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Symmetry Effects in the Spacing of Nuclear Energy Levels
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The results of Wigner on mass defects and stability relations make possible a calculation of
level density for intermediate nuclei (A &60) which takes properly into account the dependence
of nuclear energies on symmetry character. In general, a con6guration of neutrons and protons
in single-particle orbits contains many different types of symmetry compatible with the
exclusion principle. The various symmetry types arising from one configuration all have the
same kinetic energy, but differ in potential energy; decreasing symmetry (increasing number of
nodes) is associated with decreasing potential energy. Level densities for the different nuclear
types are tabulated. The results indicate a marked increase of density for increasing isotopic
number in an isobaric series. Transmutation experiments on isobars should make possible a
test of the theory.

INTRODUCTION

0 discuss the problem of nuclear level
density Bethe' and also Lier and Uhlen-

beck' utilized the model of noninteracting par-
ticles in a potential well. The single-particle
energy levels may be e&, e2, ~ ~ ~ arranged in
ascending order. The total energy

Z=ge, n;

is simply a sum of single-particle energies. Since
no more than two neutrons and two protons can
occupy a single orbit, the occupation numbers n;
are restricted to the values 0, 1, 2, 3, 4. Let bx
designate the number of Z's which fall in the
energy interval 8, 8+bB. If bX is large in
comparison with unity, and the average level
spacing does not change appreciably over bB,
we can define the density of levels p(Z) by the
relation p(Z) 8X/8Z; the average spacing
between levels is given by 1/ (Bp) 8B/8X. For
excita. tion energies Q=B Eo which are mu—ch
smaller than the normal state energy Eo, Bethe
and Lier and Uhlenbeck found the asymptotic
formula

p(Q) —,
' (6,'A.'/54Q'6') ' exp 27r(2Q/3a) &,

(2)
2/3 =1/6„+1/6 .

*Society of Fellows.' H. A. Bethe, Phys. Rev. SO, 332 (1936)'; Rev.: Mod.
Phys. , 9, 69 (1937).

'C. van Lier and G. E. Uhlenbeck, Physica 4, 531
(1937).

Here A„and 6 are the average spacings between
adjacent single-particle levels at the tops of the
neutron and proton distributions for the normal
state; these quantities have the values

6,~31.6//PAL(2%) ' mc

31.6 8/' A&(2Z)' mc'

31 6/8'A m.c'

(3)

' J. Bardeen, Phys. Rev. 51, 799 (1937).

for a system of Z protons and %=A —Z neutrons
in a spherical box of radius R =BA'e'/mc'.
Separate density functions for each value of the
orbital angular momentum have also been
computed. ' '

Certain properties of the density function are
readily understood if the general distribution
e&, e2, ~ ~ ~ is replaced by a system of uniformly
spaced single-particle levels with the spacing A.
It is clear that the addition or removal of an
even number of neutrons or protons does not
alter the number of ways in which a given
excitation energy can be obtained provided
only that the excitation energy is not large
enough to raise a particle from the bottom of
the single-particle distribution. However, the
proportion of excited states in which a single
particle obtains a large fraction of the excitation
energy is negligible for large values of Q. Conse-
quently the density function will not depend
explicitly on Z or N within an even-even,
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even-odd, or odd-odd series of nuclei; actually
the asymptotic expression for p(Q) does not
involve explicitly even the odd-even character
of the nucleus.

To extend the analysis of the independent
particle model we have computed separate
density functions ps(Q) for each value of the
total spin in the nuclear series 4k~1.

If the nuclear Hamiltonian II were known
and a complete set of simple approximate wave
functions P&, P2, were available, an approxi-
mate evaluation of the density could be obtained
by computing the diagonal matrix elements of
II and identifying the level spacing with the
separation of adjacent diagonal matrix elements.
One of the authors' has made a calculation in
this manner using exchange forces in the Hamil-
tonian and determinants constructed from
products of single-particle wave functions for P, .
The probl'em can be reduced to that of a system
of independent particles in a velocity dependent4
potential well. At the top of the normal state
distribution, the spacing between adjacent
single-particle levels is about double that given
in (3). Thus, for a given nuclear radius and
excitation energy, this model yields a much
smaller density than the true independent
particle model.

