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The Weiss-Heisenberg theory of ferromagnetism is dis-
cussed and generalized in a plausible way. Whether this
generalization is theoretically sound must be determined by
a quantum-mechanical investigation. The proposed equa-
tions of state, however, may be regarded as an attempt to
describe antiferromagnetism (i.e., the case in which
oppositely directed spins on adjacent atoms have the
lowest energy), pure metals having less than one spin per
atom, and the magnetic properties of alloys. No attempt is
made to compare the results with the properties of actual

alloys, but it is shown that the proposed equations do give
systems in which the Curie temperature depends on com-
position and atomic order; in which nonmagnetic metals
may combine to produce a ferromagnetic alloy; in which
wasp waisted hysteresis loops occur; and in which heat
treatment may radically affect magnetic properties. Large
effects are predicted which should make it easy to verify
experimentally whether or not the proposed approach to
the problem is on the right track.

HE theory of ferromagnetism as developed
by Weiss, Heisenberg, and others, has been
used chiefly to interpret the magnetic properties
of crystals of like atoms in which internal forces
tend to make elementary magnetic moments
point in the same direction. In this field even the
simplest form of the theory has been quite suc-
cessful in accounting for the dependence of
spontaneous magnetization, magnetic suscepti-
bility, and specific heat on temperature. The "
simple magnetic equation of state which gives
these tesults is admittedly only approximate, but
its success has been sufficient to give point to
the question of how it might be generalized to
include systems of unlike atoms and systems in
which conflicting internal forces may be present.
There is at present no hope of setting up such
equations rigorously, and we shall consequently
have to content ourselves with plausible guesses
based on the theories of Weiss and Heisenberg,
which we shall first briefly review. We shall
assume systems containing dipoles that are either
parallel or antiparallel to each other and to the
externally applied field. In a system containing NV
such dipoles of which N+ are pointing to the
right and N— are pointing to the left, the rela-
tive intensity of magnetization is defined as
1=(N,.—N_)/(N,.+N_), and the total intensity
of magnetization is defined as I=uNi. The
Langevin theory of paramagnetism states that

* The outlines of this paper were first presented at a
meeting of the American Physical Society, December 28—
30, 1936, and at the Symposium on the Structure of
Metallic Phases, held by the department of physics of
Cornell University, July 1, 1937.

if these elementary dipoles do not interact with
each other, the magnetization 7, absolute tem-
perature T, and magnetic field H are related by
the equation ¢=tanh (uH/kT). The Weiss theory
generalizes this by saying that if the dipoles do
interact, this interaction may be represented as
an additional field proportional and parallel to
the intensity of magnetization and the equation
of state becomes

i=tanh [(Di+uk)/kT]. 1)

From this equation of state one can calculate the
physical properties of the system. The spon-
taneous magnetization (¢ as a function of T for
H=0) and volumes susceptibility (Ko=uN d7/0 H
for H=0) follow directly. If the equation has
more than one solution, the most stable one is
defined as that having the lowest free energy
f=u—wH—T¢, the internal energy u and
entropy ¢ per atom being defined by!
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where sy is the atomic specific heat at constant

magnetization. Substituting from the equation of
state and integrating one finds that

u=—3Da, @
o=—3k[(1+2) In (1+))+(1—=39) In (1=9)], (5)

1 See F. Bitter, Introduction to Ferromagnetism (McGraw-
Hill, 1937) Chapter IX.
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terms independent of ¢ being omitted. s; can be
shown to be independent of <.

The Heisenberg theory is the quantum-me-
chanical counterpart of an earlier theory due to
Ising? which was first developed for the case of
linear chains of atoms, but which we shall run
through in a more general way. The magnetic
moments are assumed to be distributed on the
lattice points of a crystal, and each dipole has z
nearest neighbors. It is assumed that only nearest
neighbors interact, and that the total energy of
the crystal may be taken as the sum of the
mutual energies of all pairs of nearest neighbors

Nu= 6++V+++ €+_V+_+ €E__V__.

