero.
These are characterized by U(1) =U(2), so that
the displacements of neighboring particles are
but very little different. In other words, these
are the three frequencies belonging to the
acoustical branch. They are zero only because
we have neglected the contribution to the forces
of terms proportional to squares of the compo-
nents of ~. Inclusion of these would give co'

or co ~, as it should be in the acoustical branch.
Without this inclusion we can say no more
about the characteristics of these vibrations
beyond the statement that the amplitudes of the
two kinds of particles are equal, and that hence
the electric field vanishes in this approximation.

(b) There are two vibrations for which

'= (4~e'/pa') (cia 2c2 —(6) (1—k/6)-')
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These are characterized by m&U(1)+m2U(2) =0
and (~ U(1) —U(2)) =0. The former condition
implies that the two kinds of particles are
vibrating exactly out of phase and with an
amplitude ratio inversely proportional to that
of the masses; the latter condition that the
direction of vibration of a particle is normal to
the direction of motion of the wave; that is,
that these waves are transverse. The fact that
this frequency appears twice in the secular
equation corresponds to the existence of two
possible independent modes of vibration normal
to the wave vector. The electric field for these
vibrations is given by

F(1)=F(2) =(4 s/~')(l)L1 —9/6)3 '
X (U(1) —U(2)) = (4~/3) P,

in which we have introduced again the polar-
ization vector P."

(c) The remaining vibration has

(u' = (4n.e'/pa') I cg+ c2+ (-,') L1+(k/3) ] '
I .

The amplitudes are characterized by m&U(1)
+mgU(2) =0 and L~ U(1) —V(2) j=0. This,
then, is a vibration like the preceding two, with
the exception that it is longitudinal. The electric
field here is F(1)=F(2) = —(8z./3)P.

The results both for the acoustical branch and
for the transverse waves in the optical branch
agree with what has been known, ' but the result
for the longitudinal waves is a new one.

One must be careful to recognize that the
reappearance here of (4m/3)P and —(8~/3)P
for the electric field is not for the same forrnal
reason as in Section V. There it was a question
of the dependence of the convergence of the
sum over the lattice on the shape of the crystal,
whereas there is no such difficulty here. Here it
is a question of the difference between longi-
tudinal and transverse waves; that is, whether
the displacement is in the direction in whirh it
varies in space, or perpendicular to it. The result
is independent of the shape of the crystal and
of the manner in which it is broken up into
planes to calculate the electric field.

It is not surprising, however, that in the
transition from very long to infinitely long waves,

'4This result is in agreement with that of Heckmann,
Zeits. f. Krist. 61, 250 (1925).

the transverse waves give the same result as
uniform polarization along an infinite slab, the
longitudinal waves the same as uniform polar-
ization normal to the slab. Consider for a
moment forced vibrations, for example a plane
light wave falling on the slab. Then plane waves
(transverse) with the polarization along the
slab are possible. If, on the other hand, a light
wave should fall on the (narrow) sides of the
slab, there would be diffraction effects, so that
no plane wave, polarized normal to the slab and
progressing along it, is possible (the thickness of
the slab is now considered small compared to
the wave-length). The converse is true for
longitudinal waves. Such waves, progressing
along a slab, would be subject to edge effects,
which we call diffraction for the .transverse
waves.

It must be pointed out that the polarizability
correction to the Coulomb force and the repulsive
force (provided it s,cts only on nearest neighbors)
do not change the solutions of the secular
equation as far as the types of waves (that is,
the conditions on the amplitudes) are concerned,
but only alter the numerical values of the
frequencies. This is true for all the waves that
we consider here, and for reasons to be given in
section VIII, we will give only the uncorrected
values of the Coulomb force for the other waves
to be discussed.

VII. SHoRr WAvEs

Case I
~= (i, 4, i). This represents the vibration in

which one of the simple lattices (composed of all

the particles of one kind) remains at rest; the
other vibrating so that all particles in a given
plane normal to the line x =y =z (the direction of
propagation of the wave, which is the diagonal
of the cube) are in phase, and successive planes
are exactly out of phase. (One remembers that
the phase difference between the particles 1 and
1' is exp L2n.i(~ 1—1')j, The Coulomb force,
uncorrected, is

e~F„(1)= —(47re'/o, ') (0 1438)(U;(1)+ UI, (1)),

( ~"/~')( ' ")(~~(2)+~~('))

(zW jWk).
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The repulsive force is

R(1) = —(47re'/a') (c,+2c2) U (1),
R(2) = —(4~e'/a') (c,+2c~)U(2).