The theory could be improved further by a
first-order perturbation calculation. Generally a
number of determinantal wave functions cari be
constructed from one configuration of single-
particle orbits. In place of the determinants P;,
one should use the "correct" zeroth order normal-
ized and orthogonal linear combinations defined

by the two conditions: (a) p; is a linear combi-
nation of determinants belonging to a single
configuration, (b) J . J'q, *Hq;dr=0 if i'
and the two functions belong to the same
configuration. With exchange forces the diagonal
matrix elements f ~ ~ J' q&;*Hp,dr arising from
a single configuration would be spread generally
over a wide range in the manner required by
the observed dependence of nuclear energies on
symmetry character. Because of computational
difficulties this calculation has not been at-
ternpted. We present, in the following sections, an
alternative attack on the problem which avoids

4 J. H. Van Vleck, Phys. Rev. 48, 367 (1935).

the difhculties and some of the inaccuracies of
perturbation and variational calculations.

~(X & o) = 2A(A —1) {(x(P) /x(1)) ~

—(x(-P) /x(1) ) ~o I =o.

(6)

Here ) o and X are quantum numbers (partition
symbols) describing the symmetry character of
the normal and excited states respectively.

' E. signer, Phys. Rev. 51, 106 (1937), (A); 51, 947
(1937), (B).

DEPENDENCE OF POTENTIAL ENERGY ON

SYMMETRY CHARAcTER

The empirical mass defects and stability
relations reveal a strong dependence of nuclear
binding energy on symmetry character. A semi-
empirical theory of this effect has been developed
by Wigner' under the assumptions (a) the
particles interact in pairs, (b) the spin dependent
and Coulomb interactions are effectively small
in comparison with the part of the Hamiltonian
operator which is invariant under permutations
of the space coordinates of the particles. The
diagonal matrix elements of the potential energy
then contain a symmetry dependent term having
the form

V'= 2A(A —1)xV')/x(1) L(A),

where x(P) is the character of a transposition
and x(1) the character of the identity in the
irreducible representation of the symmetric
group to which the state in question belongs.
The coefficient L(A) is a matrix element in-
volving the density functions for symmetrically
and antisymmetrically coupled particles and the
magnitude and range of the interaction operator
between pairs of particles. The values of L(A)
required to fit the experimental material fall on
a smooth curve with the correct asymptotic
behavior. In this paper we take

L(A) -A-31.6/B'A mc'

which is sufficiently close to Wigner's semi-
empirical determination and convenient for the
discussion of level density. Since energy differ-
ences only are involved in the theory of level
density (5) may be replaced by a more con-
venient form
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i~t&j~Z «~i&g~A

eventually becomes large enough to destroy the
symmetry character as a good quantum number
by mixing together states belonging to different
irreducible representations of the symmetric
group; this effect probably accounts for the
failure of Wigner's theory beyond mass 54.
However, the usefulness of (5) and (6) in a
calculation of level density should extend some-
what beyond A =54, because a quantity defined
as an average over a number of levels should
not be sensitive to a lack of sharp definition in
some of the quantum numbers.

LEVEL DENSITIES %'ITH CONSTANT AND SYM-

METRY DEPENDENT POTENTIAL ENERGIES

By using (6) to compute potential energy
differences, one avoids the approximations and
special assumptions involved in an actual calcu-
lation of the potential energy matrix elements.
Kinetic energy differences are presumably given
with reasonable accuracy by the model of non-
interacting particles in a spherical box with a
constant spacing 6 of single-particle levels at
the top of the normal state distribution.

The symmetry properties of a configuration
are completely .determined by the distribution
of particles in singly, doubly, triply, and quad-
ruply occupied orbits. For the discussion of

'.symmetry properties the configuration may be
represented by a partition symbol tt=(ttt, ttt t,
~ tt&) with as many p, 's equal to nt as there
are orbits containing m particles. Note that
A=ttt+ttt z+ +tt&. To avoid ambiguity the
p's are ordered so that p, ~&p, ~ «& ~ ~ ~ &~p, «&~i.

The unsymmetrical part of the Coulomb
interaction,

e'/r "Z—(Z 1—) /A (A —1) P e'/r;;, (7)

Let P(tt; X) denote the number of modes of
excitation associated with the partition symbol
tt and the kinetic energy XA, and irI(S, T„tt)
the number of times the state with T,=-,'(N —Z)
and total spin 5 occurs in a configuration
belonging to p, .' Assuming a constant potential
energy, the level densities pz(XA) and p(XA)
are given by the expressions

ps(&a)a=+~(S, T. ; p)P(ts; X),
(8)

p(XE)d =Qtg(2S+1)M(S, T, ; tt) IP(p, ; X).