€41 is the interaction energy of a pair of positive
dipoles, v, is the number of these present in

some particular configuration of the crystal, and

it is assumed for simplicity that the total volume
of the crystal is one cubic centimeter. It can be
shown that this expression can be rewritten in
terms of a new parameter ¢, sometimes called the
short range order, defined by

vi_=1Nz(1—0).
From this definition it follows that

v =iNs{1+i—3(1—0)},
V__=lNZ{1_i_%(1_U)}s

u=—%Dg

(6)

where D is a constant derived from the inter-
action energies. The variables ¢ and ¢ define the
state of the crystal. Unfortunately it is not
possible to write the entropy as a function of 7
and ¢ except for the case of a linear chain of
atoms, because we do not know how to estimate
the number of configurations corresponding to
given values of 7 and ¢. We do know, however,
that there are far more configurations for o=¢
than for any other configuration; in fact that
the total number of configurations for all values
of ¢ with a fixed ¢ is very nearly equal to the
number of configurations for o=¢ and the same
value of 4. It can easily be shown that the mean
value?® of ¢ is
G=12
2 E. Ising, Zeits. f. Physik 31, 253 (1925).

3 Let xx be a number which is +1 when the kth lattice
point is occupied by a positive moment, and —1 when

N
occupied by a negative moment. 2 x;=N,—N_=Ni;
k=1
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and that if we neglect states with values of
¢, the entropy must have the forms given in
Eq. (5). With these assumptions one can readily
obtain the equation of state (1) by minimizing
the free energy.

Heisenberg’s theory differs from the above
form of Ising’s theory in two respects. First, if
electronic spins are responsible for the mag-
netization 7, the mean value of ¢ must be found
by calculating the mean value? of the product of
two spin operators (s;-Si)w instead of the mean
value of the product two numbers {xxi)n. For

" the case of a pure ferromagnetic metal, how-

ever, this calculation gives ¢=4* as in Ising’s
theory, and to this approximation the two
theories give the same result. Heisenberg, how-
ever, goes on to assume a Gaussian distribution
of states about the mean value, and adjusts the
spread of this assumed distribution, so that the
quantity ¢?—¢&? has its correct value. In this
approximation the two theories give different
results. Ising’s approximation is®

vH Di D (1—2?)
¢=tanh {——}——[1——— :”, @)
ET kT ET 3

which behaves ‘‘sensibly’’ at all temperatures,
while Heisenberg’s more correct treatment gives

vH D1 D (2—4%?)
1=tanh {~—~+-[1—— ]}, (8)
ET kT ET 2

which breaks down at low temperatures. The
physical properties derived by means of these
equations differ only slightly from those obtained
from the simpler equation of state (1).

This is the foundation on which we shall
proceed with our generalization. The inclusion of
fluctuations® adds so much to the -complexity
of the work, and so little to the physical content
of the equations, that we shall omit them here.
Eq. (1) is consequently our starting point. In

N
Zx@=N; + 2 2 x=Nzo/2;
k=1 all pairs all pairs
(o = 0; 2x2xy = 2N2 = 22 + NV — Dwixg
= N(N—1)G;and for large values of N therefore & =12
4See Van Vleck, Electric and Magnetic Susceptibilities
(Oxford, 1932) Chapter XII.
5 A similar equation hasbeen obtained by J. G. Kirkwood,
J. Chem. Phys. 6, 73 (1938) for the order-disorder problem.
6 L. Néel has attempted to include the effects of fluctu-
ations in a different way. Ann. de physique 17, 1 (1932).

(1 —xjxk) = VAB,
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discussing it we may use the language of any of
the three derivations given above, which we shall
refer to briefly by the names of Weiss, Ising, and
Heisenberg. Of these we shall choose the method
of Weiss because it is best suited to discussing
the physical ideas in words with a minimum of
calculation. The same results follow from the
theory of Ising if we limit ourselves to the mean
values of the energy, but it seems hardly worth
while to go through the calculations in print.
Whether or not the Heisenberg theory gives the

same result to this approximation has not been

determined.