The solution of the secular determinant shows
that there are two sets of three vibrations each,
one set for the vibration of the Na lattice and
one for that of the Cl lattice. Of each of these
two sets, two vibrations are transverse, with the
same frequency, and one is longitudinal. The
transverse frequencies are given by

&o' = (4m e'/m .a') (c~+2c2 —0.1438);

the longitudinal by

co = (4me'/m a~) (cq+2c2+0.2876).

As ~ changes from (0, 0, 0) to (~, 4, ~), the
frequencies in the acoustical branch rise greatly,
and those in the optical branch drop slightly,
until when ~ arrives at (4, ~, ~) both branches
have frequencies of the same order of magnitude;
in fact, they are in the ratio of the square roots
of the masses. " This is one of the points of
similarity which these vibrations have to the
shortest waves of the acoustical and optical
branches in the Born-v. Khrman linear lattice.
In this case only one type of particle takes part
in a vibration, and the two branches are closest
together, since the optical branch frequencies
are a minimum and the acoustical are a maxi-
mum. The frequencies of the two branches are
in the inverse ratio of the square roots of the
masses. In the three-dimensional lattice, how-
ever, there is at least one other direction in
which the two branches are as close together for
the shortest waves as this one, and another
direction in which the longitudinal wave in the
optical branch has a lower frequency.

Case II
~ = (-', , 0, 0). Here the direction of propagation

is along the x axis, and particles in any plane
normal to the x axis are in phase, since successive
lattice planes are exactly out of phase. The
Coulomb force is calculated to be:

eqF&(1) = (4m e'/a') (—0.1724 U~(1)+0.5984 Ui(2) ),
eqF2(1) = (4vre2/a~) (0.0862 U2(1) —0.2992 U2(2) ),
e~F3(1)= (47re'/a') (0 0862 Us(1.) —0.2992 U8(2)),

'~This statement is true for the transverse and longi-
tudinal vibrations separately.

the repulsive force:

Rg(1) = —(4me'/a') [(cg+2c2) Ug(1)
+(cg —2cg) Ug(2) j,

R2(1) = —(4~e'/a') [(c~+2c2) U~(1) —c~ U2(2) j,
Rl(1) = —(4we'/a') [(c~+2c2) Us(1) —c~ U3(2) j.

The value of e2F(2) can be obtained from that
of e~F(1), and that of R(2) from that of R(1), by
interchanging U(1) and U(2) in the above ex-
pressions.

It appears by inspection that the waves can
be divided again into longitudinal and trans-
verse, the former are a vibration in the x direc-
tion, and the latter a vibration in the y or s
direction. The secular determinant breaks into
three; each is of the form

the solution of which is

A —(m2a'/4m e')(v'
=0,

(v' = (4m-e'/a') I (A /2 p)

&[(A/2p)' —(2' —8')/m&mmj~).

For the two longitudinal waves, A =0.1724+c~
+2c~, 8=0.5984 —c~+2cg. For the four trans-
verse waves, A = —0.0862+c~+2c2, 8= —0.2992
+c~. For the acoustical branch (lower frequency
of a pair), the displacements of the two types of
particles are in the same direction; for the optical
branch, in the opposite direction.

Case III
~ = (—', , 4, 0). This is the shortest wave possible

in the crystal, provided that of the equivalent
pair of wave vectors (rq, 72, r3) and (~ 2

—rq ~,

~ ~
—rz ~, ~

—', —rz
~ ) one always chooses the one of

longer wave-length. The direction of propagation
is in the (x, y) plane, at an angle of about 60'
with the x axis. The Coulomb force here is:
egFg(1) = (4vre'/a') (—0.03135U, (1)

+0.4371 Ug(2)),
e~F~(1) = (4~e'/a') 0.06270 Ug(1),
e~F3(1) = (4me'/a') (—0.03135V~(1)

—0.04371 Ug(2)),
and the repulsive force:

R~(1) = —(4~e'/a') [(cg+2cn) Ug(1)
+ (cg —c2) Ui(2) j,

R&(1) = —(4we'/a') (c~+2cm) U2(1),
R,(1)= —(47re'/a') [(cg+2c2) Us(1)

—(ci—cg) U3(2) ].
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6.l l

3.05

4.60

— 3.70

2.55
—-2.06

assume that the function f(r) which gives the
repulsive interaction between nearest neighbors
is of the form be "'& and evaluate the constants
b and p by the method of Born and Mayer. "If
,we remember that the van der Waals interaction
is to be neglected, this gives for the two con-
stants appearing in the frequencies c&=0.4220
and cq ———0.0427. The numerical results for the
frequencies follow. (The frequencies are stated
in multiplies of 10" sec. '.)