The set of functions generated from a single
configuration by permutations of coordinates
subtends a linear manifold in function space;
with respect to the tran sformations of the
symmetric group this manifold, 6(tt), is either
irreducible or a linear combination of invariant
subspaces which are irreducible. The invariant
subspaces are denoted by the symbols P,1
[4~ 4—ly

' ' '
& ~lay ~t; )4—1) ' ' ' )~1) 1& 4+4-1

+ +Xq ——A and the number of times the
irreducible representation [Xj occurs in d (tt) by

To compute the level density when the
dependence of potential energy on symmetry
character is given by (6), we introduce two new
quantities:

P'(» &) =Z()/t)P(p'&)

the number of times the irreducible representa-
tion [X] occurs in the various modes of excita-
tion, and 3E(S, T„X), the number of ways in

TABLE II. Symmetry dependent potential energy. pp'(KA)A
and p'(Kh)d for the nuclear types 4h ~1,

~
N Z~ =1. —

TABLE I. Constant potential energy. pz(Kb, )h and p(KA)A
for the nuclear type 4k~1.

S =1/2
p~'(Z~)~

S =3/2 S =5/2 S =7/2 p'(Kb, )6

0
1
3
6
9

12
15

1
4

37
496

4290
28500

158200

1
17 1

316 54 1
3220 812 55

23780 7510 850
142200 52300 8000

~s(zn)a
K S =1/2 S =3/2 S =5/2 S =7/2 S =9/2 p(ZA) 5

2
12

148
2590

26760
18 204200

370 1266800

0
1

6
9

12
15
18

1
2

11
104
695

3890
18850
82200

8
105
833

5140
26700

9
133

1260

2
4

22
240

1810
11160
59000

278000

' Methods used for computing the multiplicities are
given in the appendix, part B.
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TABLE III. Symmetry dependent potential energy. p~'(Xh)b,
and p'(XA)A for the nuclear tyPes 4k&1, ~1V Z~ —=3.

0

3
6
9

12
15
18

S =1/2

1
3

20
194

1330
7420

35700
153800

pS'(K
S =3/2 S =5/2 S =7/2

1
24

258 1
1880 34

10980 390
54700 2970 4

26.
44

484
3690

22550
117600
544300

TABLE IV. Symmetry dependent potential energy. pg (E'5)A
and p'(KtS)tS for the nuclear types 4k~1,

~
tV —Z~ = 5.

S =1/2
» (K~)~

S =3/2 S =5/2 S =7/2 p'(Ka) a

0
1
3
6
9

12
15
18

1
3

23
252

1831
10570
51900

226500

1
34

387 3
2900 73

17080 747
85500 5400 14

2
6

50
'640
5230

33160
176700
827000

XP(tt; K—co(X, Xp)),
(9)

p'(Kh)th = PI P(2S+1)3I'(S, T, ; X) }

XP'(h. ; K—cc(h, Xp))

=PPI g(2S+1)~ (S, T„)) }

X (X/tt)P(tt; K—co(h, Xo)).

Evidently

which the total spin S can be associated with
the irreducible representation L) j to yield a
completely antisymmetric function in the space,
spin and charge spin coordinates of the particles.
For the densities pe'(KA) and p'(Kh), which
replace ps(KA) and p(KE), we obtain

pe'(Ktk)6=+3I'(S, T, ; h)P'(X; K—co(X, Xp))

=QQM'(S, T, ; k,)(h/tt)

0

3
6
9

12
15
18

S =1/2

1
3

24
278

2120
12700
64100

284500

p'(Ka) S
. S =3/2 S =5/2 S =7/2

1
37

457
3570

21710
110700

4
98

1030 1
7500 27

p'(Kh) b,

2
6

52
704

6100
40290

221200
1057000

TABLE VI. Nuclear type 4k. p(XA)6 and p'(Eb, )/h. as
functcons of (

1V Z(. —

Numerical results from the evaluation of (8) and

(9) are exhibited in Tables I—VIII. The method
of calculation is described in the appendix.

The tables reveal a striking dependence of
level density ort jX—Zj in an isobaric series
This consequence of the theory can be tested
directly by transmutation experiments on iso-
bars. The computed level spacing may very
well be considerably in error because of the
unavoidable oversimplification in the model and
because of uncertainty in the correct value of
the energy unit A. However the ratios of level
densities at a de6nite excitation energy in a
series of isobars should be free from much of
the inaccuracy and uncertainty which affects
the computed spacing of levels.