Equation (1) applied to pure ferromagnetic
media for which D>0 gives a spontaneous
magnetization which vanishes for T>D/k=T,;
a specific heat having a discontinuity for 7'=1T,;
and an initial susceptibility given by the formula

Nut/k

TT/—®)-T. ©

This quantity is 8I/dH for H=0 as calculated
from Eq. (1). Below the Curie point it represents
the small increase in the spontaneous mag-
netization which can be produced by strong

fields. This has not yet been measured. Above

the Curie temperature there is no spontaneous
magnetization, =0, and the behavior of actual
materials is fairly well described by Eq. (9).
The internal field in Eq. (1) is assumed to be
proportional to the intensity of magnetization.
This statement should be made more precise by
saying, instead, that the field acting on any one
atom is proportional to the intensity of mag-
netization of that group of atoms with which
it interacts. It can be shown that for the case
under discussion the positive and negative spins
are randomly arranged among each other, and
that, therefore, the intensity of magnetization of
all groups of atoms within a region of spon-
taneous magnetization will be the same. The
question of the range of the interatomic forces is,
therefore, irrelevant, and Eq. (1) will hold
whether we assume short range forces as in the
Ising and Heisenberg treatments, or arbitrarily
long range forces.

The question of the range of the forces,
however, becomes important when we consider
antiferromagnetism, or the case in which the

internal forces are such as to make interacting
spins antiparallel to each other. To illustrate this,
we shall consider two limiting cases. If the range
of the forces is sufficiently large, we may assume
as before that the internal field is proportional
to the spontaneous magnetization, since the
average magnetization of a sufficiently large
group of atoms is likely to be equal to the
spontaneous magnetization. The equation of
state is then Eq. (1), with D/k=T7.<0. The
spontaneous magnetization is now zero for all
temperatures, the specific heat is constant, and
the initial susceptibility is given by

Nw/k
T—T.

(10)

0=

This formula predicts a finite susceptibility at the
absolute zero, continuously decreasing with
rising temperature, and with small values of N
and large negative values of T its contribution
to the total susceptibility is of the same order of
magnitude as that observed for some metals.

If the range of the internal forces is exceedingly
short, we may neglect the interaction of all but
nearest neighbors. In this case we must consider
the possibility of orderly arrangements of mag-
netic moments in such a way that the average
intensity of magnetization of the nearest neigh-
bors of an atom is not equal to the total average
intensity of magnetization of nearby atoms. In
the case of a body-centered cubic lattice, for
instance, it is converient to break the lattice up
into two simple cubic lattices which have the
property that any atom on one of these sub-
lattices has its eight nearest neighbors on the
other sublattice. In the absence of interactions
between next nearest neighbors” we may assume
the magnetization of these sublattices to be
uniform. Denoting the relative intensity of mag-
netization of these sublattices by 7; and 7., we
may write

D’iz"‘/J«H
21=tanh ———— 11)
kT
Diy+pH
i9=tanh ————, (12)
kT

7For a suggestion as to how these and more remote
interactions may be taken into account, see a note by the
author to appear shortly in J. Chem. Phys and footnote
12 below. .
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since the internal field acting on the atoms of
one sublattice is proportional to the intensity of
magnetization of the atoms on the other sub-
lattice. It is convenient to replace these variables
by the total relative intensity of magnetiza-
tion 4=(4;+42)/2 and an order parameter
p=(41—172)/2 similar to the order parameter .S in
the theory of order-disorder in alloys. In terms
of these variables Egs. (11) and (12) may be
written

(1+i+P)(1+’i—P)_Di+MH
AT (—itp) kT
(1+i+p)(1—i+p)  Dp
YA—i—p)(ti-p) kT

(14)

1

and the expression for the internal energy be-
comes

u=—1D(i—p?). (15)

For ferromagnetic substances D >0, and the
solution of the above equations is =0, and <
satisfies Eq. (1). For antiferromagnetic sub-
stances D <0, and in the absence of a magnetic
field the solution of (13) and (14) is

i=0,

p=tanh (—Tp/T).
Nu2/k

"TT/a-p-T.