0-
(0,0,0) ( le l(4 lg)

FIG. 1. This graph represents the frequencies in a
sodium chloride crystal (in units of 10"sec. ') as functions
of the magnitude of e, as c changes from (0, 0, 0) to
(-'„4, -',); that is, for waves of all possible lengths traveling
along the cube diagonal. The terminal points of each curve
have been calculated, and the curves in between are
merely sketched, taking advantage of the knowledge that,
for example, the highest curve must be horizontal at both
ends. The curves for longitudinal waves are drawn solid,
for transverse broken (each of the transverse curves
represents two frequencies). In each case the upper curve
represents the optical branch, the lower the acoustical
branch.

The normal vibrations are along the x, the y,
or the s direction again, but they cannot be
divided into longitudinal and transverse. The
secular determinant breaks into three, of the same
type as for ~ = (-', , 0, 0). The same frequencies are
given by the vibrations along the xor the s direc-
tion, for which A is equal to 0.03135+ci+2c2 and
8 is equal to +(0.4371 —c&+c2). The vibration
along the x direction is neither longitudinal nor
transverse; that along the s direction is trans-
verse. The two frequencies of the vibration along
the y direction, which is neither longitudinal
nor transverse, are given by

co' = (4~e'/m;a') (—0.06270+ c&+2c2) .

Long waves, optical branch:
Transverse: 3.051; Longitudinal: 6.113 (The transverse

frequency calculated from the Reststrahlen frequency
is co=3.06. Such good agreement is to be regarded as
fortuitous. )

Transverse, Na lattice vibrating: 2.553; Transverse,
Cl lattice vibrating: 2.057; Longitudinal, Na lattice
vibrating: 4.595; Longitudinal, Cl lattice vibrating: 3.701.
(-,', 0, 0):

Transverse: 3.263, 1.862; Longitudinal: 4.255, 3.205.
(k, 4 0):

Vibration along x or s direction: 3.545, 2.820; Vibration
along y direction: 3.044, 2.452.

If one- calculates these frequencies with the
polarizibility correction to the Coulomb force
included, the results are bad. The transverse
frequency for the long waves drops to about
two-thirds of its present value; the transverse
frequencies for (-'„0, 0) and the frequencies for
the vibrations in the x or s directions for (—',

, 4, 0)
become imaginary. As Heckmann has pointed
out (reference 14) for the long waves, such a

4.26

But here the distinction between longitudinal
and transverse waves means but little, since for
the x and s vibrations not only the frequencies,
but the displacements themselves are indis-
tinguishable, as solution of the secular equation
for the amplitudes shows.

3.05

0
(0,0,0)

3.26
3.20

—
I.82

(irz,o,o)
VIII. NUMERIcAL VALUEs QF THE

FREQUENcIEs

To obtain numerical values of these fre-
quencies, one must make an estimate of the size
of the repulsive forces. For this purpose, we

FIG. 2. This represents the frequencies of all possible
waves traveling along the edge of the cube. Again the
waves are divisible into longitudinal and transverse and
again the curves are sketched.

M. Born and J. E. Mayer, Zeits. f. Physik 75, 1
(1932).
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result is probably due to the fact that the ions
in the immediate vicinity of a given ion cannot
be considered to be point charges, the deviation
of their behavior from that of point charges
affecting strongly the polarizing electric field. In
other words, the repulsive forces would appear
to inHuence the polarization of the ion. '~