The essential reason for the increase in level
density with increasing jtV' —Zj in an isobaric
series is that when jlV' —Zj is small the lowest
state belongs to a representation of very high
symmetry and states belonging to practically
all other representations have much higher
energies. Thus most of the low-lying levels
belong to a comparatively few representations
which have high symmetry. On the other hand,
if ~tN Zj is large—, even the lowest state ca.nnot
have high. symmetry and states belonging to
many other representations have nearly as low
an energy.

TABLE V. Symmetry dependent potential energy. p&'(Eh)h
and p'(Xcs)ts for the nuclear types 4k &1,

~

N Z~ = 7. —

cV(S, T. ; p) = QM'(S, T. ; X)(X/tt) (10)

and the primed and unprimed densities are
identical if co is omitted in the argument of
P'(X; K). Since P'(h; K) is a rapidly increasing
function of X, the substitution of X—co for E
results in a considerable decrease in level density.

p(Ka)a
Z N, Z zvxN, N, Z Don

0 1 4
1 8 16
3 112 192
5 856 1330
7 4820 7 170
9 22320 31990

11 90140 100340
13 327700 446200
15 1095300 1439000

1
1
6

30
134
535

1970
6660

20970

4
.12
76

352
1716
5040

16610
50720

146500

1
2

21
124
589

2380
8580

28320
86600

16
124
664

2890
10880
37140

116730
344700

p'(Ka) a
jN —Zj=0 jN-Zj =2 jN —Zj =4 lN —Zj =6 jN—Zj=8

1
2

22
141
734

32 10
12320
42750

136600
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APPENDIX. PART A

Calculation of P'(X; X)
We are interested in finding P'(X; X), the

number of times the irreducible representation
P ] occurs for a given (kinetic) excitation
energy E. (To simplify the notation the energy
unit is taken equal to 6).Some of the calculations
have been made by using the equation

IN-ZI =0 IN —Zi =2 IN-Zi =4 IN —Zi =6 IN-ZI =8

NUCLEAR TYPE 4k

2
5

10
15

10.7
11.7
8.8
7.0

2.3
4.1
44
4.1

16.0
22.1
19.2
16.4

2.3
4.7
6.0
6.5

TABLE VI II. Summary of level density dependence on
nuclear type and

~

X—ZI. Ratio of p'(It:6} to the level
density for ttte nuctear type Its,

~
N Z~ —= 0.

NUCLEAR TYPE 4k+2

We first find P(tt; Z), the number of configura-
tions which have the energy E, multiply by
(X/tt), the number of times the irreducible
representation P] occurs in the manifold 6(tt),
and finally sum over all configurations. For this
purpose we have prepared tables of the numbers
(X/tt) for configurations of interest which include
as many as twenty particles outside of closed
four-groups. '

In many cases it is simpler to calculate
P'(X; X) by a direct method; in the following
sections we indicate how this may be done. In a
sense, our problem is a generalization of Fermi-
Dirac and Einstein-Bose statistics. In the former
we want to know the number of times the
antisymmetric representation occurs for a given
energy; in the latter the number of times the
symmetric representation occurs. In the present
case we are interested in representations of
intermediate symmetry types.

TABLE VI I. Nuclear type 4k+ 2. p'(XA) b, as a function
of [N Zt—

IN-ZI =0 IN-ZI =2
p'(Za)a
IN —Zl =4 IN —Zl =6 IN —Zl =8

0
1
3
5
7
9

11
13
15

4
8

56
256

1008
3610

11780
36160

104800

1
2

18
88

378
1460
5120

16770
51000

4
16

112
564

2332
8480

28180
86500

250300

1
2

22
138
696

2980
11340
39370

127200

16
128
704

3150
12200
42520

$36000
406300

' For a discussion of methods which may be used to
compute the numbers (Xjp) see F. D. Murnaghan, A. J.
of Math. 59, 437 (1937). Tables of () jp) for values of n
up to and including nine are given in this paper. We
have prepared tables of these numbers for configurations
of interest with values of n extending to twenty. We will
be glad to supply the tables we have computed to any
one who has use for them.