(16)
17

The specific heat has an anomaly for T'=—T,
identical with that of a ferromagnetic at the
Curie temperature, and the susceptibility has the
form shown in Fig. 1. No material exhibiting
such properties is known.

Néel® has pointed out that manganese prob-
ably is an antiferromagnetic substance in the
above sense, as it has an anomaly in the specific
heat near 350°C. Its magnetic susceptibility,
however, is constant below the critical tempera-
ture and falls off slightly above it. Our consider-
ations were based on the assumption that the
elementary magnetic moments were parallel or
antiparallel to the applied field. Néel® shows
that if this assumption is dropped, it seems

8 L. Néel, Comptes rendus 203, 304 (1936).
9 L. Néel, Ann. de physique 17, 63 (1932).
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F1G. 1. Susceptibility of an antiferromagnetic substance as
a function of temperature.

quite reasonable to expect susceptibilities for
T=0 of the same order of magnitude as for
T=T., because of the rotation of individual
magnetic moments.

Hulthen!® has also calculated the suscepti-
bility of antiferromagnetic materials at low
temperatures, using a method due to Heller
and Kramers.* He finds that in small fields the
magnetic moments tend to set themselves at
right angles to the applied field and antiparallel
to their nearest neighbors. At low temperatures
the susceptibility has the form A4 —BT2 In
actual materials the behavior will be complicated
by crystalline fields tending to orient magnetic
moments with reference to the crystallographic
axes. If anomalies of the type shown in Fig. 1
do actually occur, they will be superimposed on
other effects due to causes which have not been
considered in this article.

The results obtainable for alloys® are very
complicated, and we shall attempt here only to
indicate the general outlines of a theory. If it is
assumed that we may neglect the interactions
of all but nearest neighbors, it is at once apparent
that the ordering tendency of different types of
atoms in an alloy will play an important part
in determining magnetic properties. Further-
more, the internal fields responsible for ferro-
magnetism will influence the degree of order at
any particular temperature, and these effects
may be large, as the critical temperatures for

ferromagnetism are of the same order of magni-

(1;‘;{5‘). Hulthen, Proc. Roy. Acad. Amsterdam 39, 190
uG. Heller and H. A. Kramers, Proc. Roy Acad.
Amsterdam 37, 378 (1934).
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tude as the critical temperatures for the order-
disorder transitions. One ought really to build
up a theory on the assumption that atoms of
two kinds, A and B, each having a magnetic
moment w4 Or up, can interact in several ways,
and that the total energy of any configuration
of the alloy is the sum of the energies of pairs of
nearest neighbors. This would give different
values to parallel and antiparallel pairs of types
A—A, A—B, and B—B. One ought then to
calculate the equilibrium degree of order and
magnetization for every temperature. The equa-
tions defining such equilibrium may be readily
set up in a nice symmetrical form, but their
solution is so laborious that we shall simply
treat the order parameter and the concentration
as independent variables, and omit the question
of determining the conditions that homogeneous
phases of given composition and order may
exist.1?