6.I I

305—-
3.5 5

p4
-= .82

.45

IX. THE NEUTRAL SYSTEM

There is another possible application of the
preceding calculation. Suppose that one has a
simple cubic lattice, lattice distance a, composed
of identical particles kept in place by some
elastic, isotropic binding. Let the lattice be a
block of dimensions G~)&G~XG3 particles, and
let it be built up to an infinite periodic lattice as
before. Let the displacement of the 3th particle
be denoted by x(l) =(x~(l), x2(l), x&(l)), and let
there be a dipole moment ex(l) associated with
the displacement x(l). An arbitrary displace-
ment of the particles of the lattice may be
analyzed into a Fourier series:

x(l) =gg(r) exp I 2mi(~ t)],

where ~=(l~'/G~, l2'/G2, 4'/G3) and the sum
over r indicates the triple sum over all integers
It~'I &~ G~ It, 'I ~ G2

I
la'I &~G3 g(.) is a function

of the time t. One can calculate the force on one
particle due to the dipole moments of all the
other particles for one of these Fourier com-
ponents by the calculation above for the Coulomb
force, provided that one makes the two kinds of
particles identical; that is, sets U(1) =U(2) =g(r)
and 8y =82=8.

The equations of motion, if F(r) exp L2~i(~ 1)$
is the force of the interaction, are m(8'/Bt2)g(r)
= —kg(r)+F(r), in which k is the constant of
the elastic restoring force. Now, from the results
of the preceding calculation, F(r) will contain
g&(r), g2(r), g~(r) and none of the other Fourier
components of the displacements. Hence for each
value of ~ there will be three normal vibrations
of the system, the coordinates for which will be

' These results make it probable that a better calcula-
tion of the specific heats in the Debye approximations
might be accomplished by taking separately N longitudinal
and 2' transverse vibrations in part fulfillment of the
suggestion of Born and Goppert-Mayer (reference 8, p. 651).

0

{o,o,o}

FrG. 3. Here are represented the frequencies as e changes
from (0, 0, 0) to (-,', —,', 0). To aid in drawing the curves
the point in the center, (~4 —',, 0), has also been calculated.
The two broken curves ending on the right at 3.55 and
1.61 represent transverse waves; the others are in general
neither, but are drawn broken or solid in accordance with
their behavior at large wave-length.

linear combinations of the three coefficients
g&(r)g2(r) and gg(r). One can then write cPg(r)/Bt'
= —a&'g(r), and has the secular equation to solve
resulting from (

—mes'+ k) g(r) —F(r) =0. The
results for this calculation follow.

(1) Long waves (~&&1)

F(r) = (4~e'/a') L(3)g(.) (~/"—)(' g(.))3

There are two transverse vibrations with
m&a' —k = —(4~e'/a') (-', ) and one longitudinal
with mes' —k = (47re2/a3) (~).Transverse and longi-
tudinal mean here, of course, that ~ and g(r)
are normal and collinear, respectively.

(~) ~ = (2) 0) o)

F,(r) =(4~e'/a')( 0 770)—g, (.r),
F,(r) = (4n e'/a') 0.385g2(r),
F3(r) = (4xe'/a3) 0.385g~(r)..

These are the vibrations for which all particles
in a plane normal to the x axis vibrate in phase,
and successive lattice planes are exactly out of.
phase. There are two transverse waves with
ma&' —k = —0.385(4me'/a') and one longitudinal
with maP —k =0.770(4~e'/a'). The results for
this wave are very similar to those for the long
waves (0.385 instead of 0.333) since one has the
same polarization, except that every alternate
plane has the sign of its polarization reversed.
Since the effect, for long waves, of planes other
than the one containing the lattice point is
small, the result is understandable.
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(3) ~=(2, —,') 0)
Fg(r) = (4m.e'/a') ( —0.213)g~(7),
F2(~) = (4m e'/u') (—0.213)gg(r),
Fa(~) = (4vre'/n') 0.426ga(r).

This wave progresses along the diagonal of the
face of the cube, since alternate lattice planes
have opposite phase. Here the normal viby. ations
again can be divided into longitudinal and trans-
verse. There is one transverse vibration in the
s direction with neo' —k= —0.426(4n.e'/a') and
one in the direction (—'„——', , 0) with mes' —k

=0.213(4&re'/a'). The longitudinal wave has
m~' —k=0.213(4~e'/a'). This wave presents the
feature hitherto not met with of having diferent
frequencies for the two transverse waves.

(4) ~ = (ls 2~ -')

Fg(v) = (4me'/a') ( —0.104)gg(r),
F.( )=(4 s'/~')( —01o4)g ( ),
Fa(7) = (4vre'/a') (0.208)g3(r) .