2
5

10
15

8.0
8.5
6.2
5.0

2,0
2.9
2.6
2.4

14.7
18.8
14.7
11.9

2.3
4.6
5.6
6.1

16.0
23.5
21.7
19.4

NUCLEAR TYPE 4k+1

IN —ZI =1 IN —ZI =3 IN —ZI =5 IN —ZI =7

2
5

10
15

3.3
3.8
3.2
2.8

5.3
7.3
6.5
5.6

6.0
9.7
9.4
8.4

6.0
10.5
11.1
10.5

A similar problem, which occurs in the case
of electrons, is to determine the number of
states of a given energy with a given total spin 5.
The procedure which is generally followed is to
determine first the number of states pM(M. )
with a s component of spin equal to 3I,. The
number of levels, p(S), with spin S, is then
found from the familiar equation:

p(S) = pss(S) —per(S+1). (12)

gi =number of protons" neutrons
~3= " " protons
q4= " " neutrons

with —spin
ii

The number of states, X(rtt, stm, sts, st4, +), of
energy X and with spin components (st$ 4t2 4)3 st4)

may be found by some standard method such
as that of Sommerfeld. 'The number of levels,
P'(X; lt. ), belonging to a given representation

' Reference 5, (A).
'A. Sommerfeld, Zeits. f. Physik 47, 1 (1927). See also

H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937).

A similar procedure may be followed in the
present case. Instead of a two-valued spin we
must now consider a spin with four components
(rtt, rt4, ste, 4t4) which, according to Wigner, ' we

may define as follows:
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where [Ai, A2, A. 3, A47 is the representation
associate to t Xq, Xi i, Xi]. If in the repre-
sentation LX] there are ni ones, n2 twos, n3
threes, and n4 fours,

A4 n4+n3+n——2+n&,

A, = n4+n;+n2,

A 2= n4+ng,
(14)

AI =n4.

In general, there may be as many as 2' or 64
terms to sum in (13), so that the expression is
not very suitable for numerical work. We have
found that simpler equations are obtained if,
instead of consi. dering the spin, we deal directly
with the space functions.

Generating function for P(p, K)
Let us return to Eq. (11).The various quanti-

ties in which we are interested can be computed
from generating functions. Let us first consider
P(p&, pi ,'K), the number of modes of
excitation of energy K associated with the
partition (p~, , yi). In the partition there are
p& singly occupied orbits, » doubly occupied
orbits, etc. The total number of particles
n=yI+2y2+; +by~. For the application to
nuclei, we are interested in the case where no
orbital is occupied by more than four particles,
but we will carry through the analysis for the
general case. Let us define the quantities~

U;=y", (i=1, 2, m),
*The &; are the individual particle energies defined in

the introduction.

LX] of the symmetric group may be obtained
from a generalization of (12).While the equation
is simple in form, it is rather difficult to use,
so that we give only the result.

Let us define operators xi, x~, x3, x4 such that

xiN(gi, q2, g3, g4, K) = N(qi 1, g—p, qa, g4, K),

x2N(rll '0 '93, '94', K) = N(gl tl2 1 '/13 7l4', K), etc.

The appropriate generalization of (12) is

P'(X; K) = (x4 —xa) (x4 —xm) (x4 —xi)

X (xa x2) (x3 xi) (x2 xi)

XN(Ai, Ay+1, A3+2, A4+3), (13)

The sum is over all rn!/(m —Py;)!yi!y2! ~ .yq!
combinations of the subscripts which lead to
different products.

There are no simple general expressions for the
numbers (X/p) and the generating function (15)
for P(p; K) is rather complicated. Nevertheless,
a rather simple expression can be obtained for the
generating function for P'(X; K). In order to
derive this expression, we make use of the
method of characteristics.

Method of characteristics

Since the method of characteristics is perhaps
not very familiar, we will give in outline the
results which we will need later. For further
details, the reader is referred to a recent article
by Murnaghan. "The characteristic of an irre-
ducible representation (p) of a finite group is
defined by:

1
y, (s) =—P N, x„(&)*s(&&, (16)

where Ã is the total number of elements in the
group; X, is the number of elements in the class
(q); x„«' is the character of the irreducible
representation p going with the class g; and the
s«' are indeterminants. The sum is over all
classes. The asterisk represents the complex
conjugate.

The characteristic of a reducible representation
which contains the irreducible representation
(p) c„ times is simply

y(s) —=Qa,s'" =pc„y„(s)

(a)+g(a) (17)
u

Reference 7. The complete theory of the representa-
tions of the symmetric group is given in this article.
We have attempted to follow Murnaghan's notation
wherever possible.

where y is an indeterminant. In order to avoid
dealing with an infinite number of U s, we take
ns finite but so large that e )X. It is easily
seen that P(p, ,'K) is the coeflicient of yx in
the symmetric function

Q(&i &v,)(&7,+i &v, +v.)'

X(&v,+v, +i . Uv, +v, +7,) . (15)
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From the orthogonality of the characters, we
have

ca= Pxy Q, q.

If the characteristic of a reducible representation
is known, this equation enables one to obtain the
number of times a given irreducible representa-
tion is contained in the reducible representation.