2 The formulation of this problem may be undertaken
quite generally as follows: Suppose we have an arbitrary
number of kinds of atoms, arranged on the lattice points of
a crystal. Among the various kinds of atoms we may
distinguish between atoms of the same chemical species,
but in different states. Our calculations are based on the
assumptions that the energy of interaction of any two
atoms is independent of the arrangement of the remaining
atoms of the lattice. With this assumption interactions
over arbitrarily large distances may be included. To do this,
break up the lattice into a set of interpenetrating sublattices
such that the nearest neighbors on each sublattice are a
distance apart greater than some arbitrarily chosen
distance, Ro, which we define as the range of the atomic
interactions. The atoms of any one sublattice may then be
considered to have no interaction with each other. Consider
now any two sublatticesin their mutually correct positions.
It will always be possible to break up the original lattice
into a sufficient number of sublattices such that each atom
of one of any pair of sublattices j and 2 has a certain
number of neighbors on the other sublattice a distance
R;jz< Ro away, and that in this pair of sublattices there are
. no other neighbors at distances less than Ro. If #; represents
the total number of lattice points on the jth sublattice, and
n;4 the number of these lattice points occupied by atoms of
type 4, we may define any configuration of the lattice in
terms of the concentration variables x;4=n;4/n;. The
entropy may be written as a sum of terms of the form
—x;4 In x;4. Numerical factors will appear in some of these
terms if the number of atomic sites is not the same for all
the sublattices. The energy may be expressed as a sum of
terms of the form e;z48vjr4p where the first factor represents
the energy of interaction of two atoms 4 and B a distance
Rjr apart, and the second factor represents the number of
such pairs on the j and k sublattices in any particular
configuration. If, as above, we replace the energy distri-
bution by its mean value, we must calculate the mean
values of the quantities v;rap. These can readily be
calculated by the following device. Let »;; be the total
number of pairs of nearest neighbors on sublattices j and &.
Let 8:;/ be a number equal to unity if the sth lattice point
on the jth sublattice in some particular configuration

For simplicity we shall again consider a body-
centered cubic lattice which may be broken up
into two sublattices having the property that
any atom of one interacts only with atoms on
the other, if we consider nearest neighbor
interaction only. If N4;, are the number of
atoms of type 4 on sublattice one whose mag-
netic moments point to the right, and other
similar symbols are used for the number of
atoms of other types we have

N4+ Nagi—=Nyy,
Na1+Np1=Ny,
Na1+Nye=Ny

and similarly for atoms of type B and sublattice
two. The concentration of atoms of types 4
and B on one sublattice is defined by

yl=(NA1_NBI)/N1y
Na/Ni=51+4y1); Npi/Ni=3(1—y)).

The total mean concentration is
y=(Na—N5)/N=5(1+y)
and the long range order is defined by

S=3(y1—y2).

The relative intensity of magnetization is defined
by
ta1=(Va14—Na1-)/Na:

with similar variables for both types of atoms
on either lattice. If we assume that the internal
field acting on any one atom is made up of two
parts, one due to the atoms of the same type,
and one due to atoms of the opposite type, and
that either of these fields is proportional to the

designated by () is an atom of type 4, otherwise §=0.
Similarly let v:;® be unity if the site is occupied by an
atom of type B, otherwise y=0.

v 548 =2 i* (8] Dy @ +y1;@5®),

o viraB®
v
(virap)n= sl
nj. nk! -
njA!njB!- i nk,;!nkBL ..

2.* means sum over all pairs of nearest neighbors, and

(@ means sum over all configurations of the system.
Substituting the first expression in the second, and summing
first over (a) keeping 7 and ] fixed, one finds that

(viraB)aw=vr(x;axXeB+%;B%rA).

These expressions define the system thermodynamically. In
‘many cases the number of independent variables can be
reduced by arguments concerning the symmetry of the
equations defining equilibrium.
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concentration of the type of atom in question
and to its intensity of magnetization, then the
equations of state can be written directly in the
following form

Diss(14y2) +Gipa(1—y2) +ual

141=tanh )
kT
. Gias(1+y2) + Fipe(1 —y2) +upsH
i1p1=tanh )
kT
(17A)
. DiA1(1+y1)+Gim(1—y1) +uaH
¢A2=tanh ’
kT
' Gia1(14y1) + Fige(1 —y1) +upH
1pe=tan BT .

D, F, and G are constants. D and F determine
the behavior of pure 4 and pure B, respectively.
wa and up are the dipole moments of an atom of
A or B, and G determines the interactions of
dipoles of A and B with each other. Even with
all the above simplifications these equations are
quite formidable, and we shall discuss only a
few special cases.