The normal vibrations for this wave can be
taken along the x, y, and s directions, and
cannot be separated. into longitudinal and trans-
verse, The frequency for vibrations in the x
and y directions is mrs' —k=0.104(4~e'/a'); for
vibrations in the s direction, men~ —k= —0.208
X (47re'/a').

(~) ~= (2~ 2~ k)
This is the wave in which nearest neighbors

are always exactly out of phase; it is the shortest
wave possible in the lattice. The force due to the
interaction vanishes, so that all three frequencies
are given by men' —k =0. All three vibrations are
here geometrically identical.

X. THE FIELD VECTORS

The quantity calculated in the preceding
sections is the actual microscopic electric force
at the place of a particle, the so-called exciting
field. Macroscopically one has to distinguish
between the electric field E and the electric dis-
placement D which are connected by D =E
+4mP. P is, of course, the total dipole moment
per unit volume. The forrnal definition of E and
D requires the measurement of the force on a
macroscopic probe, situated in an appropriately
arranged slit. It is obvious from this definition
that E and D in this macroscopic sense have

meaning only if the wave-length of our vibra-
tions is large in all directions compared with the
lattice distance, because otherwise averaging
over many lattice distances means also averaging
over several wave-lengths and gives, therefore,
zero for D, E and P.

We have to restrict ourselves, therefore, to
the above case, in which it is possible to dis-
tinguish sharply between transverse and longi-
tudinal waves. As is well known, one defines D
as the force exerted on a' probe in a slit at right
angles to the field, while E is measured in a
channel parallel to the field. One sees easily that
in the latter case one also can substitute a slit
which has one long dimension in the direction of
the Field. VUhile all the dimensions of' the slits
ought to contain many lattice distances, we are
going to build the slits up of narrow slits with a
short dimension, small compared with a. Ke
designate the field vectors so defined by primes.
We first start with longitudinal waves.

Consider a narrow slit between lattice planes:
Due to the factors exp (2~~s)/a), exp (27rftq/a),
the average value of the field and therefore
D'=0. Consider next a slit in the lattice plane,
with the dipoles of that plane removed. The
same argument holds. Therefore D is zero as it
must be so that the condition of transversality
for D is fulfilled.

Consider next the average field in a horizontal
slit mith the dipoles. The field in the slits between
lattice planes is zero as above. Next take a
narrow slit, cutting the dipoles of a lattice plane.
The average value of the field is equal to the
charge per unit surface times —4n.. (Consider a
Hat shell, one surface in the slit, the other
between lattice planes, and apply Gauss'
theorem. ) This slit extends over a distance equal
to the dipole displacement, so that the average
value is —4vrP. That is E,'~ and D= —4zP
+4~P=0.

That this is E according to the usual definition
(measuring the. force in a channel parallel to the
field) can be seen because the dipoles that have
to be removed to make the channel do not con-
tribute appreciably. One sees, however, that the
same argument holds also for transverse waves,
as the result is independent of the order of sum-

/"See H. A. Lorentz, Theory of E/ectrons (Leipzig,
1909), p. 134, last formula.
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mation. Therefore the free vibrations considered
here are described by

D=0, E= —4wP,

which is in agreement with the interpretation of
D as the field due to external sources.

According to electromagnetic theory, the re-
fractive index n is related to the dielectric
constant e by n'= e. The refractive index itself
is determined by the frequency of the long
transverse waves of the optical branch. On the
other hand, the dielectric polarization of a slab
between two condenser plates corresponds to the
longitudinal deformation. Nevertheless, every-
thing comes out correctly. Consider again the
neutral simple cubic lattice. Then the optical
transverse frequency is given by

ma)' —k = —(4~e') /3a'.

On the other hand, the external force polarizing
the slab in D; everything else has been included
in our summation. Therefore

(k+ (8~e')/3a') z= eD

z is the amplitude of the displacement;
k+ (Sme')/3a' is mes'~, „,. But as

.—l = (4~P)/E = (4~ez)/~~E,

one calculates, by subtracting (4me'/a')z on both
sides of (7),

(k —(4m-e') /3a') z =eE,

and gets the required connection.
We express our thanks to Dr. Maria Goppert-

Mayer for many helpful discussions.