The indeterminant s'" going with the class (a)
may be expressed in the form:

s(~) =s 1s 2 sj. 2 '' r (20)

The principal characteristic of the permutation
group of order 22 (i.e. , the characteristic of the
identity representation) is:

q„(S)= Q 1/n1!122! 12, !

(s1/1) 1(s2/2)" ~ (s„/r) ". (21)

The sum is over all values of o.~ n2 ~ o.„sub-
ject to the restriction o.&+2a2+ +rn„= n.
The characteristic of the irreducible representa-
tion P,k, Xk „~,X,j is:

4k(s) =2 x(1)"/121'122'

qX k(S)

(s,/1) ~'($2/2) ~' (s„/r) ~" (22)

q1, 3+1(s) . . q~ 3+k—1(s)

qk3 y
—1($) q1 3 y($) ' ' ' qk3 y+k —2($)

(22')

Application to the symmetric group

The method of characteristics is particularly
suitable for application to the symmetric group.

' All permutations having the same cyclic struc-
ture belong to the same class, which may be
denoted by the symbol (n) = (121, 122, ~ ~, n,).The
permutations of the class contain n& unary
cycles, a2 binary cycles, n3 ternary cycles, etc.
Note that u1+2122+3n3+ . +ru„= n, the to.tal
number of particles on which the permutations
act. The number of permutations in the class
(&2) ls

X& ~=23~/1~12~2 r~"n, !nqt n ~. (19)

Here q1, (s) is the principle characteristic of the
permutation group of order ). By convention,
qq(s) =1 and qk(s) vanishes if X is negative.
The fact that (22') gives a characteristic of an
irreducible representation was first pointed out
by Frobenius, although the above form is due to
Schur. It is this expression which gives the
justification for the characterization of an irre-
ducible representation of the symmetric group in
terms of a partition of the integer n.

It is sometimes convenient to express the
indeterminants s; in terms of other indeter-
minants s~, s2, , s ., by means of the relations:

s, =8, '+82'+ ~ +8 (23)

The p„(8) may be obtained from the generating
function

f(8, t) = }(1—S,t) (1—82t) ~ (1—8 t) }-'

=P.(8)+»(8)~+P ( )~'8+"
(24)

Generating function for P'(2; X)
The expression (20) for the indeterminants s& '

going with the different classes of the symmetric
group is very suitable for our purpose because of
the following theorem" which is based on this
expression: the characteristic p&»(s) of the re-
ducible representation given by the manifold
D(k1) composed of y1 singly occupied orbits,
p2 doubly occupied orbits, etc. is given by the
product:

1t'~„&(s) = (q1(s)) &'(Q2(s))» ~ ~ (qk(s)) &". (25)

The characteristic of the (reducible) representa-
tion given by the manifold of all functions with
a given kinetic energy X is therefore:

4(s; &)=Z &(k; &)(q1(s))"

X(q (s))" (q (s))'" (26)

where m' is some large number ( ~&n). The prin-
ciple characteristic, q„(s), when expressed in
terms of the s's, is the complete homogeneous
symmetric function p (8). Thus q (s) =p (8), and
in particular,

po(8) =1; p1(8) = 281 p2(8) = 281+28182;

p3(S) = +81 ++81 82+ +818283,' e'tc.

qkf —k+1($) gay —k+2($) ' ' ' qk&($) 7.
» For a proof of this theorem, see Murnaghan, reference
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Let us now substitute the generating function
(15) for P(ti, X) and replace g;(s) by p;(s).
Then @(s;X) is the coefficient of yxt" in the
following function:

The sum is over all values of the y's. This func-
tion may be written in the form:

m m'

g(U s t)= 11 11 (1 —Ust)-'
i=1 j=l

(28)

as is shown most easily by expanding the product
for each value of i into a power series in t and
then multiplying the resulting series together.
From (28) we have:

log g(U, s, t) = —PP log (1—U,z;t)
'4 7'

= Pg(U, s;t+ U2s;2t2/2

g(U, s, t) =+I(U U, ,)

X(Uv, +i U7, +v,)' .
I

XP)VxP2)2. . .P2V2tVi+2V2+ ~ ~ +&V2 (27)

the irreducible representation [X) going with the
class (n) = (ni, n2, ~ ~, n,).

Now the simple characteristic (22) of the
irreducible representation [X] of the symmetric
group on n particles has exactly the same form
as (32). We need merely identify x, with s,.
Since the equivalence of (22) and (22') is an
algebraic identity, the generating function (32)
can also be expressed in the determinantal form
(22'). This form is to be preferred because it
does not involve the characters.