It is well known that ferromagnetic metals do
not in general have an absolute saturation
corresponding to one magnetic moment per atom,
but that only some fraction of the atoms con-
tribute to the ferromagnetism. A way of intro-
ducing such a feature into the above theory is
to let 4 represent those atoms having a magnetic
moment, and to let B represent atoms with no
moment. The equations then reduce to

. Dias(14y2) +uad
141=tan ,
kT
(18)
. Dias(14y1) +uad
149=tanh .
kT

The solutions of these equations are determined
to a large extent by assumptions which we must
make concerning the arrangement of the non-
magnetic atoms in the lattice. If they are
arranged at random, we may put yi=ys=jy.
Since the substance is ferromagnetic D >0, and

hence, 741=%42. The equations reduce to the.

form of Eq. (1), and the nonmagnetic atoms have
no influence on the properties of the system.

If, on the other hand, the nonmagnetic atoms
tend to arrange themselves in an orderly fashion,
then y15£y2, and the equation of state is modified.
If we measure the mean concentration of non-
magnetic atoms by the parameter y=3%(y:+7y2),
and the long range order by s=%(y1—7y,), the
Curie temperature can be written in the form

Te=(D/B)[(1+y)—s*1t

It can be shown that 0<s?2< (1— [y])?; that
for 0292 —1, or for concentrations involving
fewer magnetic atoms 4 than nonmagnetic atoms
B, the metal may become paramagnetic simply
because the magnetic atoms may be completely
surrounded by nonmagnetic atoms; and that for
0<y<1 there is a real Curie temperature which
rises as the degree of order diminishes. Under
these circumstances, one should expect addi-
tional anomalies in the specific heat due to the
changes of order.

The topics discussed so far have had to do with
the possibilities of long range order in the elec-
tronic states of similar atoms in a pure metal,
and the results obtained do not seem to indicate
that such a behavior actually exists except
possibly in Mn. In discussing alloys, we shall
therefore concern ourselves with ferromagnetic
metals, as in this case the antiparallel moments
will be arranged at random, and we shall discuss
metals with one magnetic moment per atom
only, so as to avoid assumptions as to how non-
magnetic atoms are arranged in the lattice.

If the pure metals 4 and B used for the alloy
described in Eq. (17A) are ferromagnetic, then
D and F must be positive. To illustrate the
effect of order-disorder on the magnetic proper-
ties, we shall consider the case of an alloy having
4 and B in equal proportions, but in one case
fully disordered y;=v,=7v, s=0; and again fully
ordered yi=—y,=1, y=0, s=1. For the dis-
ordered case it can be shown that the two
sublattices are identical, 741=1%42, tp1=1pe, and
the equations reduce to

. D?:A—I"G'LB—{-I.LAH
ta=tanh —M
) kT
) ) (19)
. Gia+ Fip+upH
ip=tanh —— .
kT
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F1G. 2. Plot of Egs. (21) as functions of ¢4 and ip.

For the completely ordered case, on the other
hand 742=151=0 because there are no atoms of
B on lattice 1 or atoms of 4 on lattice 2, and the
equations reduce to

2Gip+usH
t24=tanh ————,
k R
(20)
2Gia+ppH
ip=tanh ———.
kT

If, for instance, D=F=0 but G>0, it is easily
seen that the Curie temperature is G/k for the
disordered alloys, but 2G/k for the ordered
alloy. The main point which it is desired to
empbhasize is that equations of this sort can give
radical changes of properties with heat treat-
ment and can make understandable, in principle
at least, the appearance of ferromagnetism in
alloys of nonmagnetic elements.!* Whether a
more detailed comparison with the behavior of
actual systems is possible remains to be seen. -
In order to demonstrate somewhat more fully
the predictions of Egs. (17A) we shall discuss
them for the case of an alloy of two ferromagnetic
elements in any proportions in which the atoms
are arranged at random. In this case the two
sublattices are identical, and we may put
y1=v2=1%, and t41=1%42, 251=1%p2, and the equa-

13 Experimental work in this connection is summarized
by F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 59
(1938).

tions become’

Dia(14+y)+Gis(1 —y) +naH

14=tanh )
kT
. ) (21)
. Gia(14+y)+Fig(1—y) +usH
1p=tan kT .