Generating function for evenly spaced levels

In the special case that the individual particIe
levels are evenly spaced, the generating function
for P'(X; X) is particularly simple. We first
obtain an expression for the function g„(y)
defined by substituting x; for s, in g„(s) and then
replacing x; by its value in terms of y. For
simplicity, as already remarked, we take the
spacing between the individual particle levels as
the unit of energy, so that

+U s t'/3 ). (29)

Let us now express the U's in terms of new
variables xp de6ned by:

x.—P yki 1/(1 y()
k=0

From Eqs. (23) and (24)

(33)

xs=ZU"=Zy"' ()3=1 2, 3 . ) (3o)
and

f(S, t) =g0($) +gi($)t+g2(S)t + ' ' '

From (23) and (30) we obtain

g(U, s, t) =exp Ixisit+x2s2t /2+x2$2t /3 }

= Q 1/n, !n2! n! .(xisi/1) "(x2s2/2)"

X (x s /r) artal+2a2+" ~ +rar (31)

log f($, t) =sit+$2t /2+ $0t /3+
The logarithm of the generating function for
g„(y) is therefore

log f(y t) =t/(1 —y)+t'/2(1 —y')

+t'/3(1 —y')+
The generating function for P'(X; X) is ob-

tained by ending how often the irreducible
representation [l),j is contained in the repre-
sentation dehned by the above characteristic.
From the general equation (18), we find that
P'(l), ; E)is the coefficient of yx'in

= t(1—y)/(1 —y)+yt/(1 —y)

+'('-y')/'('-y')
y2t2/2(1 y2) +. . .

= —log (1—t)+log f(y yt),

(34)

P(l); y) =ZX(i) ( )/ni!n2! . .!
~ (x)/1).~(x2/2)" . (x,/r)", (32)

where the summation is over all values of
cx&, n2, , a„.subject to the restriction n1+2n2
+ +rn„=rt. In (32),-x(),)( & is the character of

so that

(1—t)f(y, t) =f(y, yt).

Written out in full, Eq. (35) becomes

g0+(gi g0)t+(g2 gl)t + ' ' '

gO+y/g1+y~t2q2+

(35)
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Equating coefficients of t", we obtain the re-
currence relation

Multiplicities

APPENDIx. PART B.

C-(y) =a--i(y)/(1 —y"). (36)

Since go = 1, repeated apphcations of (36) yield

q„(y) = 1/(1 —y) (1—y2) ~ ~ ~ (1—y "). (37)

There remains to substitute expressions of this
form into the determinant corresponding to (22')
and to evaluate this determinant, which can be
reduced to the Vandermonde form. We give only
the final result. P'(X; K) is the coeKcient of yx in

F(X; y) =y-k&k-'&&k-'&" Qi, k+k —1(y)gi, k,~k —2(y)

a~ (y) 11 (y""' ' —y""' ')
i(j

—yak-I+2kk-2+ ~ ~ ~ +(k—1)i lgzk+k i(y)

&(q) k,+k-2(y) g)„(y)

X 11 (1 —y +'-~'-'). (38)

Application to nuclear levels

In the application to nuclei of heavy or inter-
mediate mass, we are interested in representa-
tions for which most of the X&'s are equal to
four; only a few have values less than four.
In this case i.t is simpler to use the' notation for
the associate representation, which is defined by
(14). The generating function for P'P; X) is
then .

P(y y) —yk[»'+»'+&a'+&4'] —k~

It may be noted here that, except for a possible
'

factor of a power of y, the generating functions
of a given representation and its associate repre-
sentation are the same.

The single-particle space orbits N~~, NJ2,

with the j's equal in groups containing p&, p,»,
~ ~ ~, p, i orbits, can be combined with single-
particle spin functions g~, g2, g3, g4 to form a set
of determinantal wave functions

~
Sj &gkg Sjmgkm' ' ' ~, (41)

Obviously the multiplicity is symmetrical in S
and T, If M(S, T; yi, yk) is known we compute
M(S, T; y&+1, y2) and M(S, T; y&, F2+1) by
means of the recurrence formulae

M($, T; vi+1, v2) =M($ —2, T—2; xi y2)

+M($ '„T+,'; yi, y2)-—-
+M(S+-', , T—-', ; yi, y2)

+M($+l, T+l; vi, v2), (43)