These equations may be plotted as functions of
24 and ¢p as in Fig. 2. They have the form of an .S,
and may have as many as nine solutions. The
solutions for the largest absolute values of 74
and 73 have the lowest free energy, and are,
therefore, the most stable. For this solution 74
and 75 will have the same sign if G >0, or opposite
signs if G<O0. If there are nine solutions, then,
in addition to the two mentioned, there will be
two solutions corresponding to subsidiary minima
of the free energy at the points indicated by
circles in the figure. None of the other solutions
correspond to minima of the free energy, and
are, therefore, not stable solutions. For high
temperatures the curves cross only at the origin,
if there is no applied magnetic field. The condi-
tion for the appearance of spontaneous mag-
netization is that the slope of the two curves at
the origin ‘shall be equal. This may occur for
two temperatures, but the higher one of the two
is, of course, the Curie point. The subsidiary
minima of the free energy appear at temperatures
below the lower of the above-mentioned tem-
peratures. The Curie temperature is given by

T.=(1/2R)[D(1+y)+F(1—y)
+H{[D(1+y) = F(1—y) PH+4G (1 -y} ]

If G is small, the behavior of the alloy will be
almost that of two coexisting pure ferromagnetic
metals; the Curie point of each will be pro-
portional to its concentration in the alloy. At the
Curie point one of these will become ferro-
magnetic. As the temperature is lowered the
magnetization of this component will increase
until at some point the second component be-
comes magnetized. The magnetization of this
component will be parallel or antiparallel to
that of the first depending on whether G is
greater than or less than zero, and the mag-

(22)

14 Expressions similar to (22) and (23) were first obtained
by L. Néel, reference 6.
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T —

F1G. 3. Intensity of magnetization of an alloy.

netization of the alloy will either increase or
decrease with the temperature, as shown in
Fig. 3. In the latter case the magnetization can
be shifted from the lower to the upper of the two
curves in Fig. 3 by the application of a sufficiently
strong magnetic field. Hysteresis effects are to
be expected in the neighborhood of this field
strength because of the presence of two minima
in the free energy of almost equal depth. This
behavior is similar to that found in the so-called
“‘wasp waisted’’ hysteresis loops of certain iron-
nickel-cobalt alloys.”® Further experiments on the
less complex alloys of this type over wide ranges
of field and temperature are greatly to be desired.

15 Such loops are briefly described by T. D. Yensen in
F. 173itter, Introduction to Ferromagnetism (McGraw-Hill,
1937).

For other values of G one may expect a behavior
of the spontaneous magnetization ranging from
that shown in Fig. 3 to that of a pure substance.
If G*=DF, the Curie temperature is a linear
function of the concentration, and if in addition
D = Fall alloys behave like either pure substance.

The anomalies in the spontaneous magnetiza-
tion will, of course, be reflected in the behavior
of the specific heats. Also the initial susceptibility
above the Curie point will no longer be given
by the simple formula, Eq. (9) with =0, but
by the expression

_ Ne? T+(1/2k)(26 =D~ F)(1~y")

(23)
k (T—=T)(T—T»)

T; being the Curie temperature as defined in
Eq. (22), and T a lower temperature defined by
this same expression with a negative sign in
front of the square root. It is assumed that
MA= PB= fh.

The behavior of an alloy in the neighborhood
of its Curie point is not completely determined
by Egs. (17A). For a range of temperatures near
the critical temperature the alloy may break up
into a paramagnetic and a ferromagnetic phase
having different compositions. This behavior is
influenced by interaction energies which do not
appear in the magnetic equation of state, and
will, therefore, not be discussed further at this
point.