M($, T; yi, F2+1)= M($ 1, T; yi, yk)—

which subtends an invariant subspace in the
linear manifold h(ki). Each determinant has
definite S, and T, quantum numbers. Suitable
linear combinations of the determinants with
definite S„T,describe states with definite values
of S, the total ordinary spin, and T, the total
charge spin. We wish first to compute M(S, T; ki),

the number of times the state with given S, T
values and S,=S, T,= T occurs in the manifold

h(ki). One sees immediately that this quantity
depends only on the number of two-groups and
the total number of one and three-groups. Thus

M($, T; p) =—M($, T; pi+pa, y2). (42)

where

+M($, T 1;y„y,) y M(sy1—, T; ~„y,)
(i, j=1, 2, 3, 4), +M($, T+1;Vi, Vk)+2M($, T; Vi V2) (44)

G(y) =ak4+'(y) Qk~+'(y) akm+i(y) tI»(y)

In case the number of four-groups is large
(i1i large), we have, approximately,

G(y)- 11 (1—y') '.
i 1

Terms with negative S or T must be omitted.
These relations follow from t'he usual rules for
combining angular momenta together with the
starting values

V($, T; 1, 0) =1, S=T= i2,

=0, for all other S, T.

This form has been used in the calculation of the M($, T; 0, 1) =1, ($=1, T=O),
tables given in the text. Eq. (39) may be used to ($=0, T=1),
calculate asymptotic formulae for the P'(); X). =0, for all other S, T.

(45)
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The multiplicity M (5, T; X) associated with One needs also the starting values
the irreducible manifold Lh) is related to
iV(5, T; p) by the equation =0, for all other S, T.

M(5, T; y) =Q(X/p)M'(5, T; X). (46) M'(5, T; 4 41) =llew'(5, T;4 43)
=iV(5, T;1, 0).

(48)

Eq. (46) can be used as a recurrence formula for
the computation of M'(5, T; X); since () /X) =-1,

M'(S, T; p) = M(5, T; p)

M'(5, T; 4 . 42) = M(5, T; 0, 1).

Finally

M'(S, T, ; X) = Q M'(S, T; X) (49)

and—P (X/y)M'(5, T;)). (47) M(S, T, ; p) = g M(S, T; p).
T~ ITs)
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The Focusing of Charged. Particles by a Spherical Condenser
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The paths of charged particles traversing a portion of an
ideal spherical condenser are worked out. The section of the
condenser considered is bounded by two rays, enclosing an
angle C, from the common center of curvature, 0, of the
equipotential surfaces. It is shown that a group of particles,
homogeneous in energy, leaving a point P on a normal to
one of these boundaries and entering the condenser along
this normal as a diverging bundle, will be brought to a
focus at. a point Q lying on the line PO extended, if the
proper potential is applied to the condenser. This permits
the whole condenser gap to be used as a focusing energy
analyzer, or monochromator, of very large useful aperture.
The velocity dispersion and reduced velocity dispersion are
calculated for the most general case, and are found to take
the same simple form as do the corresponding expressions
for the limited homogeneous magnetic field spectrograph.

The expressions for the reduced velocity dispersion are
identical in the two cases. Compensation for edge eGect is
discussed. The relativistic modification of the theory
required for high speed particles is discussed and results are
presented which indicate that the simple theory of the
electrostatic spectrograph may be inadequate even for
fairly low values of v/c. It is suggested that this difficulty
may be avoided by the choice of suitable instrument
parameters.

An analyzer is described which has a useful aperture of
0.210 steradians, a theoretical reduced dispersion of 1010,
and which requires a total focusing potential of 0.315 B,
where B is the particle energy in equivalent volts. The
operation of the analyzer in focusing electrons accelerated
by a field designed to furnish an equivalent point source is
described.

INTRODUCTION

'HE possibility of deflecting and focusing a
slightly diverging beam of charged par-

ticles by means of a cylindrical condenser was
first demonstrated by Hughes and Rojansky. '
In Fig. 1(a), a beam of particles of the same
charge and initial energy, diverging from P and
traveling between the plates 'C and D of a

i A. L. Hughes and V. Rojansky, Phys. Rev. 34, 284
(1929).

cylindrical condenser, will be approximately
focused at Q, if the circular arc PBQ; subtending
an angle of m. /w2 or 127' 17', is the trajectory of
those particles which leave I' in a direction
perpendicular to OP. This device is essentially
an energy-analyzer, for the traj ectory of a
(nonrelativistic) particle in any given electro-
static field depends only on its initial position
and direction and the ratio of its charge to its
initial kinetic energy. Such analyzers have been
incorporated in successful mass spectrographs.


